3.5.3 the Use of Erosion Pins in Geomorphology

Total Page:16

File Type:pdf, Size:1020Kb

3.5.3 the Use of Erosion Pins in Geomorphology © Author(s) 2016. CC Attribution 4.0 License. ISSN 2047 - 0371 3.5.3 The use of erosion pins in geomorphology John Boardman1,2 and David Favis-Mortlock1 1Environmental Change Institute, Oxford University Centre for the Environment, Oxford, UK ([email protected]) 2Department of Environmental and Geographical Science, University of Cape Town, South Africa ABSTRACT: Erosion pins have been widely used in geomorphology since the 1950s to estimate rates of change (erosion and – less commonly – accumulation) in land surfaces. They may be used for short- and long-term surveys and are quick and easy to install and measure. Erosion pins are particularly suited to bare, undisturbed environments such as badlands and sand dunes. Our recommendations for their use follow those of Haigh (1977) and Lawler (1993) but we also discuss the need for researchers to be aware of issues which arise from of measurement error, particularly for short-term studies and analytical methods which rely on few pin measurements. There is also a not inconsiderable challenge involved in extrapolating results derived from erosion pin measurements to larger areas. KEYWORDS: badlands, erosion pins, erosion rates, measurement errors erosion pins is not necessary: useful data can Introduction be collected with occasional visits. The basic idea behind the use of erosion pins However, this simplicity is deceptive. to quantify land-surface change is very Considerations of pin siting, measurement straightforward. A rod is firmly fixed into the error, and interpretation of results rapidly ground (or other substrate), and a note made introduce additional complexity. Thus, any of the length of rod which remains exposed. geomorphological study that uses erosion pins After some time, this exposed length is again – initially driven, perhaps, by the seductive measured. Increased exposure is assumed to apparent simplicity of the technique – will have indicate erosion, and decreased exposure is to grapple with issues which may well not have assumed to indicate accumulation. Results been obvious at the outset, leading to possible from pin measurements may then be difficulties and confusion when answering the correlated with other measurements. These question “What do these results tell us?”, and might be measurements of some even (at worst) disillusionment regarding the hypothesized driver of land-surface change, usefulness of the technique. such as rainfall. But in this case forewarned is, to a large Thus, erosion pins are a simple, robust, and extent, forearmed. In this review of the use of relatively cheap approach to small-scale erosion pins, which is an up-dating of those by measurement of erosion rates, and one in Haigh (1977) and Lawler (1993), we aim to which the design can be easily adapted to the cover these complicating factors, and present aim of the project. The advantages of erosion some mitigating suggestions. pins are still more notable when compared with the expense and field/laboratory effort Historical background to the required by techniques such as 137Cs and technique 210Pb tracers, installation of flumes and sediment traps, laser scanning, etc. Perhaps As Haigh (1977) points out, the use of erosion most attractive of all, continuous monitoring of pins originated in studies of badlands in the USA by Colbert (1956) and Schumm (1956). British Society for Geomorphology Geomorphological Techniques, Chap. 3, Sec. 5.3 (2016) The use of erosion pins in geomorphology 2 The design of erosion pins has varied little. perennial geomorphological considerations The earliest used wood (Schumm, 1956; regarding choice of study area location are Ranwell, 1964) but it quickly became clear that beyond the scope of this review but they are metal, and preferably non-rusting metal (either fundamental to any erosion pin study that aims non-ferrous, or treated so as to prevent to extrapolate results outside the confines of rusting) is to be preferred (Emmett, 1964; the pin grid, either spatially or temporally (see Clayton and Tinker, 1971). Brass or steel below). welding rods have been commonly used An additional important consideration in the (Evans, 1967) but even plastic knitting needles selection of pin sites in proximity to locations have proved successful (Lawler, 1993). A at which other kinds of environmental data are loose-fitting washer has been used as an gathered, principally precipitation and indicator of exposure in some studies (Kirkby temperature. Ideally, pin sites should be near and Kirkby, 1974) but not in others (Keay- a weather station but in many cases this is not Bright and Boardman, 2009; Boardman et al., feasible. In remote areas where medium- or 2015). The pros and cons of using washers long-term weather records are rare this may are discussed by Haigh (1977). be a problem, and some alternative must be A major use of erosion pins has been in found. Boardman et al. (2015) use informal badland environments (Figure 1). Nadal- daily precipitation records from nearby farms, Romero et al. (2011, Figure 6) compare the arguing that these data are generally reliable techniques used to measure sediment yield and have been gathered within 5 km of all 10 from Mediterranean badland areas. Erosion erosion pin sites but nonetheless, micro- pins are the second most-used approach, climate differences between sites are behind only gauging stations, with 25 study inevitable. sites out of 105 using pins. Having decided on the locations where pin measurements will be made, the next step is to decide on the placement of individual pins. The aim in the placement of a single erosion pin is that the resultant measurements will adequately represent erosion, and possibly deposition, on an area around the pin. There is no general agreement on the size or indeed the limits of this area: however, assumptions regarding this area affect attempts (either overt or implicit) to estimate average rates of erosion or deposition on larger areas surrounding the pin (see below). Neither is there general agreement on the Figure 1: Erosion pin site Karoo, South Africa number of replicate erosion pins that should Many more recent papers refer to the be used, or on the spatial configuration of advantages and disadvantages of using multiple pins. Almost all researchers have erosion pins, one such example is that by used multiple pins. Most researchers have Hancock and Lowry (2015). tended to cluster pins fairly closely but the numbers have varied. For example, Higuchi et Spatial and temporal issues in al. (2013) place 10 pins to represent a badland erosion pin placement and area: compare this with 301 pins in Evans’ measurement (1977) study and 250 pins in Boardman et al. (2015). Pins have generally been laid out in Before driving in a single pin, placement in the regular grids or in lines (usually straight). In wider landscape context must be very both cases, a factor is ease of relocation for carefully considered (Lawler 1993 p. 798). measurement after a considerable time Does the study aim to quantify rates of ground- period. If using erosion pins in a grid, a surface change over the whole landscape? If spacing of 1 m is frequently used e.g. Sirvent so, then some form of random or stratified- et al. (1997). random siting of pin grids may be necessary. The length of time during which erosion pin Or does the study aim to capture rates on a measurements are conducted and the time particular land usage or soil type? Such British Society for Geomorphology Geomorphological Techniques, Chap. 3, Sec. 5.3 (2016) 3 Boardman and Favis-Mortlock interval between pin measurements also studies have accepted that trampling is an require serious consideration. A major factor erosional factor (Fanning, 1994). here is the aims of the study. Table 1: The varied uses of erosion pins If the aim is to obtain information regarding Environment Reference long-term average rates of erosion, then measurements should be collected over Salt marsh Ranwell (1964) several years in order to adequately capture Waste tips Haigh (1977); the effects of year-on-year variations in Schumm (1956) weather including relatively uncommon River banks Lawler 1978, 1991, extreme events. However, most erosion pin 1992, 1993 experiments have been of rather short Peat moorlands Birnie (1993); Tallis duration, c. 2-3 years. Longer-term studies are (1981 p. 76) rare: cf those of Clarke and Rendell (2006) for Footpaths/trails/tracks Streeter (1975); 6 years, Hancock and Lowry (2015) for 9 Summer (1986) years, Lazaro et al. (2008) for 11 years, Badlands Clarke and Rendell Boardman et al. (2015) for 13 years, and (2006); Nadal- Godfrey’s studies of creep and surface Romero et al. lowering on Mancos Shale badlands for 40 (2011); Hancock years (Godfrey 1997; Godfrey et al., 2008). and Lowry (2015); Boardman et al. If, however, the aim is to determine seasonal (2015) variations in erosion and deposition then Sand dunes Jungerius et al. short-duration pin experiments with a frequent (1981); Jungerius measurement interval are suitable, e.g. Evans and van der (1977): a 2-year experiment with a 4-weekly Meulen (1989); sampling interval. In all cases, sampling Wiggs et al. (1995); intervals must take into account rates of Livingstone (2003) erosion and therefore measurement error (see Bare, contaminated Bridges and below). soils Harding (1971) Issues with particular Bare soils Slaymaker (1972) environments Gullies Harvey (1974) Erosion pins have been used to measure Examples of the variety of environments changes in the surface of dunes in the where erosion pins have been used are shown Netherlands and desert dunes, e.g. in in Table 1. Erosion pins are particularly suited Namibia. Jungerius et al. (1981) recorded to measurement of change on bare peat changes at weekly intervals over a 2-year surfaces where erosion rates are high, e.g. period. In a later study, Jungerius and van der because of trampling by animals and related Meulen (1989) took measurements every six disturbance of vegetation.
Recommended publications
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Glacial Geomorphology☆ John Menzies, Brock University, St
    Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed.
    [Show full text]
  • Forensic Geoscience: Applications of Geology, Geomorphology and Geophysics to Criminal Investigations
    Forensic Geoscience: applications of geology, geomorphology and geophysics to criminal investigations Ruffell, A., & McKinley, J. (2005). Forensic Geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews, 69(3-4)(3-4), 235-247. https://doi.org/10.1016/j.earscirev.2004.08.002 Published in: Earth-Science Reviews Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26. Sep. 2021 Earth-Science Reviews 69 (2005) 235–247 www.elsevier.com/locate/earscirev Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations Alastair Ruffell*, Jennifer McKinley School of Geography, Queen’s University, Belfast, BT7 1NN, N. Ireland Received 12 January 2004; accepted 24 August 2004 Abstract One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction.
    [Show full text]
  • 2 Observation in Geomorphology
    2 Observation in Geomorphology Bruce L. Rhoads and Colin E. Thorn Department of Geography, University of Illinois at Urbana-Champaign ABSTRACT Observation traditionally has occupied a central position in geomorphologic research. The prevailing, tacit attitude of geomorphologists toward observation appears to be consistent with radical empiricism. This attitude stems from a strong historical emphasis on the value of fieldwork in geomorphology, which has cultivated an aesthetic for letting the data speak for themselves, and from cursory and exclusive exposure of many geomorphologists to empiricist philosophical doctrines, especially logical positivism. It is, by and large, also an unexamined point of view. This chapter provides a review of contemporary philosophical perspectives on scientific observation. This discussion is then used as a filter or lens through which to view the epistemic character and role of observation in geomorphology. Analysis reveals that whereas G.K. Gilbert's theory-laden approach to observation preserved scientific objectivity, the extreme theory-ladenness of W.M. Davis's observational procedures often resulted in considerable subjectivity. Contemporary approaches to observation in geomorphology are shown to conform broadly with the model provided by Gilbert. The hallmark of objectivity in geomorphology is the assurance of data reliability through the introduction of fixed rule-based procedures for obtaining information. INTRODUCTION Geomorphologists traditionally have assigned great virtue to observation. The venerated status of observation can be traced to the origin of geomorphology as a field science in the late 1800s. Exploration of sparsely vegetated landscapes in the American West by New- berry, Powell, Hayden, Gilbert, and others inspired perceptive insights about landscape dynamics that provided a foundation for the discipline (Baker and Twidale 1991).
    [Show full text]
  • 4-Year Phd Fellow Position in Geomorphology/Paleoclimatology
    4-year PhD fellow position in Geomorphology/Paleoclimatology (2017-2021) Contrato predoctoral (4 años) para la formación de doctores en Geomorfología/Paleoclimatología FluvPaleoRisk Project. 3000 years of flooding in mountain catchments: connectivity, synchronization or teleconnection? (CGL2016-75475-R) The variation of surface hydrological conditions that determine the pattern of river systems, affects significantly environmental and socioeconomic systems and flood risk. The project develops a multidisciplinary approach that contributes to the generation of long series of paleofloods in the Eastern Betic Range and Western Alps, that record also low-frequency extreme events. The approach analyzes fluvial sedimentary and lichenometric proxies, as well as instrumental data and documentary sources by applying geostatistical methods, climate modeling and remote sensing. The control mechanisms and forcings (orbital, solar, climate, volcanic, land use changes, geomorphological and hydrological dynamics) involved in fluvial processes of basins with diferent features (altitude, surface) will be analyzed. The study aims to determine whether paleofloods can be attributed to warm or cool climate periods, higher or lower humidity, and to regional-scale synoptic situations. Furthermore, it investigates whether there is a synchronous or asynchronous response between basins such as differences of catchment connectivity, and if the altitude is a key factor because of the snow melt. The analysis of atmospheric circulation modes that have produced periods
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • Precambrian Plate Tectonics: Criteria and Evidence
    VOL.. 16,16, No.No. 77 A PublicAtioN of the GeoloGicicAl Society of America JulyJuly 20062006 Precambrian Plate Tectonics: Criteria and Evidence Inside: 2006 Medal and Award Recipients, p. 12 2006 GSA Fellows Elected, p. 13 2006 GSA Research Grant Recipients, p. 18 Call for Geological Papers, 2007 Section Meetings, p. 30 Volume 16, Number 7 July 2006 cover: Magnetic anomaly map of part of Western Australia, showing crustal blocks of different age and distinct structural trends, juxtaposed against one another across major structural deformation zones. All of the features on this map are GSA TODAY publishes news and information for more than Precambrian in age and demonstrate that plate tectonics 20,000 GSA members and subscribing libraries. GSA Today was in operation in the Precambrian. Image copyright the lead science articles should present the results of exciting new government of Western Australia. Compiled by Geoscience research or summarize and synthesize important problems Australia, image processing by J. Watt, 2006, Geological or issues, and they must be understandable to all in the earth science community. Submit manuscripts to science Survey of Western Australia. See “Precambrian plate tectonics: editors Keith A. Howard, [email protected], or Gerald M. Criteria and evidence” by Peter A. Cawood, Alfred Kröner, Ross, [email protected]. and Sergei Pisarevsky, p. 4–11. GSA TODAY (ISSN 1052-5173 USPS 0456-530) is published 11 times per year, monthly, with a combined April/May issue, by The Geological Society of America, Inc., with offices at 3300 Penrose Place, Boulder, Colorado. Mailing address: P.O. Box 9140, Boulder, CO 80301-9140, USA.
    [Show full text]
  • Geomorphology
    GEOMORPHOLOGY AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0169-555X DESCRIPTION . Geomorphology publishes peer-reviewed works across the full spectrum of the discipline from fundamental theory and science to applied research of relevance to sustainable management of the environment. Our journal's scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center AUDIENCE . Geomorphologists, Physical Geographers, Engineering Geologists and Exploration Geologists. IMPACT FACTOR . 2020: 4.139 © Clarivate Analytics
    [Show full text]
  • Glaciology and Glacio-Geomorphology in Victoria Landand Queen Maud Mountains Paul Andrew Mayewski University of Maine, [email protected]
    The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 1979 Glaciology and Glacio-geomorphology in Victoria Landand Queen Maud Mountains Paul Andrew Mayewski University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Geomorphology Commons, Glaciology Commons, and the Hydrology Commons Repository Citation Mayewski, Paul Andrew, "Glaciology and Glacio-geomorphology in Victoria Landand Queen Maud Mountains" (1979). Earth Science Faculty Scholarship. 219. https://digitalcommons.library.umaine.edu/ers_facpub/219 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. The source of these clasts has not yet been deter- tact delta at the eastern end of Lake Vida, as well as mined. However, given the broad distribution of vol- algae from within the delta. When subjected to radio- canic clasts and the apparent lack of volcanic vents (as carbon analysis, these samples should indicate the age determined by the field partys reconnaissance of ex- of one of the several terminal positions of the Victoria posed bedrock areas, especially those adjacent to and Lower Glacier, assuming that the age of the samples lies east of the Victoria Lower Glacier), the clasts were most within the range of the dating method. probably derived from the Ross Sea floor to the east and This research was supported by National Science then transported into the valley by glacier ice moving Foundation grant DPP 76-23460.
    [Show full text]
  • The Geomorphology of the Makran Trench in the Context of the Geological and Geophysical Settings of the Arabian Sea Polina Lemenkova
    The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea Polina Lemenkova To cite this version: Polina Lemenkova. The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics & Environment, 2020, 46 (3), pp.205- 222. 10.7494/geol.2020.46.3.205. hal-02999997 HAL Id: hal-02999997 https://hal.archives-ouvertes.fr/hal-02999997 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License 2020, vol. 46 (3): 205–222 The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea Polina Lemenkova Analytical Center; Moscow, 115035, Russian Federation; e-mail: [email protected]; ORCID ID: 0000-0002-5759-1089 © 2020 Author. This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License requiring that the original work has been properly cited. Received: 10 June 2020; accepted: 1 October 2020; first published online: 27 October 2020 Abstract: The study focuses on the Makran Trench in the Arabian Sea basin, in the north Indian Ocean.
    [Show full text]
  • Plate Tectonics
    Plate tectonics tive motion determines the type of boundary; convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative move- ment of the plates typically varies from zero to 100 mm annually.[2] Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the globe remains the same. This predic- The tectonic plates of the world were mapped in the second half of the 20th century. tion of plate tectonics is also referred to as the conveyor belt principle. Earlier theories (that still have some sup- porters) propose gradual shrinking (contraction) or grad- ual expansion of the globe.[3] Tectonic plates are able to move because the Earth’s lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topog- raphy and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by the rotation of the globe and the tidal forces of the Sun and Moon. The relative im- portance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.
    [Show full text]