Insect and Mite Pests of Grape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bulletin No. 206-Treehopper Injury in Utah Orchards
Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS. -
Insects That Feed on Trees and Shrubs
INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, -
World Inventory of Beetles of the Family Bostrichidae (Coleoptera)
Available online at www.worldnewsnaturalsciences.com WNOFNS 28 (2020) 155-170 EISSN 2543-5426 World Inventory of Beetles of the Family Bostrichidae (Coleoptera). Part 1. Check List from 1758 to 2012 Tomasz Borowski The II Laboratory of Research Works, The Independent Institution of Biopaleogeography and Biophysics, 22 Mickiewicza Str., Złocieniec, Poland E-mail address: [email protected] ABSTRACT This paper presents list of beetles of the family Bostrichidae and their occurrence. The paper includes: 7 subfamilies, 4 tribes, 28 genera, 5 subgenera and 155 species of beetles belonging to the family Bostrichidae. Keywords: Dinoderinae, Dysidinae, Endecatominae, Euderinae, Lyctinae, Polycaoninae, Psoinae Subfamilies Dinoderinae ..……………….156 Dysidinae ...……………....160 Endecatominae ....……………...160 Euderiinae ...………………160 Lyctinae ……….………..161 Polycaoninae .…………….….165 Psoinae ……………..….167 ( Received 02 December 2019; Accepted 23 December 2019; Date of Publication 28 December 2019 ) World News of Natural Sciences 28 (2020) 155-170 – Check List – Kingdom: Animalia Phylum: Arthropoda Class: Hexapoda Order: Coleoptera Family Bostrichidae Latreille, 1802 Subfamily Dinoderinae C.G. Thomson, 1863 Genus Dinoderus Stephens, 1830 Subgenus Dinoderus s. str. Dinoderus (Dinoderus) bifoveolatus (Wollaston, 1858) Distribution: Cosmopolitan Dinoderus (Dinoderus) borneanus Lesne, 1933 Distrubution: Borneo Dinoderus (Dinoderus) brevis Horn, 1878 Distribution: Oriental and Australian Regions Dinoderus (Dinoderus) creberrimus Lesne, 1941 Distribution: -
Research Progress Reports for Pierce's Disease and Other
2019 Research Progress Reports Research Progress Reports Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes - December 2019 - Compiled by: Pierce’s Disease Control Program California Department of Food and Agriculture Sacramento, CA 95814 2019 Research Progress Reports Editor: Thomas Esser, CDFA Cover Design: Sean Veling, CDFA Cover Photograph: Photo by David Köhler on Unsplash Cite as: Research Progress Reports: Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes. December 2019. California Department of Food and Agriculture, Sacramento, CA. Available on the Internet at: https://www.cdfa.ca.gov/pdcp/Research.html Acknowledgements: Many thanks to the scientists and cooperators conducting research on Pierce’s disease and other pests and diseases of winegrapes for submitting reports for inclusion in this document. Note to Readers: The reports in this document have not been peer reviewed. 2019 Research Progress Reports TABLE OF CONTENTS Section 1: Xylella fastidiosa and Pierce’s Disease REPORTS • Addressing Knowledge Gaps in Pierce’s Disease Epidemiology: Underappreciated Vectors, Genotypes, and Patterns of Spread Rodrigo P.P. Almeida, Monica L. Cooper, Matt Daugherty, and Rhonda Smith ......................2 • Testing of Grapevines Designed to Block Vector Transmission of Xylella fastidiosa Rodrigo P.P. Almeida ..............................................................................................................11 • Field-Testing Transgenic Grapevine Rootstocks Expressing Chimeric Antimicrobial -
Coleoptera: Bostrichidae, Curculionidae: Scolytinae, Platypodin
Caldasia 43(1):172-185 | Enero-junio 2021 CALDASIA http://www.revistas.unal.edu.co/index.php/cal Fundada en 1940 ISSN 0366-5232 (impreso) ISSN 2357-3759 (en línea) ECOLOGÍA Diversidad y distribución vertical de escarabajos barrenadores (Coleoptera: Bostrichidae, Curculionidae: Scolytinae, Platypodinae) en un manglar en Tabasco, México Diversity and vertical distribution of borers beetles (Coleoptera: Bostrichidae, Curculionidae: Scolytinae, Platypodinae) in a mangrove in Tabasco, Mexico José del Carmen Gerónimo-Torres 1*, Manuel Pérez-de La Cruz 1, Aracely de La Cruz-Pérez 1, Lenin Arias-Rodríguez 1, Carlos Manuel Burelo-Ramos 1 • Recibido: 20/ene/2020 Citación: Gerónimo-Torres JC, Pérez-De La Cruz M, De La Cruz-Pérez A, Arias-Rodríguez L, Burelo-Ramos CM. • Aceptado: 22/sep/2020 2021. Diversidad y distribución vertical de escarabajos barrenadores (Coleoptera: Bostrichidae, Curculionidae: • Publicación en línea: 23/sep/2020 Scolytinae, Platypodinae) en un manglar en Tabasco, México. Caldasia 43(1):172–185. doi: https://dx.doi. org/10.15446/caldasia.v43n1.84499. ABSTRACT Diversity, and for the first time, the vertical distribution of borer insects (Scolytinae, Platypodinae, and Bostrichidae) are described as associated with the edge and inside of a mangrove. To determine the diversity in these sites, insects were captured with interception traps baited with 70 % ethyl alcohol and using ultraviolet light as an attractant. To analyze the vertical distribution, traps baited with ethyl alcohol were placed at 1.5 m, 6 m, and 12 m in height. According to the diversity index (1D), the bor- der was 1.36 more diverse than the inside with 15.82 and 11.67 respectively. -
Biodiversity Report
G R E E N V A L L E Y N A T U R E P R E S E R V E Biodiversity Report Submitted by: Amy Bandman & Kathy Wine, River Action, Inc. & Michael Reisner, Upper Mississippi Studies Center Photos by: Tim Gillman & Mik Holgersson Bio-Diversity Day 2013 1 Table of Contents Introduction to Bio-Diversity Day ....................................................................... 3 Participating Scientific Experts ............................................................................. 4 Comprehensive Species Lists ................................................................................ 5 Scientific/Common Names: Plants ................................................................................................... 5 Insects .................................................................................................. 8 Birds ................................................................................................... 10 Amphibians ...................................................................................... 12 Mammals ........................................................................................... 12 Reptiles .............................................................................................. 12 Worms ............................................................................................... 12 Summary of Species ............................................................................................. 13 2 Introduction to Bio-Diversity Day: River Action partnered with The Upper Mississippi -
Ecological Networks of Grassland Plants and Arthropods by Ellen A. R. Welti B.A., Kansas State University, 2012 an ABSTRACT of A
Ecological networks of grassland plants and arthropods by Ellen A. R. Welti B.A., Kansas State University, 2012 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Division of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2017 Abstract Ecological communities are comprised both of species and their interactions. The importance of species interactions is embraced by ecological network analysis, a framework used to identify non-random patterns in species interactions, and the consequences of these patterns for maintaining species diversity. Here, I investigated environmental drivers of the structure of plant-pollinator and plant-herbivore networks. Specifically, I asked: (1) Do global-scale climate gradients shape mutualistic and antagonistic networks? (2) At a landscape scale (within a 3,487 ha research site), how do contrasting regimes of major grassland disturbances - fire frequency and grazing by bison (Bison bison) - shape plant-pollinator network structure? (3) How do fire and grazing affect plant-grasshopper network structure? And, (4) What is the role of plant species diversity in determining plant-herbivore network structure? At the global scale, variability in temperature was the key climatic factor regulating both antagonistic and mutualistic network structural properties. At the landscape scale, fire and grazing had major consequences for plant-pollinator and plant-herbivore communities. In particular, bison grazing increased network complexity and resistance to species loss for both plant-pollinator and plant-herbivore systems. Results from an experimental grassland restoration that manipulated plant diversity suggest that plant diversity directly affects plant-herbivore structure and increases network stability. -
Insects on Flower
/^^^ Ci-Ut^ 'ff CONTROLLING INSECTS ON FLOWER AGRICULTURE INFORMATION BULLETIN NO. 237 U. S. DEPARTMENT OF AGRICULTURE Insects shown on front covei Top ¡eft, Japanese beetle; t right, cabbage looper; bottc left, rose chafers; bottom right, saddleback caterpillar Aphids ON FLOWERS By Floyd F. Smith, Entomology Research Division, Agricultural Research Service Every year, insects and related pests cost florists and home flower gardeners many millions of dollars in time, labor, and money. Most pests that attack flowering and ornamental-foliage plants can be con- trolled by using insecticides and by following good cultural practices. This bulletin tells how to recognize the more common pests, and sug- gests what can be done to keep them from damaging plants and gardens. It discusses only the insecticides that do not require unusual precautions in handling. CONTENTS Page Page Insects 3 Using insecticide—con. General feeders 3 Sprays 67 Specific feeders 16 Application equipment 69 Beneficial insects 64 Precautions 72 Using insecticide 67 Other control measures 72 Dusts 67 Index 75 HOW TO USE THIS BULLETIN To get maximum benefit measures. Materials used to from this bulletôn^ familiarize combat plant insects, and di- yourself with its arrange- rections for their prepara- ment as indicated in the tion, are also discussed in table of contents. this section. If you know the name of If you encounter insect an insect that is injuring your problems not discussed here, plants, refer to the index write to your county agricul- (p. 75) to find the page on tural agent, to the agricul- which it is discussed. Sug- tural college or experiment gested measures for control station in your State, or to are given at the end of the the U.S. -
Insects-Chinery-81-91.Pdf
MIRID BUGS .& Orthocephalus saltator. Rather hairy. Head not noticeably wider than front of pronotum. Antennae black. Tibiae red or brick~coloured (black in O. coriaceus ). Hind / femora enlarged for jumping, especially in female. Male always fully winged: female > usually brachypterous as illustrated. 6-9 in rough grassland, mainly on composites. .& Orthotylus virescens. 6-9 on broom. Partly predatory. One of many rather similar t f r ,• green bugs in this genus, although rather darker than most. Specific identification is .. ' ,.., difficult in this genus, although host plant is a good guide. The genus may be confused . '/ with some species of Lyglls and Lygocoris, but these genera are generally more robust f-" and they have a distinct collar at the front of the pronotum . t if~ ••r~.,f~,);I:~J'~'\:;i •••• Black-kneed Capsid Blepharidopterus angulatus. Named for the black patches at the ~./'/ /\ .0'[' tips of the tibiae - especia1Jy prominent in the nymphs. Antennae much shorter in i il'// \ j' some males. 6-10 on a wide range of trees, especially apple and lime. Partly predatory, Orthotylus ",' pilophorus \ ' \, virescens destroying large numbers of red spider mites in orchards. perp/exus x 3 .. x3 Pi/ophorus perp/exus. Pale bands are due to silvery hairs. 6-10 on oaks and other f ),-t"acephalus Black-kneed deciduous trees, feeding mainly on aphids and sometimes on leaves and young fruits. ,"ltator x 3 Capsid x 3 Rather active and sometimes mistaken for ants.••. P. cinnarnopterlls is similar but lives on pines. / .... / " / \ ..•. Carnpylonellra virgllia. Bright yellow cuneus with red apex distinguishes this from '\ / \ / several otherwise similar bugs. -
Buffalo Treehopper
Pest Profile Photo Credit: Tom Murray, Bugguide.net, Creative Commons License https://creativecommons.org/licenses/by-nd-nc/1.0/ Common Name: Buffalo Treehopper Scientific Name: Stictocephala bisonia Order and Family: Hemiptera, Membracidae Size and Appearance: Length (mm) Appearance Egg 1.5mm Pearly white in color. Elongated, slightly curved and rounded at the base and tapered to the opposite end. 6 – 12 eggs are laid in slits on twigs during the months from July to October. These slits, produced by a very sharp ovipositor, will heal over and protect the eggs until late spring. This will cause the branch to look scabby and rough in appearance. Larva/Nymph Start out about Nymphs are green, wingless and 2 mm for the first stage, molting have a spiny appearance. several times and increasing in size to adult stage Adult 6-8mm Bright green to grassy green in color. Page 1 of 2 Triangular shaped pronotum with two prominent points that resemble the head and horns of an American bison. Transparent wings are folded on the sides. Pupa (if applicable) Type of feeder (Chewing, sucking, etc.): Piercing - sucking Host plant/s: Apple, ash, elm, peach, cherry, Black Locust, clovers, goldenrods, asters, and willow. Description of Damage (nymph and adults): Damage occurs to young twigs of trees when slits are made during ovipositing. This scarring will become scabby and is a site for plant pathogens. Depending on the infestation, scarring can weaken or stunt the growth of the small limbs. Honeydew secretions can lead to sooty mold growth on leaves and stems. References: Cranshaw, W. -
Communities of Canopy-Dwelling Arthropods in Response to Diverse
Published September 20, 2018 Agricultural & Communities of Canopy-Dwelling Environmental Arthropods in Response to Diverse Forages Letters Research Letter Krishna B. Bhandari,* C. P. West, and S. D. Longing Core Ideas • True bugs, grasshoppers, and spiders were Abstract: ‘WW-B.Dahl’ old world bluestem (OWB) [Bothriochloa bladhii (Retz) S.T. among the more abundant canopy arthropods Blake] is an important warm-season perennial grass pasture in semiarid western in pastures. Texas. This grass deters pestiferous ants; however, its effect on canopy-dwelling insects is not documented. The abundance of canopy-dwelling arthropods • Old world bluestem had among the least among OWB, OWB–alfalfa (Medicago sativa L.), alfalfa, and native grass pastures abundance of canopy arthropods in 2 out of 3 was compared by sweep-net sampling over 3 yr (2014–2016). Forty-six families yr. of nine insect orders and a single family of spider (Araneae: Araneidae) were • Old world bluestem provides a less favorable identified. Among total individuals, 85% were insects and 15% were spiders. habitat than alfalfa for canopy insects. Housefly (Musca spp., Diptera: Muscidae), potato leafhopper (Empoasca spp., Hemiptera: Cicadellidae), lygus bug (Lygus hesperus, Hemiptera: Miridae), and spur-throated grasshopper (Melanoplus spp., Orthoptera: Acrididae) were other abundant taxa. Among the insects collected, spur-throated grasshoppers were the most abundant, comprising 12% of total taxa. Alfalfa hosted the greatest number of total insects, including pests such as potato leafhopper and lygus bug. Lower abundances of pestiferous insects were found in OWB while still hosting greater abundances of some arthropods of ecological significance such as spider and ladybird beetle (Hippodamia spp., Coleoptera: Coccinellidae). -
Exotic Bark- and Wood-Boring Coleoptera in the United States: Recent Establishments and Interceptions1
269 Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions1 Robert A. Haack Abstract: Summary data are given for the 25 new species of exotic bark- and wood-boring Coleoptera first reported in the continental United States between 1985 and 2005, including 2 Buprestidae (Agrilus planipennis and Agrilus prionurus), 5 Cerambycidae (Anoplophora glabripennis, Callidiellum rufipenne, Phoracantha recurva, Sybra alternans, and Tetrops praeusta), and 18 Scolytidae (Ambrosiodmus lewisi, Euwallacea fornicatus, Hylastes opacus, Hylurgops palliatus, Hylurgus ligniperda, Orthotomicus erosus, Phloeosinus armatus, Pityogenes bidentatus, Scolytus schevyrewi, Tomicus piniperda, Xyleborinus alni, Xyleborus atratus, Xyleborus glabratus, Xyleborus pelliculosus, Xyleborus pfeilii, Xyleborus seriatus, Xyleborus similis, and Xylosandrus mutilatus). In addition, summary interception data are presented for the wood-associated beetles in the families Bostrichidae, Buprestidae, Cerambycidae, Curculionidae, Lyctidae, Platypodidae, and Scolytidae, based on the USDA Animal and Plant Health Inspection Service “Port Information Network” database for plant pests intercepted at US ports of entry from 1985 to 2000. Wood-associated insects were most often intercepted on crating, followed by dunnage and pallets. The five imported products most often associated with these 8341 interceptions were tiles, machinery, marble, steel, and ironware. A significantly higher proportion of the most frequently intercepted true bark beetles