The Geological Revolution: Deep Time and the Age of the Earth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astro2020 Science White Paper Solar System Deep Time-Surveys Of
Astro2020 Science White Paper Solar system Deep Time-Surveys of atmospheres, surfaces, and rings Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Michael H. Wong Email: [email protected] Institution: UC Berkeley Phone: 510-224-3411 Co-authors: (names and institutions) Richard Cartwright (SETI Institute) Nancy Chanover (NMSU) Kunio Sayanagi (Hampton University) Thomas Greathouse (SwRI) Matthew Tiscareno (SETI Institute) Rohini Giles (SwRI) Glenn Orton (JPL) David Trilling (Northern Arizona Univeristy) James Sinclair (JPL) Noemi Pinilla-Alonso (Florida Space Institute, UCF) Michael Lucas (UT Knoxville) Eric Gaidos (University of Hawaii) Bryan Holler (STScI) Stephanie Milam (NASA GSFC) Angel Otarola (TMT) Amy Simon (NASA GSFC) Katherine de Kleer (Caltech) Conor Nixon (NASA GSFC) PatricK Fry (Univ. Wisconsin) Máté Ádámkovics (Clemson Univ.) Statia H. LuszcZ-Cook (AMNH) Amanda Hendrix (PSI) Abstract: Imaging and resolved spectroscopy reveal varying environmental conditions in our dynamic solar system. Many key advances have focused on how these conditions change over time. Observatory- level commitments to conduct annual observations of solar system bodies would establish a long- term legacy chronicling the evolution of dynamic planetary atmospheres, surfaces, and rings. Science investigations will use these temporal datasets to address potential biosignatures, circulation and evolution of atmospheres from the edge of the habitable zone to the ice giants, orbital dynamics and planetary seismology with ring systems, exchange between components in the planetary system, and the migration and processing of volatiles on icy bodies, including Ocean Worlds. -
Victorian Popular Science and Deep Time in “The Golden Key”
“Down the Winding Stair”: Victorian Popular Science and Deep Time in “The Golden Key” Geoffrey Reiter t is sometimes tempting to call George MacDonald’s fantasies “timeless”I and leave it at that. Such is certainly the case with MacDonald’s mystical fairy tale “The Golden Key.” Much of the criticism pertaining to this work has focused on its more “timeless” elements, such as its intrinsic literary quality or its philosophical and theological underpinnings. And these elements are not only important, they truly are the most fundamental elements needed for a full understanding of “The Golden Key.” But it is also important to remember that MacDonald did not write in a vacuum, that he was in fact interested in and engaged with many of the pressing issues of his day. At heart always a preacher, MacDonald could not help but interact with these issues, not only in his more openly didactic realistic novels, but even in his “timeless” fantasies. In the Victorian period, an era of discovery and exploration, the natural sciences were beginning to come into their own as distinct and valuable sources of knowledge. John Pridmore, examining MacDonald’s view of nature, suggests that MacDonald saw it as serving a function parallel to the fairy tale or fantastic story; it may be interpreted from the perspective of Christian theism, though such an interpretation is not necessary (7). Björn Sundmark similarly argues that in his works “MacDonald does not contradict science, nor does he press a theistic interpretation onto his readers” (13). David L. Neuhouser has concluded more assertively that while MacDonald was certainly no advocate of scientific pursuits for their own sake, he believed science could be of interest when examined under the aegis of a loving God (10). -
Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time…. -
Arxiv:1601.03132V7 [Math.HO] 15 Nov 2018 [2]
Solution of the Mayan Calendar Enigma Thomas Chanier1∗ 1Independent researcher, 1025 12th avenue, Coralville, Iowa 52241, USA The Mayan calendar is proposed to derive from an arithmetical model of naked-eye astronomy. The Palenque and Copan lunar equations, used during the Maya Classic period (200 to 900 AD) are solution of the model and the results are expressed as a function of the Xultun numbers, four enigmatic Long Count numbers deciphered in the Maya ruins of Xultun, dating from the IX century AD, providing strong arguments in favor of the use of the model by the Maya. The different Mayan Calendar cycles can be derived from this model and the position of the Calendar Round at the mythical date of creation 13(0).0.0.0.0 4 Ahau 8 Cumku is calculated. This study shows the high proficiency of Mayan mathematics as applied to astronomy and timekeeping for divinatory purposes.a I. INTRODUCTION In the Calendar Round, a date is represented by αXβY with the religious month 1 ≤ α ≤ 13, X one of the 20 Mayan priests-astronomers were known for their astro- religious days, the civil day 0 ≤ β ≤ 19, and Y one of the nomical and mathematical proficiency, as demonstrated 18 civil months, 0 ≤ β ≤ 4 for the Uayeb. Fig. 1 shows a in the Dresden Codex, a XIV century AD bark-paper contemporary representation of the Calendar Round as book containing accurate astronomical almanacs aiming a set of three interlocking wheels: the Tzolk'in, formed to correlate ritual practices with astronomical observa- by a 13-month and a 20-day wheels and the Haab'. -
Imagining Deep Time
IMAGINING DEEP TIME IMAGINING EXHIBITION ORGANIZED BY CULTURAL PROGRAMS OF THE NATIONAL AcADEMY OF SCIENCES CURATED BY JD TALASEK NATIONAL AcADEMY OF SCIENCES DEEP TIME WEST GALLERY 2101 CONSTITUTION AVE, NW, WASHINGTON, DC AUGUST 28, 2014 THROUGH JANUARY 15, 2015 IMAGINING THE UNIMAGINABLE: DEEP TIME THROUGH THE LENS OF ART “Geohistory is the immensely long and complex history of the CONSTRUCTING DEEP TIME the king’s nose to the tip of his outstretched hand. One of its vastness through the use of metaphor.[5] Analogies earth, including the life on its surface (biohistory), as distinct stroke of a nail file on his middle finger erases human like McPhee’s fingernail of the king and Twain’s Eiffel Tow- from the extremely brief recent history that can be based on Philosophy, religion, physics, mathematics, astronomy and history.” When we confront the notion of deep time, we er appear throughout literature in an attempt to convey human records.” other areas of human inquiry have attempted to crack the intuit that our limited time on earth isn’t significant either. meaning in terms of human experience. The practice of Martin J.S. Rudwick, historian of science mysteries of time. As we see, for example, in Bursting the Mark Twain put it in perspective when he wrote, “If the using metaphor is essential to the work of artists as well Limits of Time: The Reconstruction of Geohistory in the Age of Eiffel Tower were now representing the world’s age, the and it is worth considering how meaning is constructed “…the mind seemed to grow giddy by looking so far into the Revolution by Martin J.S. -
Geological Time Conventions and Symbols
AL SOCIET IC Y G O O F L A O M E E G R I E C H A T GROUNDWORK Furthering the Influence of Earth Science internally and with respect to SI (Le Système international Geological Time d’unités)” (Holden et al., 2011a, 2011b), because that is the justification being offered in support of a change. This assertion cannot be sustained. No one objects to the storming of the Conventions and Symbols Bastille on 14 July 1789 (a date) or to the construction of Stonehenge from 2600–1600 BC (an interval specified by two Nicholas Christie-Blick, Dept. of Earth and Environmental dates). In the case of the latter, we say that the job took 1000 Sciences and Lamont-Doherty Earth Observatory of Columbia years, not 1000 BC. The distinction between geohistorical dates University, Palisades, New York 10964, USA; [email protected] and spans of geological time is conceptually analogous. There is no internal inconsistency, and the International System of Units All science involves conventions. Although subordinate to the (SI) rules don’t apply to dates in either case because points in task of figuring out how the natural world functions, such time are not units, even if they are specified in years (Aubry et conventions are necessary for clear communication, and because al., 2009). The year, moreover, is not a part of the SI. It cannot be they are a matter of choice rather than discovery, they ought to a “derived unit of time,” the designation proposed by the task reflect the diverse preferences and needs of the communities for group, because under SI conventions “derived units are products which they are intended. -
It's About Time: Opportunities & Challenges for U.S
I t’s About Time: Opportunities & Challenges for U.S. Geochronology About Time: Opportunities & Challenges for t’s It’s About Time: Opportunities & Challenges for U.S. Geochronology 222508_Cover_r1.indd 1 2/23/15 6:11 PM A view of the Bowen River valley, demonstrating the dramatic scenery and glacial imprint found in Fiordland National Park, New Zealand. Recent innovations in geochronology have quantified how such landscapes developed through time; Shuster et al., 2011. Photo taken Cover photo: The Grand Canyon, recording nearly two billion years of Earth history (photo courtesy of Dr. Scott Chandler) from near the summit of Sheerdown Peak (looking north); by J. Sanders. 222508_Cover.indd 2 2/21/15 8:41 AM DEEP TIME is what separates geology from all other sciences. This report presents recommendations for improving how we measure time (geochronometry) and use it to understand a broad range of Earth processes (geochronology). 222508_Text.indd 3 2/21/15 8:42 AM FRONT MATTER Written by: T. M. Harrison, S. L. Baldwin, M. Caffee, G. E. Gehrels, B. Schoene, D. L. Shuster, and B. S. Singer Reviews and other commentary provided by: S. A. Bowring, P. Copeland, R. L. Edwards, K. A. Farley, and K. V. Hodges This report is drawn from the presentations and discussions held at a workshop prior to the V.M. Goldschmidt in Sacramento, California (June 7, 2014), a discussion at the 14th International Thermochronology Conference in Chamonix, France (September 9, 2014), and a Town Hall meeting at the Geological Society of America Annual Meeting in Vancouver, Canada (October 21, 2014) This report was provided to representatives of the National Science Foundation, the U.S. -
Cities in Deep Time
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo City analysis of urban trends, culture, theory, policy, action ISSN: 1360-4813 (Print) 1470-3629 (Online) Journal homepage: http://www.tandfonline.com/loi/ccit20 Cities in deep time Matthew Gandy To cite this article: Matthew Gandy (2018) Cities in deep time, City, 22:1, 96-105, DOI: 10.1080/13604813.2018.1434289 To link to this article: https://doi.org/10.1080/13604813.2018.1434289 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 15 Mar 2018. Submit your article to this journal Article views: 596 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ccit20 CITY, 2018 VOL. 22, NO. 1, 96–105, https://doi.org/10.1080/13604813.2018.1434289 Cities in deep time Bio-diversity, metabolic rift, and the urban question Matthew Gandy How should we interpret the relationship between urbanization and the loss of bio-diver- sity? The discourse of bio-diversity serves as a critical lens through which the accelerating momentum of ‘metabolic rift’ can be explored in relation to contemporary mass extinction. But what is the precise role of cities within what has been referred to as the ‘sixth extinction’ facing the history of the earth? Are cities to be subsumed within a broader environmentalist critique of modernity or can they serve as the focal point for alternative cultural, political, and scientific interventions? This article suggests that the distinction between cities and broader processes of urbanization remains significant for a more critically engaged reading of the politics of the biosphere. -
Terminology of Geological Time: Establishment of a Community Standard
Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI. -
Catastrophism and Uniformitarianism: Logical Roots and Current Relevance in Geology
Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Catastrophism and uniformitarianism" logical roots and current relevance in geology VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011, USA Abstract, Catastrophism in the Earth sciences is rooted in the view that Earth signifies its causative processes via landforms, structures and rock. Processes of types, rates and magnitudes not presently in evidence may well be signified this way. Uniformitarianism, in contrast, is a regulative stipulation motivated by the presumed necessity that science achieves logical validity in what can be said (hypothesized) about the Earth. Regulative principles, including simplicity, actualism and gradualism, are imposed a priori to insure valid inductive reasoning. This distinction lies at the heart of the catastrophist versus uniformitarian debates in the early nine- teenth century and it continues to influence portions of the current scientific program. Uniform- itarianism, as introduced by Charles Lyell in 1830, is specifically tied to an early nineteenth century view of inductive inference. Catastrophism involves a completely different form of inference in which hypotheses are generated retroductively. This latter form of logical inference remains relevant to modern science, while the outmoded notions of induction that warranted the doctrine of uniformitarianism were long ago shown to be overly restrictive in scientific practice. The latter should be relegated solely to historical interest in the progress of ideas. On 4 July 1997, the Mars Pathfinder spacecraft Antarctic ice, was interpreted as showing various made a highly successful landing in the Ares Vallis indicators of possible relic biogenic activity region of Mars. -
Hutton's Uniformitarianism
BYU Studies Quarterly Volume 23 Issue 1 Article 4 1-1-1983 Hutton's Uniformitarianism Jess R. Bushman Follow this and additional works at: https://scholarsarchive.byu.edu/byusq Recommended Citation Bushman, Jess R. (1983) "Hutton's Uniformitarianism," BYU Studies Quarterly: Vol. 23 : Iss. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/byusq/vol23/iss1/4 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in BYU Studies Quarterly by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bushman: Hutton's Uniformitarianism huttonssuttonsHuttons uniformitarianism jess R bushman uniformitarianism or cause and effect is a very important and basic concept in geology the heart of the concept is that there is order and regularity in the operation or functioning of natural laws this consistency is what gives significance to cause and effect pat- terns what we see happening today helps us to identify the results of natural processes which were active millions of years ago we observe ripple marks being formed by wave action on beaches today when we see similar ripple marks in ancient sandstone we use cause and effect or uniformitarianism to suggest that the ripple marked sandstones were once part of an ancient beach the geologist as he studies natural processes at work and sees how long it takes to produce soil from solid rock or for a glacier to carve a U shaped valley is convinced -
Contributions to the History of Geomorphology and Quaternary Geology: an Introduction
Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Contributions to the history of geomorphology and Quaternary geology: an introduction DAVID R. OLDROYD1 & RODNEY H. GRAPES2 1School of History and Philosophy, The University of New South Wales, Sydney, NSW 2052, Australia (e-mail: [email protected]) 2Department of Earth and Environmental Sciences, Korea University, Seoul, 136-701, Korea (e-mail: [email protected]) This Special Publication deals with various aspects the Baltic States in 2006, where a great deal of of the histories of geomorphology and Quaternary what the geologist sees consists of Quaternary geology in different parts of the world. Geomor- sediments. However, much of the Earth’s surface phology is the study of landforms and the processes is not formed of these sediments but of older that shape them, past and present. Quaternary rocks exposed at the surface by erosion and struc- geology studies the sediments and associated tural displacement. Here, geomorphology can seek materials that have come to mantle much of answers to questions regarding the past histories of Earth’s surface during the relatively recent Pleisto- these rocks, their subsequent erosion, and present cene and Holocene epochs. Geomorphology, with location and form. Geomorphology also raises its concern for Earth’s surface features and pro- questions, and may provide answers, regarding tec- cesses, deals with information that is much more tonic issues, for example from deformed marine amenable to observation and measurement than is terraces and offset fault systems. In all these the case for most geological work. Quaternary instances, the history of geological and geomor- geology focuses mostly, but not exclusively, on phological investigations can serve to illustrate the Earth’s surficial sedimentary cover, which is both the progress and pitfalls involved in the scien- usually more accessible than the harder rocks of tific understanding of the Earth’s surface and the deeper past.