Dynamic Analysis of Compressed Air Energy Storage in the Car
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings of 1St Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017
Proceedings of 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Pneumobil Proceedings of the 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Edited by Prof.Dr. László Pokorádi Published by Óbuda University, Institute of Mechatronics and Vehicle Engineering ISBN 978-963-449-022-7 Technical Sponsor: Aventics Hungary Kft. Organizer: Óbuda University, Institute of Mechatronics and Vehicle Engineering Honorary Chairs: L. Palkovics, BUTE, Budapest M. Réger, Óbuda University, Budapest Honorary Committee: I. Gödri, Aventics Hungary Kft., Eger Z. Rajnai, Óbuda University, Budapest General Chair: L. Pokorádi, Óbuda University, Budapest Scientific Program Committee Chair: J.Z. Szabó, Óbuda University, Budapest Scientific Program Committee: J. Bihari University of Miskolc Zs. Farkas Budapest University of Technology and Economics L. Fechete, Technical University of Cluj-Napoca W. Fiebig, Wroclaw University of Science and Technology D. Fodor, University of Pannonia Z. Forgó, Sapientia Hungarian University of Transylvania L. Jánosi Szent István University Gy. Juhász, University of Debrecen L. Kelemen, University of Miskolc M. Madissoo, Estonian University of Life Sciences Vilnis. Pirs, Latvian University of Agriculture K. Psiuk, Silesian University of Technology M. Simon, Universitatea Petru Maior T. Szabó Budapest University of Technology and Economics T.I. Tóth University of Szeged Organizing Committee Chair: E. Tamás, Aventics Hungary Kft., Eger Organizing Committee: A. Kriston, Aventics Hungary Kft., Eger F. Bolyki, Aventics Hungary Kft., Eger CONTENTS Gödri I.: Welcome to the Next Generation Pneumatics 1. Tóth, I.T.: Compressed Air, as an Alternative Fuel 17. Kelemen L.: Studying through the Pneumobile Competition 23. Szabó I.P.: Evolution of the Pneumobiles from Szeged 27. -
Industrial Pumps
INDUSTRIAL PUMPS General Catalogue Contents Who we are p. 04 Electric centrifugal pumps Why choose us p. 06 DM - Line introduction p. 74 Global network p. 08 DM 06 p. 76 Our products p. 10 DM 10 p. 77 The main application sectors p. 11 DM 15 p. 78 Conformity p. 14 DM 30 p. 79 Main advantages p. 16 KM 70 p. 80 Patented exchanger p. 18 MB - Line introduction p. 82 Long life diaphragms p. 19 MB 80 p. 83 How does it work? p. 20 MB 100 p. 84 Installations p. 21 MB 110 p. 85 MB 120 p. 86 Air-operated double diaphragm pumps MB 130 p. 87 CUBIC - Line introduction p. 22 MB 140 p. 88 CUBIC MIDGETBOX p. 23 MB 150 p. 89 CUBIC 15 p. 24 MB 155 p. 90 BOXER - Line introduction p. 26 MB 160 p. 91 BOXER 7 p. 27 MB 180 p. 92 BOXER 15 p. 28 IM - Line introduction p. 94 MICROBOXER p. 30 IM 80 p. 95 BOXER 50 / MINIBOXER p. 32 IM 90 p. 96 BOXER 81 / BOXER 90 p. 34 IM 95 p. 97 BOXER 100 p. 36 IM 110 p. 98 BOXER 150 p. 38 IM 120 p. 99 BOXER 251 / BOXER 252 p. 40 IM 130 p. 100 BOXER 522 / BOXER 502 p. 42 IM 140 p. 101 BOXER 503 p. 44 IM 150 p. 102 BOXER FPC 100 p. 46 IM 155 p. 103 RC Remote Control p. 50 IM 160 p. 104 SCUBIC p. 51 IM 180 p. 105 SMICRO p. -
Technical Review on Study of Compressed Air Vehicle (Cav)
International Journal of Automobile Engineering Research & Development (IJAuERD) ISSN 2277-4785 Vol. 3, Issue 1, Mar 2013, 81-90 © TJPRC Pvt. Ltd. TECHNICAL REVIEW ON STUDY OF COMPRESSED AIR VEHICLE (CAV) HEMANT KUMAR NAYAK, DEVANSHU GOSWAMI & VINAY HABLANI Department of Mechanical Engineering, Institute of Technology and Management, Sitholi, Gwalior, MP, India ABSTRACT Diesel and Petrol engine are frequently used by automobiles industries. Their impact on environment is disastrous and can’t be neglected now. In view of above, the need of some alternative fuel has been arises which lead to the development of CAVs (Compressed Air Vehicle). It is an innovative concept of using a pressurized atmospheric air up to a desired pressure to run the engine of vehicles. Manufacturing of such vehicles would be environment friendly as well as put the favorable conditions for the cost. Applications of such compressed air driven engine are in small motor cars, bikes and can be used in the vehicles to be driven for shorter distances. This technology states that, if at 20 degree C, 300 liters tank filled with air at 300 bar carries 51MJ of energy, experimentally proved. Under ideal reversible isothermal conditions, this energy could be entirely converted to mechanical work which helps the piston and finally crankshaft to rotate at desired RPM (revolutions per minute).The result shows the comparison of different properties related to CAV and FE (Fuel Engines). For example emission of toxic gases, running cost, engine efficiency, maintenance, weight aspects etc. KEYWORDS: Compressed Air Vehicle, Fuel Engine, Compressed Air Technology INTRODUCTION Compressed air has been used since the 19th century to power mine locomotives and trams in cities such as Paris and was previously the basis of naval torpedo propulsion. -
Reelcraft Hose, Cord and Cable Reel Catalog
Reel Catalog Hose, cord and cable reels reelcraft.com Why use hose reels? Why use hose reels? Because they make hazards will decrease, which saves lost work hose handling more efficient and safer. Your time, medical bills and higher insurance. hoses, cables and cords will last up to five You also save the expense and time to times longer. You will improve hose replace expensive hoses, cables and cords management, which decreases labor costs. that get run over by fork lifts and other Your chances of injuries from tripping vehicles. Series TW7000 Five reasons why hose reels add value Truck courtesy of E&B Paving, Anderson IN Improve efficiency Increase safety Minimize leakages Reduce hose wear Increase productivity Hoses, cable and cords are Reduce tripping accidents Reduce costs of air Hose and cords on reels can No more tangled hoses where you want/need them. and lost work time. and water leakages. last up to five times longer. improves efficiency. OSHA says reduce your trips and falls “There are many situations that may cause other wires out of the way.” OSHA’s “Fall slips, trips and falls. The controls needed Prevention Tips” include, “Practice good to prevent these hazards are usually housekeeping. Keep cords, welding leads obvious, but too often ignored, such as... and air hoses out of walkways or adjacent coiling up extension cords, lines and hoses work areas." when not in use and keeping electrical and Source: www.osha.gov Same-day quick ship program offers fastest service Because we are centrally located in the US and have three North American warehouses, upon request, we can quickly ship our standard products the same day for domestic orders of five or fewer standard models. -
Energy Management Strategies for a Pneumatic-Hybrid Engine Based On
Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin To cite this version: Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin. Energy Manage- ment Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2010, 65 (1), pp.179-190. 10.2516/ogst/2009045. hal-00616601 HAL Id: hal-00616601 https://hal.archives-ouvertes.fr/hal-00616601 Submitted on 28 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 15_ogst09032 18/02/10 11:51 Page 179 Oil & Gas Science and Technology – Rev. IFP, Vol. 65 (2010), No. 1, pp. 179-190 Copyright © 2009, Institut français du pétrole DOI: 10.2516/ogst/2009045 IFP International Conference Rencontres Scientifiques de l’IFP Advances in Hybrid Powertrains Évolution des motorisations hybrides Energy Management Strategies for a Pneumatic-Hybrid -
Life Cycle Assessment of Conventional and Alternative Fuels for Vehicles
Life Cycle Assessment of Conventional and Alternative Fuels for Vehicles By HUSEYIN KARASU A Thesis Submitted in Partial Fulfilment of the Requirements for the degree of Master of Applied Science in Mechanical Engineering Faculty of Engineering and Applied Science University of Ontario Institute of Technology Oshawa, Ontario, Canada August 2018 © Huseyin Karasu, 2018 Abstract For the near future, it is important that vehicles are run by alternative fuels. Before we can go ahead with the new alternatives, it is crucial that a comprehensive life cycle analysis is carried out for fuels. In this thesis study, a cradle-to-grave life cycle assessment of conventional and alternative fuels for vehicle technologies is performed, and the results are presented comparatively. The aim of the study is to investigate the environmental impact of different fuels for vehicles. A large variety of fueling options, such as diesel, electric, ethanol, gasoline, hybrid, hydrogen, methane, methanol and natural gas are considered for life cycle assessment of vehicles. The study results are shown in abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion and human toxicity potential using three different impact assessment methods. The analyses show that hydrogen vehicle is found to have the lowest environmental impacts with ozone layer depletion of 8.14×10-10 kg CFC-11-eq/km and the human toxicity potential of 0.0017 kg (1,4 DB)-eq/km respectively. On the other hand, the gasoline-powered vehicle shows a poor performance in all categories with the global warming potential of 0.20 kg CO2- eq/km. Keywords: Life cycle assessment; Vehicles; Fuels; Hydrogen; Electric vehicles; natural gas; Ethanol; Methanol. -
Characteristics of Pneumatic Motors 2 TECNOLOGIE SPECIALI APPLICATE
teCnoLoGie speCiaLi appLiCate pneumatiC motors CharaCteristiCs of pneumatiC motors 2 teCnoLoGie speCiaLi appLiCate inDiCe tsa Special technologies applied 2 CharaCteristiCs of pneumatiC motors 3 POWER 3 SPEED 3 SPEED 3 TORQUE AT MAXIMUM SPEED 3 STARTING TORQUE 3 STALL TORQUE 3 WaYs of ChanGinG THE MOTOR’s PERFORMANCE 4 PRESSURE REGULATING 4 FLOW REGULATING 4 inLet air ConDitions 4 CONSUMPTION 4 AIR QUALITY 4 air pipeLine Limitations 5 pneumatiC DiaGram (power – motor control) 5 pneumatiC aCCessories 36 air treatment units 36 manuaL or pneumatiC ControL VaLVes 37 siLenCers 38 DissoLator / siLenCer fiLter 39 our proDuCts 40 CharaCteristiCs of pneumatiC motors 1 tsa speCiaL appLieD teChnoLoGies tsa founded in 1984, for over 30 years has been designing, manufacturing and distributing pneumatic motors, articulated arms for torque reaction, assembling systems and special equipment. Its technical design office is in charge of studying all of the required characteristics to guarantee maximum reliability and high productivity, according to modern ergonomic principles. Product quality and safety are now a consolidated standard for TSA. Just-in-time deliveries, a wide, flexible range of products, including diversified motors and arms, an efficient spare parts warehouse and effective before- and after sales: these are the services offered by TSA to its customers. Thanks to its constant commitment and to the professionalism of its technicians, tsa has gained the trust of major companies on the market. Its aim is to meet customer requirements in all respects: quAlITy, PerformAnce And coST effecTIveneSS. 2 teCnoLoGie speCiaLi appLiCate CharaCteristiCs of pneumatiC motors The outlet power of a pneumatic motor varies poWer depending on its speed and torque. -
Economic and Environmental Evaluation of Compressed-Air Cars
IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 4 (2009) 044011 (9pp) doi:10.1088/1748-9326/4/4/044011 Economic and environmental evaluation of compressed-air cars Felix Creutzig1,2, Andrew Papson3, Lee Schipper4,5 and Daniel M Kammen1,2,6 1 Berkeley Institute of the Environment, University of California, Berkeley, USA 2 Renewable and Appropriate Energy Laboratory, University of California, Berkeley, USA 3 ICF International, 620 Folsom Ave, Suite 200, San Francisco, CA 94107, USA 4 Precourt Energy Efficiency Center, Stanford University, USA 5 Global Metropolitan Studies, University of California, Berkeley, USA 6 Energy and Resources Group, University of California, Berkeley, USA E-mail: [email protected] Received 29 June 2009 Accepted for publication 3 November 2009 Published 17 November 2009 Online at stacks.iop.org/ERL/4/044011 Abstract Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic–combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles. -
Compressed Air Retrofit Kit for Existing Motor Vehicles
Proceedings of the World Congress on Engineering 2013 Vol III, WCE 2013, July 3 - 5, 2013, London, U.K. Compressed Air Retrofit Kit for Existing Motor Vehicles Naveen Kumar, Utsav Banka, Manas Chitransh, Jayati Takkar, Vasu Kumar, Unish Gupta, Sushant Singh Abstract—Keeping in view the climate change, the Peak oil is the point in time when the maximum rate of dependence on petroleum reserves as the primary energy petroleum extraction is reached, after which the rate of source, and volatile fuel prices, it is imperative to explore production is expected to enter terminal decline. The oil possible opportunities in unconventional alternative-fuel crisis will begin when demand for oil consistently begins to technologies. One of the choices available is the Compressed Air Vehicle (CAV), or air car, powered by a pneumatic motor exceed supply. After the peak, demand and supply can no and on-board high-pressure gas tank. While proponents claim longer match. Keeping in view the discerning climate crisis, CAVs offer environmental and economic benefits like zero the dependence on petroleum reserves as the primary energy emissions (in fact, the exhaust air is cleaner than the ambient source, and volatile fuel prices, we have to explore possible air because of the filters used) and the cold exhaust being used opportunities in unconventional alternative-fuel for the air conditioning system, the technology has not been technologies. Compressed air as an alternative fuel can offer subject to more rigorous analysis. Also, in a compressed air engine, air alone can be used as the fuel, or it can be used in a solution to most of the aforementioned problems. -
Consultation on Reducing Co2 Emissions from Road Transport
CONSULTATION ON REDUCING CO2 EMISSIONS FROM ROAD TRANSPORT INDIVIDUALS' COMMENTS IN RESPONSE TO QUESTIONS C.2, C.4, E.2, E.7, E.9 and F The tables below display the comments provided by individuals in response to the questions referred to above in the online questionnaire. As answering these questions was optional, not all respondents provided an answer or comments for each of the questions. The individual response number can be used to cross reference these comments from individuals with the response which they provided to the tick box questions in the questionnaire. COMMENTS FROM INDIVIDUALS IN RESPONSE TO QUESTION C2 Individual C2 Response Number 1 objectif 2020 est trop éloigné car les constructeurs ont la possibilité de le faire plus tôt car la conception des nouveaux modèles est déjà en "route", ils ont d excellents ingénieurs tout à fait capables de les réaliser. 2 A part l'obligation du filtre sur les pots d'échappement, je ne connais pas les autres réglementations qui pourraient exister pour limiter les émissions de façon contraignante pour les industriels automobiles. 5 La consommation est également lié au poids du véhicule. Or trop de nouveaux modèles sont trop lourds, des matériaux plus légers ayant des caractéristiques mécaniques équivalentes mais une masse volumique plus faible sont sous employés. La communication des constructeurs portent essentiellement sur les modèles haut de gamme, donc lourds et émetteurs de gaz à effet de serre. 10 Les résultats ne sont pas assez rapides 12 Current legislation is to weak, it needs to be more efficient and take the positive climatic effects of biofuels and electricity in to account 16 Die Verordnung sollte sparsame Autos und alternative Antriebe unterstützen, wobei natürlich aber nicht nur rein auf die CO2 Werte im Verbrauch geachtet werden sollte, sondern auch jene von Produktion, Wartung und allgemeinen Verschleiß (auch von Straßen etc) und sollte daher auch mit dem Fahrzeuggewicht zu tun haben! Je leichter, desto besser. -
Tank Truck Equipment
Sofia 1528, No.3 Poruchik Nedelcho Bonchev Str., fl.5 Page. 2 / 77 T.+359 2 973 2370, +359 2 973 2665, F.: +359 2 973 2665 email: [email protected], www.daisglobal.eu Sofia 1528, No.3 Poruchik Nedelcho Bonchev Str., fl.5 Page. 3 / 77 T.+359 2 973 2370, +359 2 973 2665, F.: +359 2 973 2665 email: [email protected], www.daisglobal.eu TABLE OF CONTENTS I. TANK TRUCK EQUIPMENT ............................................................... 5 1.1. TRAILERS, SEMITRAILERS and RIGIT TANKS for fuels ............................. 6 1.2. Manhole covers .................................................................................. 7 1.3. Pneumatic control units ....................................................................... 9 1.4. Adapters and fittings for Bottom loading .............................................. 10 1.5. Super light ball valves ....................................................................... 12 1.6. Foot valves ...................................................................................... 12 1.7. Nozzles and parts ............................................................................. 14 1.8. Vapour recovery adapters and valves .................................................. 16 1.9. Overfill protection system LIBERTY ..................................................... 18 1.10. Compensators, sight flow, DDC .......................................................... 19 1.11. SAFETY AND CONTROL SYSTEM SCS ................................................... 21 1.12. HOSES ........................................................................................... -
How the Air Car Works
How the Air Car Works BY CHRISTOPHER LAMPTON (HSW-CONTACT.HTM) AUTO (HTTP://AUTO.HOWSTUFFWORKS.COM/) | FUEL- EFFICIENT VEHICLES (HTTP://AUTO.HOWSTUFFWORKS.COM/FUEL-EFFICIENCY/VEHICLES) Browse the article How the Air Car Works (http://auto.howstuffworks.com/fuel-efficiency/vehicles/air- car.htm) (http://auto.howstuffworks.com/fuel-efficiency/alternative- fuels/afv-pictures.htm) (http://auto.howstuffworks.com/fuel-efficiency/alternative- fuels/afv-pictures.htm) Could air cars make gas prices like these a memory? See pictures of alternative fuel vehicles (http://auto.howstuffworks.com/fuel- efficiency/alternative-fuels/afv-pictures.htm). TETRA IMAGES/GETTY IMAGES (HTTP://WWW.GETTYIMAGES.COM) Gasoline is already the fuel of the past. It might not seem that way as you fill up on your way to work, but the petroleum used to make it is gradually running out. It also pollutes air that's becoming increasingly unhealthy to breathe, and people no longer want to pay the high prices that oil companies are charging for it. Automobile manufacturers know all of this and have spent lots of time and money to find and develop the fuel of the future. The search is on, but what will this fuel of the future be? Ready-made fuels like petroleum are becoming more difficult to find and automobile manufacturers are turning to greener energy sources like batteries. These batteries can be charged with energy and placed in a car where that energy can be released. As good as that idea might seem, some manufacturers think air could become an even better energy source. Air? At first glance, the idea of running a car on air seems almost too good to be true.