Caused by Natural Hazard Events and Disasters

Total Page:16

File Type:pdf, Size:1020Kb

Caused by Natural Hazard Events and Disasters CHEMICAL RELEASES CAUSED BY NATURAL HAZARD EVENTS AND DISASTERS INFORMATION FOR PUBLIC HEALTH AUTHORITIES CHEMICAL RELEASES CAUSED BY NATURAL HAZARD EVENTS AND DISASTERS INFORMATION FOR PUBLIC HEALTH AUTHORITIES Chemical releases caused by natural hazard events and disasters – information for public health authorities ISBN 978-92-4-151339-5 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Chemical releases caused by natural hazard events and disasters – information for public health authorities. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user. General disclaimer. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use. Design and layout by Lushomo Communications Ltd. Printed in Switzerland. CONTENTS Acknowledgements IV 1. Introduction 1 2. Purpose, scope and structure of this document 1 3. Policy framework 1 4. What is a Natech event? 2 4.1 Challenges for the management of Natech events 2 4.2 Sources of chemical release 2 5. The role of the health sector in risk management for chemical incidents triggered by natural hazard events 4 5.1 The role of the health sector in prevention 4 5.2 The role of the health sector in preparedness 6 5.3 The role of the health sector in response 8 5.4 The role of the health sector in recovery 10 6. Conclusions 11 References 12 Annex A - Chemical releases associated with earthquakes 16 What is an earthquake? 16 Risk factors for chemical release 16 Mechanisms of chemical release 17 Potential impacts on human health 17 Response and recovery considerations 18 References 21 Annex B – Chemical releases associated with floods 23 What is a flood? 23 Risk factors for chemical release 23 Mechanisms of chemical release 23 Potential impacts on human health 24 Response and recovery considerations 25 References 28 Annex C – Chemical releases associated with cyclones 30 What is a cyclone? 30 Risk factors for chemical release 30 Mechanisms of chemical release 31 Potential impacts on human health 31 Response and recovery considerations 32 References 35 Annex D – Sources of additional information 37 Annex E – Examples of hazard warnings that may be found on labels of chemical containers 40 III ACKNOWLEDGEMENTS The following people working as consultants contributed We are very grateful for the detailed comments provided to the preparation of this document: Rebecca Cremades, by the following external reviewers: Elisabeth Krausmann, Raoul Iraheta, Jessica Jarvis, Bernice Schaddelee- European Commission Joint Research Centre, Ispra, Scholten, Cindy Tsao and Saskia Wehrli. Overall Italy; Džejna Milakovic-Ramadani,´ Ministry of Health supervision was provided by Joanna Tempowski of the and Social Welfare of the Republic of Srpska, Banja Department of Public Health, Environmental and Social Luka, Bosnia and Herzegovina; Virginia Murray, Public Determinants of Health at the World Health Organization Health England, London, United Kingdom of Great (WHO), Geneva, Switzerland. Britain and Northern Ireland; and Emilia Wahlstrom, Emergency Preparedness and Environment Section (joint From WHO, comments on the draft document were UN Environment Programme/Office for the Coordination provided by: Jonathan Abrahams, Department of Country of Humanitarian Affairs), Geneva, Switzerland. Health Emergency Preparedness & IHR, Geneva, Switzerland; Magaran Bagayoko, Communicable Diseases Cover photograph from Wenchuan earthquake in China Unit, WHO Regional Office for Africa, Brazzaville, Congo; courtesy of E Krausmann. Ana Boischio, WHO Regional Office for the Americas, Washington, United States of America; Mohamed Elmi, Eastern Mediterranean Regional Centre for Environmental Health Activities, Amman, Jordan; Oyuntogos Lkhasuren, WHO Country Office, Vientiane, Lao People’s Democratic Republic; and Irina Zastenskaya, WHO European Centre for Environment and Health, Bonn, Germany. IV CHEMICAL RELEASES CAUSED BY NATECH EVENTS AND DISASTERS 1. INTRODUCTION Natech events are described. The document then gives an overview of the role and activities of the health sector at all stages of the risk-management cycle. Hazard- Disasters resulting from natural hazards such as specific annexes (Annexes A–C) provide information earthquakes, hurricanes, tsunamis and floods, are on the mechanisms of chemical release resulting from increasing in intensity, frequency and impact, in part earthquakes, floods and cyclones and the subsequent due to climate change (1, 2). They can cause severe health impacts, as well as brief information on response environmental and infrastructural disruption and activities. The annexes are intended to be standalone significant economic losses. Disasters can directly documents; hence there is some repetition of information. affect human health through injuries, death and disease The two final annexes list other resources relevant to this outbreaks, and longer-term impacts may include topic and provide information on hazard pictograms. noncommunicable diseases, psychiatric morbidity and disabilities. The capacity of the health sector to respond A natural hazard can also cause the release of radioactive to these effects is frequently impaired by damage to material, e.g. following damage to a nuclear power health facilities and disruption to health services (3). plant caused by an earthquake or flood. While these types of release are outside the scope of this document, A natural hazard can trigger a chemical release. When similar principles of prevention, preparedness and the release is the result of a technological accident it is response apply. called a ‘Natech’ (natural-hazard-triggered technological) event. Natech events can exacerbate the impact of a natural disaster on the environment and on human health 3. POLICY FRAMEWORK because of the release of hazardous materials, fires and explosions (4–6). In an effort to reduce the social, economic, environmental The causes and consequences of Natech events are and health losses caused by disasters, governments relatively recent areas of study by risk managers. It has adopted the Hyogo framework for action 2005–2015 been observed that, while there may be prevention and (7), which described the work that was required from preparedness measures and response and recovery plans different sectors and actors to reduce disaster losses. to deal with the risks from either technological or natural This was succeeded by the Sendai framework for disaster hazards, these are rarely integrated (4). Moreover, there risk reduction 2015–2030 (1), which has shifted the is a lack of methods and tools for Natech risk analysis focus from managing disasters to managing risks. The and mapping (4). In areas prone to natural hazards
Recommended publications
  • Iaea International Fact Finding Expert Mission of the Fukushima Dai-Ichi Npp Accident Following the Great East Japan Earthquake and Tsunami
    IAEA Original English MISSION REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai Dai-ni NPP, Japan 24 May – 2 June 2011 IAEA MISSION REPORT DIVISION OF NUCLEAR INSTALLATION SAFETY DEPARTMENT OF NUCLEAR SAFETY AND SECURITY IAEA Original English IAEA REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI REPORT TO THE IAEA MEMBER STATES Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai Dai-ni NPP, Japan 24 May – 2 June 2011 i IAEA ii IAEA REPORT THE GREAT EAST JAPAN EARTHQUAKE EXPERT MISSION IAEA INTERNATIONAL FACT FINDING EXPERT MISSION OF THE FUKUSHIMA DAI-ICHI NPP ACCIDENT FOLLOWING THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Mission date: 24 May – 2 June 2011 Location: Tokyo, Fukushima Dai-ichi, Fukushima Dai-ni and Tokai Dai-ni, Japan Facility: Fukushima and Tokai nuclear power plants Organized by: International Atomic Energy Agency (IAEA) IAEA Review Team: WEIGHTMAN, Michael HSE, UK, Team Leader JAMET, Philippe ASN, France, Deputy Team Leader LYONS, James E. IAEA, NSNI, Director SAMADDAR, Sujit IAEA, NSNI, Head, ISCC CHAI, Guohan People‘s Republic of China CHANDE, S. K. AERB, India GODOY, Antonio Argentina GORYACHEV, A. NIIAR, Russian Federation GUERPINAR, Aybars Turkey LENTIJO, Juan Carlos CSN, Spain LUX, Ivan HAEA, Hungary SUMARGO, Dedik E. BAPETEN, Indonesia iii IAEA SUNG, Key Yong KINS, Republic of Korea UHLE, Jennifer USNRC, USA BRADLEY, Edward E.
    [Show full text]
  • Natural Hazards Predictions Name: ______Teacher: ______PD:___ 2
    1 Unit 7: Earth’s Natural Hazards Lesson 1: Natural Hazards Lesson 2: Natural Hazards Predictions Name: ___________________ Teacher: ____________PD:___ 2 Unit 7: Lesson 1 Vocabulary 3 1 Natural Hazard: 2 Natural Disaster: 3 Volcano: 4 Volcanic Eruption: 5 Active Volcano: 6 Dormant Volcano: 7 Tsunami: 8 Tornado: 4 WHY IT MATTERS! Here are some questions to consider as you work through the unit. Can you answer any of the questions now? Revisit these questions at the end of the unit to apply what you discover. Questions: Notes: What types of natural hazards are likely where you live? How could the natural hazards you listed above cause damage or injury? What is a natural disaster? What types of monitoring and communication networks alert you to possible natural hazards? How could your home and school be affected by a natural hazard? How can the effects of a natural disaster be reduced? Unit Starter: Analyzing the Frequency of Wildfires 5 Analyzing the Frequency of Wildfires Choose the correct phrases to complete the statements below: Between 1970 and 1990, on average fewer than / more than 5 million acres burned in wildfires each year. Between 2000 and 2015, more than 5 million / 10 million acres burned in more than half of the years. Overall, the number of acres burned each year has been increasing / decreasing since 1970. 6 Lesson 1: Natural Hazards In 2015, this wildfire near Clear Lake, California, destroyed property and devastated the environment. Can You Explain it? In the 1700s, scientists in Italy discovered a city that had been buried for over 1,900 years.
    [Show full text]
  • Natural Disasters in the Middle East and North Africa
    Natural Disasters in Public Disclosure Authorized the Middle East and North Africa: A Regional Overview Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized January 2014 Urban, Social Development, and Disaster Risk Management Unit Sustainable Development Department Middle East and North Africa Natural Disasters in the Middle East and North Africa: A Regional Overview © 2014 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org All rights reserved 1 2 3 4 13 12 11 10 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundar- ies, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorse- ment or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Recon- struction and Development / The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; telephone: 978-750-8400; fax: 978-750-4470; Internet: www.copyright.com.
    [Show full text]
  • March 2011 Earthquake, Tsunami and Fukushima Nuclear Accident Impacts on Japanese Agri-Food Sector
    Munich Personal RePEc Archive March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Bachev, Hrabrin January 2015 Online at https://mpra.ub.uni-muenchen.de/61499/ MPRA Paper No. 61499, posted 21 Jan 2015 14:37 UTC March 2011 earthquake, tsunami and Fukushima nuclear accident impacts on Japanese agri-food sector Hrabrin Bachev1 I. Introduction On March 11, 2011 the strongest recorded in Japan earthquake off the Pacific coast of North-east of the country occurred (also know as Great East Japan Earthquake, 2011 Tohoku earthquake, and the 3.11 Earthquake) which triggered a powerful tsunami and caused a nuclear accident in one of the world’s largest nuclear plant (Fukushima Daichi Nuclear Plant Station). It was the first disaster that included an earthquake, a tsunami, and a nuclear power plant accident. The 2011 disasters have had immense impacts on people life, health and property, social infrastructure and economy, natural and institutional environment, etc. in North-eastern Japan and beyond [Abe, 2014; Al-Badri and Berends, 2013; Biodiversity Center of Japan, 2013; Britannica, 2014; Buesseler, 2014; FNAIC, 2013; Fujita et al., 2012; IAEA, 2011; IBRD, 2012; Kontar et al., 2014; NIRA, 2013; TEPCO, 2012; UNEP, 2012; Vervaeck and Daniell, 2012; Umeda, 2013; WHO, 2013; WWF, 2013]. We have done an assessment of major social, economic and environmental impacts of the triple disaster in another publication [Bachev, 2014]. There have been numerous publications on diverse impacts of the 2011 disasters including on the Japanese agriculture and food sector [Bachev and Ito, 2013; JA-ZENCHU, 2011; Johnson, 2011; Hamada and Ogino, 2012; MAFF, 2012; Koyama, 2013; Sekizawa, 2013; Pushpalal et al., 2013; Liou et al., 2012; Murayama, 2012; MHLW, 2013; Nakanishi and Tanoi, 2013; Oka, 2012; Ujiie, 2012; Yasunaria et al., 2011; Watanabe A., 2011; Watanabe N., 2013].
    [Show full text]
  • COVID-19: Make It the Last Pandemic
    COVID-19: Make it the Last Pandemic Disclaimer: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Independent Panel for Pandemic Preparedness and Response concerning the legal status of any country, territory, city of area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Report Design: Michelle Hopgood, Toronto, Canada Icon Illustrator: Janet McLeod Wortel Maps: Taylor Blake COVID-19: Make it the Last Pandemic by The Independent Panel for Pandemic Preparedness & Response 2 of 86 Contents Preface 4 Abbreviations 6 1. Introduction 8 2. The devastating reality of the COVID-19 pandemic 10 3. The Panel’s call for immediate actions to stop the COVID-19 pandemic 12 4. What happened, what we’ve learned and what needs to change 15 4.1 Before the pandemic — the failure to take preparation seriously 15 4.2 A virus moving faster than the surveillance and alert system 21 4.2.1 The first reported cases 22 4.2.2 The declaration of a public health emergency of international concern 24 4.2.3 Two worlds at different speeds 26 4.3 Early responses lacked urgency and effectiveness 28 4.3.1 Successful countries were proactive, unsuccessful ones denied and delayed 31 4.3.2 The crisis in supplies 33 4.3.3 Lessons to be learnt from the early response 36 4.4 The failure to sustain the response in the face of the crisis 38 4.4.1 National health systems under enormous stress 38 4.4.2 Jobs at risk 38 4.4.3 Vaccine nationalism 41 5.
    [Show full text]
  • (CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience
    Community Resilience System Initiative (CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience August 2011 CRSI Community Resilience System Initiative Community Resilience System Initiative (CRSI) Steering Committee Final Report — a Roadmap to Increased Community Resilience August 2011 Developed and Convened by the This material is based upon work supported by the U.S. Department of Homeland Security under U.S. Department of Energy Interagency Agreement 43WT10301. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Community Resilience System Initiative Final Report • August 2011 CONTENTS ACKNOWLEDGMENTS .......................................................................................................................... v EXECUTIVE SUMMARY ....................................................................................................................... vii I. INTRODUCTION .............................................................................................................................. 1 Community Resilience in Action ..................................................................................................... 2 Message from the Community Resilience System Initiative Steering Committee Chair .......................................................................................................................
    [Show full text]
  • HAZARD MITIGATION for NATURAL DISASTERS a Starter Guide for Water and Wastewater Utilities
    HAZARD MITIGATION FOR NATURAL DISASTERS A Starter Guide for Water and Wastewater Utilities Select a menu option below. New users should start with Overview Hazard Mitigation. Overview Join Local Mitigation Develop Mitigation Implement and Mitigation Case Study Hazard Mitigation Efforts Projects Fund Project Overview Overview - Hazard Mitigation Hazard Mitigation Join Local Hazards Posed by Natural Disasters Mitigation Efforts Water and wastewater utilities are vulnerable to a variety of hazards including natural disasters such as earthquakes, flooding, tornados, and Develop wildfires. For utilities, the impacts from these hazard events include Mitigation Projects damaged equipment, loss of power, disruptions to service, and revenue losses. Why Mitigate the Hazards? Implement and Fund Project It is more cost-effective to mitigate the risks from natural disasters than it is to repair damage after the disaster. Hazard mitigation refers to any action or project that reduces the effects of future disasters. Utilities can Mitigation implement mitigation projects to better withstand and rapidly recover Case Study from hazard events (e.g., flooding, earthquake), thereby increasing their overall resilience. Mitigation projects could include: • Elevation of electrical panels at a lift station to prevent flooding damage. • Replacement of piping with flexible joints to prevent earthquake damage. • Reinforcement of water towers to prevent tornado damage. Mitigation measures require financial investment by the utility; however, mitigation could prevent more costly future damage and improve the reliability of service during a disaster. Disclaimer: This Guide provides practical solutions to help water and wastewater utilities mitigate the effects of natural disasters. This Guide is not intended to serve as regulatory guidance. Mention of trade names, products or services does not convey official U.S.
    [Show full text]
  • Adversus Paganos: Disaster, Dragons, and Episcopal Authority in Gregory of Tours
    Adversus paganos: Disaster, Dragons, and Episcopal Authority in Gregory of Tours David J. Patterson Comitatus: A Journal of Medieval and Renaissance Studies, Volume 44, 2013, pp. 1-28 (Article) Published by Center for Medieval and Renaissance Studies, UCLA DOI: 10.1353/cjm.2013.0000 For additional information about this article http://muse.jhu.edu/journals/cjm/summary/v044/44.patterson.html Access provided by University of British Columbia Library (29 Aug 2013 02:49 GMT) ADVERSUS PAGANOS: DISASTER, DRAGONS, AND EPISCOPAL AUTHORITY IN GREGORY OF TOURS David J. Patterson* Abstract: In 589 a great flood of the Tiber sent a torrent of water rushing through Rome. According to Gregory of Tours, the floodwaters carried some remarkable detritus: several dying serpents and, perhaps most strikingly, the corpse of a dragon. The flooding was soon followed by plague and the death of a pope. This remarkable chain of events leaves us with puzzling questions: What significance would Gregory have located in such a narrative? For a modern reader, the account (apart from its dragon) reads like a descrip- tion of a natural disaster. Yet how did people in the early Middle Ages themselves per- ceive such events? This article argues that, in making sense of the disasters at Rome in 589, Gregory revealed something of his historical consciousness: drawing on both bibli- cal imagery and pagan historiography, Gregory struggled to identify appropriate objects of both blame and succor in the wake of calamity. Keywords: plague, natural disaster, Gregory of Tours, Gregory the Great, Asclepius, pagan survivals, dragon, serpent, sixth century, Rome. In 589, a great flood of the Tiber River sent a torrent of water rushing through the city of Rome.
    [Show full text]
  • Exposure and Vulnerability
    Determinants of Risk: 2 Exposure and Vulnerability Coordinating Lead Authors: Omar-Dario Cardona (Colombia), Maarten K. van Aalst (Netherlands) Lead Authors: Jörn Birkmann (Germany), Maureen Fordham (UK), Glenn McGregor (New Zealand), Rosa Perez (Philippines), Roger S. Pulwarty (USA), E. Lisa F. Schipper (Sweden), Bach Tan Sinh (Vietnam) Review Editors: Henri Décamps (France), Mark Keim (USA) Contributing Authors: Ian Davis (UK), Kristie L. Ebi (USA), Allan Lavell (Costa Rica), Reinhard Mechler (Germany), Virginia Murray (UK), Mark Pelling (UK), Jürgen Pohl (Germany), Anthony-Oliver Smith (USA), Frank Thomalla (Australia) This chapter should be cited as: Cardona, O.D., M.K. van Aalst, J. Birkmann, M. Fordham, G. McGregor, R. Perez, R.S. Pulwarty, E.L.F. Schipper, and B.T. Sinh, 2012: Determinants of risk: exposure and vulnerability. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 65-108. 65 Determinants of Risk: Exposure and Vulnerability Chapter 2 Table of Contents Executive Summary ...................................................................................................................................67 2.1. Introduction and Scope..............................................................................................................69
    [Show full text]
  • Natural Hazards Mitigation Planning: a Community Guide
    Natural A step-by-step guide Hazards to help Massachusetts communities deal with Mitigation multiple natural Planning: hazards and A Community to minimize Guide future losses Prepared by With assistance from Massachusetts Department of Environmental Management Federal Emergency Management Agency Massachusetts Emergency Management Agency Natural Resources Conservation Service Massachusetts Hazard Mitigation Team January 2003 Mitt Romney, Governor · Peter C. Webber, DEM Commissioner · Stephen J. McGrail, MEMA Director P r e f a c e The original version of this workbook was disaster mitigation program, the Flood Mitigation published in 1997 and entitled, Flood Hazard Assistance (FMA) program, as well as other federal, Mitigation Planning: A Community Guide. Its state and private funding sources. purpose was to serve as a guide for the preparation Although the Commonwealth of of a streamlined, cost-efficient flood mitigation plan Massachusetts has had a statewide Hazard by local governments and citizen groups. Although Mitigation Plan in place since 1986, there has been the main purpose of this revised workbook has not little opportunity for community participation and changed from its original mission, this version has input in the planning process to minimize future been updated to encompass all natural hazards and disaster damages. A secondary goal of the to assist Massachusetts’ communities in complying workbook is to encourage the development of with the all hazards mitigation planning community-based plans and obtain local input into requirements under the federal Disaster Mitigation Massachusetts’ state mitigation planning efforts in Act of 2000 (DMA 2000). The parts of this order to improve the state’s capability to plan for workbook that correspond with the requirements of disasters and recover from damages.
    [Show full text]
  • Accident Knowledge and Emergency Management
    Ris0-R-945(EN) DK9700056 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 VOL 2 p III 1 2 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 Abstract. The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential ele- ments are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of con- finement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. The work described in this report is financially supported by EUREKA MEM- brain (Major Emergency Management) project running 1993-1998.
    [Show full text]
  • Issue Brief: Disaster Risk Governance Crisis Prevention and Recovery
    ISSUE BRIEF: DISASTER RISK GOVERNANCE CRISIS PREVENTION AND RECOVERY United Nations Development Programme “The earthquake in Haiti in January 2010 was about the same magnitude as the February 2011 earthquake in Christchurch, but the human toll was significantly higher. The loss of 185 lives in Christchurch was 185 too many. However, compared with the estimated 220,000 plus killed in Haiti in 2010, it becomes evident that it is not the magnitude of the natural hazard alone that determines its impact.” – Helen Clark, UNDP Administrator Poorly managed economic growth, combined with climate variability and change, is driving an overall rise in global disaster Around the world, it is the poor who face the greatest risk from risk for all countries. disasters. Those affected by poverty are more likely to live in drought and flood prone regions, and natural hazards are far Human development and disaster risk are interlinked. Rapid more likely to hurt poor communities than rich ones. economic and urban development can lead to growing Ninety-five percent of the 1.3 million people killed and the 4.4 concentrations of people in areas that are prone to natural billion affected by disasters in the last two decades lived in developing countries, and fewer than two per cent of global hazards. The risk increases if the exposure of people and assets deaths from cyclones occur in countries with high levels of to natural hazards grows faster than the ability of countries to development. improve their risk reduction capacity. DISASTER RISK REDUCTION AND GOVERNANCE In the context of risk management, this requires that the general public are sufficiently informed of the natural hazard risks they are exposed to and able to take necessary The catastrophic impact of disasters is not ‘natural.’ Disasters are precautions.
    [Show full text]