Thaliacian

Crustacean

Pteropod

Euphausiid Chaetognath CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS

STATE OF CALIFORNIA MARINE RESEARCH COMMITTEE

Cooperating Agencies: CALIFORNIA ACADEMY OF SCIENCES CALIFORNIA DEPARTMENT OF FISH AND GAME STANFORD UNIVERSITY, HOPKINS MARINE STATION NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, NATIONAL MARINE FISHERIES SERVICE UNIVERSITY OF CALIFORNIA, SCRIPPS INSTITUTION OF OCEANOGRAPHY

June, 1974 THE CALCOFI ATLAS SERIES

This is the twenty-first in a series of atlases containing data on the hydrography and from the region of the California Current. The field work was carried out by the California Cooperative Oceanic Fisheries Investigations,'a program sponsored by the State of California under the direction of the State's Marine Research Committee. The cooperating agencies in the program are: California Academy of Sciences California Department of Fish and Game Stanford University, Hopkins Marine Station National Oceanic and Atmospheric Administration, National Marine Fisheries Service2 University of California, Scripps Institution of Oceanography CalCOFI atlases3 are issued as individual units as they become available. They provide processed physical, chemical and biological measurements of the California Current region. Each number may contain one or more contributions. A general description of the CalCOFI program with its objectives appears in the preface of Atlas No. 2. This atlas was prepared by the Data Collection and Processing Group of the Marine Life Research Program, Scripps Institution of Oceanography. CalCOFI Atlas Editorial Staff: Abraham Fleminger and John G. Wyllie, Editors CalCOFI atlases in this series, through June 1974, are:

No. 1. Anonymous, 1963. CalCOFI atlas of 10-meter temperatures and salinities 1949 through 1959. No. 2. Fleminger, A., 1964. Distributional atlas of calanoid in the California Current region, Part I. No. 3. Alvarino. A,, 1965. Distributional atlas of in the California Current region. No. 4. Wyllie, J.G., 1966. Geostrophic flow of the California Current at the surface and at 200 meters. No. 5. Brinton, E., 1967. Distributional atlas of Euphausiacea (Crustacea) in the California Current region, Part I. No. 6. McGowan, J.A., 1967. Distributional atlas of pelagic molluscs in the California Current region. No. 7. Fleminger, A,, 1967. Distributional atlas of calanoid copepods in the California Current region, Part 11. No. 8. Berner, L.D., 1967. Distributional atlas of Thaliacea in the California Current region. No. 9. Kramer, D., and E. H. Ahlstrom, 1968. Distributional atlas of fish larvae in the California Current region: Northern Anchovy, Engrauh mora'ax (Girard). 195 1 through 1965. No. 10. Isaacs, J. D., A. Fleminger and J. K. Miller, 1969. Distributional atlas of biomass in the California Current region: Spring and Fall 1955-1959. No. 11. Ahlstrom, E. H., 1969. Distributional atlas of fish larvae in the California Current region: jack mackerel, Trachurus symmetricus, and Pacific hake, Merluccius productus, 1951 through 1966. No. 12. Kramer, D., 1970. Distributional atlas of fish and larvae in the California Current region: Pacific sardine, Sardinops caerulea (Girard). 195 1 through 1966. No. 13. Smith, P. E., 1971. Distributional atlas of zooplankton volume in the California Current region, 1951 through 1966. No. 14. Isaacs, J. D., A. Fleminger and J. K. Miller, 1971. Distributional atlas of zooplankton biomass in the California Current region: Winter 1955-1959. No. 15. Wyllie, J. G., and R. J. Lynn, 1971. Distribution of temperature and salinity at 10 meters, 1960- 1969 and mean temperature, salinity and oxygen at 150 meters, 1950-1968 in the California Current. No. 16. Crowe, F. J. and R. A. Schwartzlose, 1972. Release and recovery records of drift bottles in the California Current region, 1955 through 1971. No. 17. Ahlstrom, E. H., 1972. Distributional atlas of fish larvae in the California Current region: six common mesopelagic fishes- Vinciguerria lucetia, Triphoturus mexicanus, Stenobrachius leucopsatus, Leuroglossus stilbius, Bathylagus wesethi acd Bathylagus ochotensis. 1955 through 1960. No. 18. Brinton, E., 1973. Distributional atlas of Euphausiacea (Crustacea) in the California Current region. Part 11.

11 No. 19. Bowman, T. E. and M. W. Johnson, 1973. Distributional atlas of calanoid copepods in the California Current region, 1949 and 1950. No. 20. Thomas, W. H. and D. L. R. Seibert, 1974. Distribution of nitrate, nitrite, phosphate and silicate in the California Current region, 1969. Owen, R. W., Jr., 1974. Distribution of primary production, plant pigments and Secchi depth in the California Current region, 1969. Smith, P. E., 1974. Distribution of zooplankton volumes in the California Current region, 1969. No. 21 Fleminger, A., J. D. lsaacs and J. G. Wyllie, 1974. Zooplankton biomass measurements from CalCOFI cruisesofJuly 1955 to 1959 and remarks on comparison with results from October, January and April cruises of 1955 to 1959.

Usually abbreviated CalCOFI, sometimes CALCOFI or CCOFI. * Formerly called US. Fish and Wildlife Service, Bureau of Commercial Fisheries. For citation this issue in the series should be referred to as CalCOFI AtlasNo. 21 Library of Congress Catalog Card Number 67-4238. ZOOPLANKTON BIOMASS MEASUREMENTS FROM CalCOFI CRUISES OF JULY 1955 TO 1959 AND REMARKS ON COMPARISON WITH RESULTS FROM OCTOBER, JANUARY AND APRIL CRUISES OF 1955 TO 1959

A. Fleminger, J. D. Isaacs and J. G. Wyllie

CalCOFI ATLAS NO. 21

A. Fleminger and J. G. Wyllie, Editors Data Collection and Processing Group Marine Life Research Program Scripps Institution of Oceanography La Jolla, California June 1974 ZOOPLANKTON BIOMASS MEASUREMENTS FROM CalCOFI CRUISES OF JULY 1955 TO 1959 AND REMARKS ON COMPARISON WITH RESULTS FROM OCTOBER, JANUARY, AND APRIL CRUISES OF 1955 TO 1959

A. Fleminger, J.D. Isaacs, and J.G. Wyllie'

Text previous atlases of this series (Isaacs, Fleminger and Introduction ...... vii Miller, 1969, 1971). Addition of the July data com- Materials and Methods ...... vii pletes our initial objective of obtaining a seasonally ... Presentation of Results...... viii representative qualitative and quantitative estimate Remarks on Seasonal and Year to Year of zooplankton biomass over a time period spanning ... Variations ...... vm sequences of unusually cool and warm years as List of Charts (Table 2) ...... ix occurred between 1955 and 1959 (cf. Anon, 1963), References ...... xix for charts of monthly temperature anomalies relative to ten-year means at representative CalCOFI oceano- Charts graphic stations). A more extensive discussion of the CalCOFI Basic Station Plan ...... 1 background and objectives of this study was presented All Taxa Combined ...... 2 by Isaacs, Fleminger and Miller (197 1). Amphipoda ...... 7 Materials and Methods Chaetognatha ...... 17 Cladocera ...... 22 Isaacs, Fleminger and Miller (1971) described the Copepoda ...... 27 procedures for collecting, measuring and displaying larvae...... 34 wet weight biomass measurements of CalCOFI zoo- ...... 40 plankton samples and for adjusting these measure- ...... 45 ments in the case of organisms known to undergo Euphausiacea ...... 55 extensive diel vertial migrations greater than the 140m Heteropoda ...... 65 depth of the CalCOFI oblique tow routinely taken in Larvacea ...... 71 those years (cf. Smith, 197 1). Medusae...... 76 The unusually large number of stations occupied Mysidacea ...... 81 by the July cruises (Table 1) prompted us to reduce Ostracoda ...... 86 sample-processing time by limiting the search for Pteropoda ...... 96 rare or unusually large sized specimens not represented Radiolaria ...... 103 in the standard aliquot. A one-quarter or one-half Siphonophora ...... 109 fraction obtained by means of the Folsom splitter Thaliacea ...... 114 was examined instead of our previous practice of scanning the entire sample. Comparison of 13 samples Introduction representing the range of CalCOFI sample sizes and environmental localities indicates that differences This atlas presents the quantitative distribution of between values obtained by the original and the mod- zooplankton taxa we call functional groups that were ified procedures are negligible; in fact they do not collected in the California Current region during July exceed differences between replicate trials of the CalCOFI cruises in the years 1955 to 1959. Func- tional groups are unequal as to taxonomic rank and original procedure. diversity but relate readily to trophodynamic cate- gories within the pelagic ecosystem (cf. Isaacs, Fleminger and Miller, 1971: p vi). The biomass of functional groups collected and 1, Scripps Institution of Oceanography, analysed during the October, January and April cruises University of California, San Diego, between 1955 and 1959 have been presented in La Jolla, California 92037

vii Table 1. Number of standard CalCOFI zooplankton samples from July cruises processed to determine the wet weight per 1000m3 of each functional group.

CaiCOFl cruise Number of samples

5507 192 5607 202 5707 208 5807 25 5 5907 270

~~ Total 1127

Presentation of Results Despite this high diversity only a very small num- ber of species appears to contribute appreciably to The biomass of each functional group is shown the region’s high biomass as noted below. separately, cruise by cruise (Table 2), as in the exam- In general copepods, thaliaceans, euphausiids and ple given in Figure 1. Biomass estimates are expressed chaetognaths together account for more than 75% in grams (wet weight corrected for interstitial water) of the mean biomass in each of the four months over per 1000m3 sea water strained by a standard CalCOFI the five year sequence (Fig. 2). Though differences in zooplankton net. Contour lines shown on the charts the relative proportions between years may vary coincide with a sequence of values differing by a factor widely (Fig. 3) copepods and thaliaceans are per- of four, as follows: 0.016, 0.062, 0.25, 1, 4, 16, 64, sistently the most important categories in terms of etc. No more than seven contour intervals are shown wet weight (Fig. 4). Copepods regularly comprise from per chart, the sequence being chosen to fit the range at least one quarter to one third of the wet weight. of measurements obtained during a specific cruise. The Measurements of copepods however are likely to be highest and lowest estimates of biomass greater than underestimates since the mesh size of the CalCOFI zero are shown in arabic nunierals to the right of the nets permits escapement of organisms having a mini- index of contour interval shadings in the chart legend. mum cross section of less than 0.5mm. The charts have been arranged alphabetically by func- During the sampling years of 1955 to 1959, which tional groups; the sum of all groups appears first varied widely with respect to prevailing surface temp- under the heading, “All Taxa Combined.” eratures, fluctuations in the abundance of copepods In addition to the contoured estimates of biomass and thaliaceans tend to parallel one another. In the overlying the station plan, each chart presents two relatively cool years of 1955 and 1956 when 10-meter graphic summaries pertaining to the abundance of the temperatures were well below the ten year mean of functional group (Fig. 1). The latitudinal distribution representative stations (Anon., 1963), the biomass of biomass is compared by estimating the mean weight of copepods and thaliaceans month by month was per station for each set of three successive lines of roughly twice as high as estimates obtained from 1958 stations. This is shown as a histogram to the left of and 1959 when temperatures were considerably above the distribution, The proportion of the functional the ten year mean. With few exceptions April and group to the category, All Taxa Combined, i.e., the July cruises produced at least twice the biomass total zooplankton biomass per cruise less fish eggs, attained by either group during the October and fish larvae and squid is shown in the actual propor- January cruises (Figs. 3, 4). Cruise to cruise variation tions and as a percentage in a bar diagram located in among the other two taxa, euphausiids and chaeto- the lower left margin of the chart. gnaths however, are slight and appear to be without a yearly or seasonal pattern (Figs. 3,4). Remarks on Seasonal and Year to Since thaliaceans and copepods are primarily Year Variations small particle filter feeders and appear to vary simi- The biomass measurements we present have been larly in abundance, the question of their horizon- obtained from a biota of more than 545 species of tal distributions within the region deserves more than planktonic invertebrates known to occur above a cursory attention. Visual cruise-by-cruise comparison depth of 140m in the California Current region of summary charts outlining their areas of high bio- (cf. lsaacs, Fleminger and Miller, 1971: Table 1). mass values (Figs. 5 and 6) indicates they have pre-

... Vlll Table 2. List of charts.

Summer Cruise Number 5507 5607 5707 5807 5907

All Taxa Combined 2 3 4 5 6 Amphipoda 7 9 11 13 15 Amphipoda, Adjusted 8 10 12 14 16 Chaetognatha 17 18 19 20 21 Cladocera 22 23 24 25 26 Copepoda 27 28 29 30 32 Copepoda, adjusted 31 33 Crustacea larvae 34 35 36 37 39 Crustacea larvae, adjusted 38 Ctenophora 40 41 42 43 44 De cap oda 45 47 49 51 53 De cap oda, adjusted 46 48 50 52 54 Euphausiacea 55 57 59 61 63 Euphausiacea, adjusted 56 58 60 62 64 He te r opo da 65 66 67 68 70 Heteropoda, adjusted 69 Larvacea 71 72 73 74 75 Medusae 76 77 78 79 80 Mysidacea 81 82 83 84 85 Ostracoda 86 88 90 92 94 Ostracoda, adjusted 87 89 91 93 95 Pteropoda 96 97 99 100 102 P te ropoda, adjusted 98 101 Radiolaria 103 104 105 106 108 Radiolaria, adjusted 107 Siphonophora 109 110 111 112 113 Thaliacea 114 115 I16 117 118 dominantly different though sometimes overlapping In the laboratory herbivorous copepods from tem- distributions. Large concentrations of thaliaceans are perate and boreal latitudes prefer larger-sized species more frequently offshore, dominating the western and of (>20pm, the net ; Frost, northern margins of cruises (Fig. 5). Large concen- 1974). Thaliaceans are non-selective filter-feeders trations of copepods most frequently cluster near consuming a broad spectrum of micro-organisms shore, particularly south of Point Conception. from less than 1pm to greater than 1 mm (Madin, When prominent at the northern end of cruises, 1974). The ability of adult and juvenile thaliaceans abundance diminishes more gradually off- to harvest the smallest planktonic forms (< 2Opm, shore (Fig. 6) but only partially overlaps the areas of the nannoplankton) is particularly interesting. The high thaliacean abundance. Annually, both functional biomass of nannoplankton is the most important groups tend to show higher biomass values in April and quantitatively stable size class of the phytoplank- and July coinciding with the familiar seasonal pattern ton in both offshore and nearshore euphotic waters of the region’s coastal upwelling. Thus, environmental of the California Current region whereas net phyto- factors increasing nutrient concentrations and primary plankton shows remarkable seasonal variation in syn- production appear to affect both inshore and off- chrony with local episodes of upwelling (Malone shore sectors of the California Current region. 1971a, b). In nearshore waters thaliaceans must com- 125' 120" 115' 110" Ill Ill Ill1 II 11

______..___.Euphausiacea

grn /looom3

5'84N -=3.3N

MENDOCINO I T Ratios of median standardized weight (grams wet weight/1000m3 water strained) of the functional group in samples taken during the hours of darkness (N) to that in samples taken during the hours of daylight (D) or twilight (T).

SA N STATIONS: NIGHT 4 SUNRISE

FRANCISCO ' ~ DAY 0 SUNSET 'i 0

3 5'

30'

Regional north to south comparisons of ' the biomass of the functional --group. The horizontal bars show the mean standardized weight of the functional group (grams wet weight/1000m3 water strained) in the suite of samples collected on three successive lines of stations.

MEAN WEIGHT (gm/ 1000 m3 PER SAMPLE

100-107

110-119 I

120-127

150-157 Graphic comparison of the sum of the standardized , , , , , , , , I I ~ :":":~, , , weights (grams wet weight/1000m3 water strained) 1 1 of the named functional group and that of All Taxa 1 Combined obtained from all stations of the numbered cruise. The values below are the summed total of standardized weights, the biomass of the functional group appearing on the left, that of All Taxa Com- 57 % bined appearing on the right. The percentage above m 1 shows the sum of the biomass of the functional group 723 grams 12648 as a ratio of that of All Taxa Combined. -

Figure 1. An example of the charts presented in this Atlas. Special quantitative summaries include: 1. ratio of quantity caught in night samples relative to that in twilight and day samples: 2. north to south comparison of abundance; 3. total amount of the functional group taken relative to that of the entire catch (All Taxa Combined).

X IO0 90 Tl 80

70

60

50

40

30 ...... 20 - ...... Copepoda ...... IO - ...... 0 ...... JANUARY APRIL JULY

Figure 2. Mean seasonal percent wet weight of functional groups showing copepods, thaliaceans, euphausiids and chaetognaths, 1955-1959.

xi QQQQ wnwx JANUARY

w ~3 501-

E 30

OCTOBER

20

10

0 1955 I956 I957 I958 I959

Figure 3. Percentage wet weight of functional groups by month and year.

xii wnwxaaaa voob- aasa 3 Wmz JANUARY 30 a aIU I Oao t-OIt ::I aw 3a wx V

10 &...... 11, I ::. ... 11111 ..

50 r APRIL

6 20 0 0 ' IO ... 0 la,... E :.a. -iY$I- 500 .*.a. $;I

JULY

20 ...... IO0 ..... j:[ ..... 50 r OCTOBER

20

IO0 ..... $111 :.:.: $1; .. ... :.:.: l(lII -& - I 1956 1957 1958 1959 1955

Figure 4. Mean biomass (mg/l OOOm3) of functional groups by month and year.

xiii

_.-. -A- THALIACEA 1955 1956 1957 1958 1959

5701 ~. 580I \ 5901

JAN \‘IB

7% OF 51479 L CT- J

\ 5904 ‘t APR

34% OF 12801 gm I-- 33% OF 12713gm ‘/ -.--I

JUL

34% OF 26614gm 66% OF 512X)gm 16% OF 12454gm -1 I -1- 7

\ 5510 5610 1 I i

OCT

21% OF 12344~ 16% OF 7384.9~ I1 -1

Figure 5. Blackened regions show occurrence of Thaliacea at or above 16mg/1000m3. Area sampled by cruise delineated by thin line.

xiv COPEPODA 1955 1956 1957 1958 1959 \ 5801 \ 5901

JAN

49% OF 51479m 34% OF 3783% 26% OF 47559m -17 c --1 _7 I t ,, ' "' ' ~ " -- I' I "" t 5504 5604 5704 5804

APR

( 5907

JUL

34% OF 26614qm, 21% OF 521Mgm 42% OF 15O&m 35% OF 14922gm :"x ~. .. -1 -2

\ 5510 5610 57 IO 5810 4 5910

OCT

39% OF 12344gm 10%~9~02gm 21% OF 73849m 26% OF 39359m I c 1

Figure 6. Blackened regions show occurrence of Copepoda at or above 16mg/1000m3. Area sampled by cruise delineated by thin line. Pete with a larger biomass of microzooplankton (Beers Sagitta euneritica and S. bierii; thaliaceans are Salpa and Stewart 1967, 1970) for the nannoplankton and fusiformis, Thalia democratica s.I., and Dolioletta with the larger numbers of herbivorous copepods for gegenbauri. Many of these species appear to be indig- the seasonal pulses of net phytoplankton. Whether the enous to the temperate North Pacific Ocean and spec- distributional trends of thaliacean and copepod bio- ially adapted to inhabit the temperate segments of this mass reflect these trophodynamic relationships how- ocean’s boundary current. Adjusting their verticaldis- ever is a question to be resolved by further studies tribution so as to use vertical components of the on the kinetics of the pelagic food web. boundary current circulation would permit them to No pronounced seasonal or spatial pattern is persist in and exploit the eutrophic conditions char- evident in the relatively small fluctuations shown by acterizing these distinctive currents. euphausiids and chaetognaths (Figs. 3, 4, 7, 8). High In view of their known spatial distribution in the concentrations of chaetognaths more commonly North Pacific the numerically dominant planktonic appear in inshore patches and do not seem to be animals of the California Current region represent a spatially coordinated with euphausiids. The absence southward tongue of the temperate zone. Their of pronounced seasonal fluctuations in mean biomass known North Pacific distributions indicate that the values of these two functional groups may be related temperate zone extends from Japanese coastal waters to their use of zooplankton as a major or exclusive and across the North Pacific in the North Pacific Drift, food of adults. the eastward flowing segment of the boundary current Chaetognaths are known to be obligate predators that approaches the North American coast off Wash- but epipelagic euphausiids appear to be omnivorous ington and Oregon. The boundary current divides into feeders (Nemoto 1971/1972). The absence of sea- northward and southward components, the latter sonal fluctuations in the biomass of both taxa sug- forming the origin of the California Current. The gests that euphausiids may assume a predatory role distribution of species presented in earlier CalCOFI when phytoplankton becomes scarce. By occupying a Atlases show in terms of the temperate planktonic higher trophic level, euphausiids would be buffered fauna that the California Current is a broad, relatively from the immediate influence of strong seasonal homogeneous tongue south to Point Conception fluctuations in primary production. In contrast fluc- and usually extends over an appreciable portion of tuations in primary production may be inferred as a the Southern California Bight as well. South of this partial basis for the strong seasonal changes in the tongue, high concentrations of temperate boundary biomass of copepods and thaliaceans, although pri- current species follow pronounced seasonal variations mary production was not routinely measured, and, and occur in the vicinity of coastal areas where vertical hence, such possible relationships of these data can- temperature distributions provide evidence of pro- not be readily tested. If copepods are numerically nounced upwelling. Coastal upwelling prevails typic- significant in the diets of adult euphausiids and ally from winter to late spring and produces environ- chaetognaths, this should be reflected in their dis- mental conditions characteristic df the California tributional relationships. Euphausiids and chaeto- Current north of Point Conception. Coastal upwelling gnaths might be at least partially separated by con- may thereby extend the physical-chemical environ- centrating on different size classes of copepods. Time ment of temperate boundary current species season- and space distribution analyses of the three groups ally southward as far as southern Baja California. in upwelling regions would contribute to these Evidence indicative of this phenomenon is provided interesting questions of zooplankton trophodynamics. by the dense localized concentrations of temperate Visual comparison of available monthly charts copepods, chaetognaths, euphausiids and fish larvae showing the quantitative distribution of individual usually appearing from early spring to summer along species of copepods, thaliaceans, euphausiids, and the coastline of Baja California (Fleminger, 1964; chaetognaths, (Fleminger, 1964, 1967; Bowman and Alvarino, 1965; Brinton, 1967. 1973; Kramer and Johnson 1973; Berner, 1967; Brinton, 1967, 1973; Ahlstrom, 1968; Bowman and Johnson, 1973). More Alvarino, 1965) suggests that the higher biomass con- southerly concentrations of these species correlate centrations of these functional groups in the California seasonally and geographically with the high biomass Current region consist largely of temperate boundary estimates for the respective functional groups along current (=Transition Current Zone) species: copepods Baja California reported by Isaacs, Fleminger and include Metridia pacifica, Calanus pacificus, Eucalanus Miller (1969) for April cruises and in the present californicus, Rhincalanus nasutus, Pleuromamma bor- atlas for July cruises. ealis; euphausiids are Euphausia pacifica, Nematoscelis Subtropical oceanic species characteristic of the difficilis and Nyctiphanes simplex; chaetognaths are North Pacific’s Central Water zooplankton generally

xvi EUPHAUSIACEA, AJUSTED 1955 1956 1957 1958 1959 \ 5501 1 1 5601 1 \ 5701 1 1 5801 \ 5901 1

JAN

\ 5904 1 t 5504 I h I APR

ab b:\'

JUL

ci ,,, , ,, 55 IO 5610

OCT

t

Figure 7. Blackened regions show occurrence of Euphausiacea (adjusted) at or above 16mg/l 000m3.Areasampled by cruise delineated by thin line. Day and twilight station values adjusted to estimated equivalent night catch values (cf. Isaacs, Fleminger and Miller, 1971: xiii-xvii). CHAETOGNATHA 1955 1956 1957 1958 1959

JAN

APR

4% OF 2801gm_ 7% OF 12713gm c- r---1-

JUL

OCT

Figure 8. Blackened regions show occurrence of Chaetognatha at or above 16mg/1000m3. Area sampled by cruise delineated by thin line.

xviii appear between late summer and winter oftendom- (Thomas, 1974; Owen, 1974; Smith, 1974). Finally inating relatively near shore between the Southern during the upwelling season 10 meter temperatures California Bight and Punta Baja (roughly lat. 30'"). at CalCOFI stations adjacent to these headlands are These periods of dominance tend to coincide with generally below the station's long-term mean (Anon., the relatively low biomass of copepods found south 1963). On the other hand initial concentrations of a of Point Conception in the October and January species might aggregate along the margins of upwell- cruises(Isaacs, Fleminger and Miller 1969, 1971). The ing cells at least partly as the result of the transport presence of Central Water species suggests intrusions effect on strongly vertical migrating species (Isaacs, of Central Water disrupting the longshore distributions Tont, and Wick, 1974). of temperate California Current species. South of Concern about the trophodynamic effects of these Punta Eugenia tropical Pacific species occur in abun- temporally and spatially localized nearshore regions dance except for localized nearshore concentrations of high zooplankton abundance points out several of temperate California Current species associated promising issues for future study. Cursory inspection with episodes of upwelling. of the known distribution of the larvae of plankto- The patchy, seasonal, nearshore occurrences of phagous fish, e.g., the northern anchovy, the Pacific crustacean biomass and large concentrations of tem- sardine, and the Pacific hake, Merluccius productus perate species between Southern California and (Ahlstrom, 1969) off Baja California suggests seasonal Magdelena Bay prompt questions about the compara- and spatial correlation with the areas of high zooplank- tive roles played by local production and transport. ton biomass. These relationships deserve detailed We do not know to what extent these patches re- analysis. For example, rigorous inspection of these flect local reproductive recruitment rather than south- features in conjunction with local meteorological ward transport or indeed how they relate locally to conditions could provide a gross quantitative basis for particular upwelling episodes. Notable, however, is the estimating year class success of spawning epipelagic general coincidence of a variety of biotic and abiotic fishes off Baja California. To enhance general ecologi- phenomena during the spring and summer off prom- cal understanding of the southern half of the Cali- inent headlands along the coast of Baja California fornia Current region, studies are also needed to deter- that suggest upwelling plays the dominant role. mine the dependence of seasonally high numbers of Examples of these headlands are Cab0 Colnett, Punta Central Water zooplankton upon mixing processes Baja, Punta Eugenia, Punta Abreojos and Cab0 de San that combine these usually sparse but highly diverse Lazaro. In addition to seasonal patches of high populations with waters enriched by the primary and zooplankton biomass adjacent to these localities ear- secondary production of the California Current. lier atlases indicate that in spring and summer they are local centers of abundance of euphausiid lar- vae (Brinton, 1973: cf. esp. pp 81-108, 142-169) Acknowledgements and of eggs and larvae of the northern anchovy, En- E. H. Ahlstrom, P. E. Smith and M. M. Mullin graulis mordax and the Pacific sardine, Sardinops read a draft version of this introduction. We thank caerulea, (Kramer and Ahlstrom 1968; Kramer 1970). them for their encouragement and helpful recom- Moreover, they have been found with relatively high mendations. Participation of A. Fleminger in this quantities of nutrients, phytoplankton pigments and study was partially supported by the National Science zooplankton volumes during the months of upwelling Foundation (GB 42521X).

REFERENCES

Ahlstrom, E. H., 1969. Distributional atlas of fish Anonymous, 1963. CalCOFI Atlas of 10 meter temp- larvae in the California Current region: jack mack- eratures and salinities 1949 through 1959. Cal- erel, Trachunis symmetricus and the Pacific hake, COFI Atlas No. 1 : iii-iv, 1-297. Merluccius productus, 1951 through 1966. Cal- COFI Atlas No. 11: v-x1, 1-187. Beers, J. R. and G.L. Stewart, 1967. Micro-zooplank- Alvarino, A., 1965. Distributional atlas of Chaeto- ton in the euphotic zone at five locations across the gnatha in the California Current region. CalCOFI California Current. J. Fish. Res. Bd. Canada 24 AtlasNo. 3: vii-xii, 1-291. (1 0): 2053-2068.

XIX

"I- ---"- ""I I-- - , 1970. Numerical Kramer, D., 1970. Distributional atlas of fish eggs and abundance and estimated biomass of microzoo- larvae in the California Current region: Pacific plankton. In: The ecology of the plankton off La Sardine,Surdznops cuentleu (Girard), 1951 through Jolla, California, in the period April through Sep- 1966. CalCOFI Atlas No. 12: v-vii, 1-277. tember, 1967. J. D. H. Strickland, ed. Bull. Scripps Inst. Oceanogr., 17: 67-87. Madin, L. P., 1974. Field observations on the feeding Berner, L., 1967. Distributional atlas of Thaliacea in behavior of salps (Tunicata, Thaliacea). Mar. Biol. the CaliforniaCurrent region. CalCOFI Atlas No. 8: 25: 143-147. vii-xi, 1-322. Malone, T. C., 1971a. The relative importance of Bowman, T. E. and M. W. Johnson, 1973. Distri- nannoplankton and netplankton as primary pro- butional atlas of calanoid copepods in the Cali- ducers in tropical oceanic and neritic phytoplank- fornia Current region, 1949 and 1950. CalCOFI ton communities. Limnol. Oceanogr. 16 (4): AtlasNo. 19: v-vii, 1-239. 633-639.

Brinton, E., 1967. Distributional atlas of Eupliasiacea , 1971b. The relative importance of (Crustacea) in the CaliforniaCurrent region, Part 1. nannoplankton and netplankton as primary pro- CalCOFI Atlas No. 5: v-xi, 1-275. ducers in the California Current system. Fish. Bull. 69 (4): 799-820. Brinton, E., 1973. Distribution Atlas of Euphausia- cea (Crustacea) in the California Current region, Nemoto, T., 1971/1972. History of research in the Part 11. CalCOFI Atlas No. 18: v-vii, 1-336. food and feeding of euphausiids. Proc. Roy. SOC. Edinburgh (B), 73 (26): 259-265. Fleminger, A,, 1964. Distributional atlas of calanoid copepods in the California Current region, Part I. Owen, R. W., Jr., 1974. Distribution of primary pro- CalCOFI Atlas No. 2: iii-xvi, 1-313. duction, plant pigments and Secchi depth in the California Current region, 1969. CalCOFI Atlas No. Frost, B. W., 1974. Feeding processes at lower trophic 20: xi-xiv. 98-1 17. levels in pelagic communities. In: The biology of the oceanic Pacific. C. B. Miller, ed. Oregon Smith, P. E., 1971. Distributional atlas of zooplankton State Univ. Press, 11, 59-77. volume in the California Current region, !95 1 through 1966. CalCOFI Atlas No. 13: v-xvi, 1-144. Isaacs, J. D., A. Fleminger and J. K. Miller, 1969. Distributional atlas of zooplankton biomass in the , 1974. Distribution of zooplankton vol- California Current region. Spring and Fall 1955- umes in the California Current region, 1969. 1959. CalCOFI Atlas No. 10: v-xxv, 1-239. CalCOFI Atlas No. 20: xv-xvii, 118-125.

Isaacs, J. D., S. A. Tont and G. L. Wick, 1974. Deep Thomas, W. H. and D. L. R. Seibert, 1974. Distri- Scattering Layers: vertical migration as a tactic for bution of nitrate, nitrite, phosphate and silicate in finding food. Deep-sea Res. 21 (8): 651-656. the California Current region, 1969. CalCOFI Atlas No. 20: vii-x, 2-97. Kramer, D., and E. H. Ahlstrom, 1968. Distributional atlas of fish larvae in the California Current region: Northern Anchovy, Engruulis mordux (Girard), 1951 through 1965. CalCOFI Atlas No. 9: v-xi, 1-269.

xx 1 130' 125" 120' I I5O 1100 I I I I I 1 I I I I I I I I I I I 1 ------_-___-_ - .I 50

CALCOFI 4c BASIC STATION PLAN SINCE 1950

35

30°

25"

20'

I 30" 125' 120' 115' 1100 CALCOFI BASIC STATION PLAN SINCE 1950 All Taxa combined I

Amphipoda I Chaetognatha I Cladocera I Copepoda I Crustacean larvae I

Ctenophora I Decapoda I Euphausiacea I Het e ropoda I Larvacea I Medusae I

Mysidacea I Ostracoda I Pteropoda I Radiolaria I Siphonophora I Thaliacea I 2 125O 1200 115' I100 I I r I I I I I I I I I I I I I ------______I All Taxa Combined I gm 1000m3 I I I N N CAPE -=1.3 -=1.5 MENDOCINO I D T 40" ' , 4 CALCOFI CRUISE 5507 I I - , 8 - 23 JULY 1955 -

-

-

350 -

-

-

-

3w -

LINES 63-67 70-77 80-87 90-97 100-107 110-117 120-127 130-137

20" t I I I I I I 1 I I I I I I I I I I I25O I200 115" I100

Biomass All Taxa Combined 5507 3 125" 120" 115" I IO" I I I I I I I I 1 I I 1 I I

__..____.____ , All Taxa Combined

gm/1000rn3

CAPE N N -=1.2 -=IO MENDOCINO 6 Q T 4( 10" CALCOFI CRUISE 5607

I 6 - 25 JULY 1956

STATIONS NIGHT 9 SUNRISE o DAY e SUNSET

3:

30 0"

MEAN WEIGHT (gm/ 1000 rn3 1 PER SAMPLE 25 5"

20' 3"

Biomass All Taxa Combined 5607 4 125O 120" 115" I IO" I I 1 I y:' I I I I I I I I I I 1

---.___.____All Taxa Combined

N N CAPE -= 1.8 -= 1.0 MENDOCINO T 6 D 4( CALCOFI CRUISE 5707

8 JULY - 3 AUGUST 1957

3:

30

25'

100-107 I 110-l19 120-127 =- 130- I37 111111'111111111111III_LL

20"

Biomass All Taxa Combined 5707 5 125' 1200 115' I100 I I I I I 1 I I I I I I 1 I I I -______All Taxa Combined 4 I gm/1000m3

N N -= 1.7 -= 1.2 MENDOCINO I D T . , CALCOFI CRUISE 5807 I 30 JUNE - 22 JULY 1958

STATIONS: 0 NIGHT o SUNRISE o DAY e SUNSET

30

MEAN WEIGHT (gm/1000m3 ) PER SAMPLE

40-47 25'

100-107 I 110-119 I 120-127 130-137 - IIIIII,(IIIIJI~I,I,(I,II

20"

I I I I 1 I I I 1 I

Biomass All Taxa Combined 5807 6 125' 1200 115' I100 I I I I 1 I I I 1 I 1 1 I I All Taxa Combined

grn/1000rn3

N -=N 1.7 -= 1.3 D T 44 CALCOFI CRUISE 5907 00

9 JULY - 3 AUGUST 1959

3!

3c 3"

25

100-107 I 110-1l9

120-127 I 130-137 IIIIIIIIIIIII 111111(1111

20

I I 1 I 1 I 1 I I

Biomass All Taxa Combined 5907 7 125' I200 115' I IO" I I I I I I I 1 I I I 1 I I {.; I 1 I I

N N -= 3.5 -= 2.7 D T 4 3 CALCOFI CRUISE 5507

I 4 8 - 23 JULY 1955

STATIONS: 0 NIGHT o SUNRISE 0 DAY 0 SUNSET

31

30

MEAN WEIGHT (gm/ 1000 m3 ) PER SAMPLE 2 5' LINES 63-67 70-77 80-87 90-97 100-107 110-117 120-127 130- I37

20'

I I 1 I I I I I I I I I I I I 125" I200 I I5O I100

Biomass 2 % 100 I Amphipoda 441 grams 26614 5507 8 125" 120" 115" I IO" I I I I 1 I I 1 1 1 1 1 1 I

-..___-..__.Amphipoda, adjusted I gm / IOOOm3

4c

I , 8 - 23 JULY 1955

STATIONS NIGHT o SUNRISE

FRANCISCO ' ~ 0 DAY 0 SUNSET

CONCEPTION 3:

30

MEAN WEIGHT (gm/ IO00 m3 I PER SAMPLE 25 LINES 63-67

70-77

80-87

90-97

100-107

110-117

120-127

130-137 UL-LLLLU

20'

Biomass Amphipoda, adjusted 5507 9 125" 120" 115" I100 I 1 I I 1 I I 1 1 1 I I 1 I

______...__.Amphipoda

gm / 1000 m3

N N CAPE -= 2.4 -= 1.2 MENDOCINO I D T 4c I CALCOFI CRUISE 5607

I 6 - 25 JULY 1956

3E

3c

MEAN WEIGHT (grn/ io00 rn3 ) PER SAMPLE 2 5' -

60-67

70-77 90-9780-87L"Eso8

100-107

110-119

120 -127

130-137

20' -

Biomass 0.7 70 100 B I Amphipoda 380 grams 51230 5607 10 125" 120" 115' I IO" I I I I I I I I 1 I I

I Amphipoda, adjusted

I 4 grn / 1000m3

I N N -=D 2.4 7' 1.2 4c CALCOFI CRUISE 5607 I I 6 - 25 JULY 1956

35

30

25'

100-107 110-119 1 120-127 130-137 -11111,11,111,,1111 [I( 20"

Biomass Amphipoda, adjusted 5607 11 125" 1200 115O I IO" I I I 1 I I I I 1 1 I I I I I Amphipoda

gin / 1000m3

N N CAPE -=2.0 -=I4 MENDOC I NO D T CALCOFI CRUISE 5707

35

30'

25'

100-107 110-119 - = 120-127 130-137 - 111111111111111,IIIII I/I

20'

Biomass 1.3 % 100 Amphipoda 201 grams 15031 5707 12 125" 120" 115" I IO" I I I I I 1 I 1 I <;I 1 1 I I I I

I Amphipoda, adjusted

grn / lOOOrn3

I N N CAPE -=20 -=1.4 MENDOCINO I D T 40 CALCOF CRUISE 5707 10"

JULY - 3 AUGUST 1957 f 8

SA N STA IONS NIGHT e SUNRISE FRANCISCO ' , 0 DAY e SUNSET

35 350

30 30"

2 5" 250

100-107

110-119 120-127 - 130-137 - 1111/11/11111/11111I/II(

20" 20"

Biomass Amphipoda, adjusted 5707 13 125' 120" 115" I IO" I I I

40

35

30

25'

200

1 I 1 I I I I I I 1 I I I I I 125O 120" 115' 1100

Biomass 0.8 % 100 I A m ph i poda 118 grams 14922 5807 14 125' 120" 115' I100 I I I I 1 I I I I 1 I I I I 5). I I

35

30'

25'

100-101 I 110-119 120-127 130-137 I 11111,,/1111,1~1111~1,11

20c

Biomass Amphi poda, adjusted 5807 15 125" 120" 115" I IO" I I 1 I I I 1 1 1 I 1 I I 1

--______.___ Amphipoda

gm I 1000m3

CAPE N N - = 3.2 -= 1.3 ME NDOCl NO D T 4 0" CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

3! 5"

3c 3"

25 5" LINES 60-67

70-77

80-87 90-97 100-107 110-119

120-127 130-137 LLLLLL LLliillL

20 10

Biomass I .7 % 100 A m ph i poda 21 I grams 12454 5907 125" 120" 115' I IO" I I I 1 I I 1 1 1 1 1 1 1 1

\,:__.._._..._._ Amphipoda, adjusted I gm/ 1000m3

N N -=32 -=1.3 D T CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

3 5'

30'

MEAN WEIGHT (gm/io00 m3 ) PER SAMPLE 25' 4 LINESoI I I, I I I; I I 1 7 r- 60-67

70-77

80-87

90-97 100-107 = 110-119 I

120-127 I 130-137 I Illll/lllllll/lllllII111

20'

I I I I I I I I I 1 1 1 1 1 1 125" 1200 115' 1100

Biomass Amphipoda, adjusted 5907 17

I

..? I g CAPE N N -=IO -=I I ...... :. MENDOCINO , D 4c 0" ): I CALCOFI CRUISE 5507

8 - 23 JULY 1955

35 5"

30' 3"

2 5' 50 1111 11,1 II 11'11 63-67 - 70-77 80-87 - 90-97 - 100-107 - 110-117 - 120-127 - 130-137 -'111/11111,11,~1111/,,11

20" Y

Biomass 4 Yo 100 .:n:.:.:. -__.____ -_____ .- 1 Chaetognat ha 1034 26614 5507 125" 120" 115" I IO" I I I I I I I I 1 I 1

I Chaetognatha

grn / 1000 rn3

I N N -=I.I -=08 MENDOCINO I D T 4(

I CALCOFI CRUISE 5607 , 6 - 25 JULY 1956 4

3:

30

MFAN WEIGHT I000 1 PER SAMPL€ 25 (gm/ m3 LINES 30 40 60-67 -- 70-77

80-87

90-97

100-107

110-119

120-127 130-137 LLLLLLLL-LULL

20':

I I I 1 I I I I I I 1 I I I 1 125O I200 115O I IO"

Biomass 3 % 100 I Chaetognatha 1414 grams 51230 5607 19 125" 120" 115" I100 I I I I I I I I I 1 1 1 1 I

___._._..____Chaetognat ha

gm / 1000 rn3

N N CAPE -=D 0.9 -=T 0.8 MENDOCINO I 4c CALCOF CRUISE 5707

I 8 JULY - 3 AUGUST 1957

IONS NIGHT o SUNRISE 0 DAY 0 SUNSET

35

3c

25 -T- 60-67 - 70-77 80-87 90-97 100-107 - 110-119 - 120-127 - II 130-137 -I I I I I I I I ,.I I I1 I I I I I I II I1 I 20

I I I I I I I I I 1 I 1 I I I

Biomass 8 % 100 ...... , ..:.. Chaetognat ha 1179 grams 15031 5707 20

5807

950

o SUNRISE e SUNSET

35

30

LINESGIIll 10 111120 30 40 IlI1lIIl 40-47 B 25' - 50-57 m 60-67 70-77 - 80-87 90-97 100-107 - I 110-119

120-127 130-137 - lllllll~llI I 11 11/,1,1/,

20'

Biomass 8 % 100__ .:.:.:.:.:.:.. :.:.:.::.:.:..:.:.:.:.:.:.. C haetognat ha 1209 grams 14922 5807 21

Chaetognatha

IO" CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

3: '50

3c 0"

25 5" L INEZ 60-67

70-77 80-87 90-97 100-107 110-119

120-127

130-137

20 3"

Biomass 9 % IO0 Chaetognat ha I IO4 grams 12454 5907 22 125' I200 115' I IO"

gm / 1000 m3

40° CALCOFI CRUISE 5507 8 - 23 JULY 1955

STATIONS: NIGHT o SUNRISE 0 DAY 0 SUNSET

CONCEPTION 35" 35O

300 30'

MEAN WEIGHT (gm/ 1000 m3 1 PER SAMPLE 25" 25'

120-127 -

200 200

125O 1209 115' I IO"

Biomass 0.01 70 100 I 1 C ladocera 3 grams 26614 5507 23 125' I200 I I5O I IO" I I 1 1 B 1 I I I I I I I I I 1 I I I I Cladocera

N N CAPE -=0.5D -=0.4T .... MENDOCINO 70' 40 \ CALCOFI CRUISE 5607

35 35O

30 30"

i) 25 2 5" LINES 60-67 70-77 80-87 90-97 100-107 110-119 120-127 130- I37 I IlllllllillIlllllll11111

20

I I 1 I I I I I I I I I I I I

Biomass 0.03 % 100 Cladocera 14 grams 51230 5607 24 125" 120" 115' I IO" I T I I 1 I I 1 1 I 1 I I I 1 --_ I C ladocera I I gm / I000 m3 I I N N CAPE -=I.I -= 1.8 MENDOCINO I D T I 10" I CALCOFI CRUISE 5707 I I I 8 JULY - 3 AUGUST 1957

0

0

0

35 350

30' 30"

MEAN WEIGHT (gm/ 1000 m3 1 PER SAMPLE 2 5' - ? 50

100-107 D 110-119 I 120-127 r 130-137 I 111111lIIIIIlIIIIII1~11~

20' !O"

Biomass 0.07 70 100 Cladocera IO 15031 5707 25 125" 120" 115" 110" 1 r I 1 I I I I I I 1 I I 1

--_ Cladocera

4c

35

30

2 5'

20'

I I I I 1 I I I 1 I I I I I I 125" 120" 115"' I100

Biomass 0.4 % 100 I C ladocera 65 grams 14922 5807 26 125O 1200 115' I100 I 1 1 1 1 1 1 1 I 1 I 1 I 1 I ----_-__-____ I Cladocera I I gm / 1000 m3 I I CAPE 4 AND 7 INDETERMINABLE MENDOCINO I D 40' 100 4 CALCOFI CRUISE 5907 I I 9 JULY - 3 AUGUST 1959

3 5' 350

3oc 30"

MEAN WEIGHT (gm/1000 1773 ) PER SAMPLE 25' 25"

60-67 70-77 80-87 90-97 100-107 110-119

120-127 130- I37

20"

Biomass 0.4 Yo 100 r 1 ~ C ladoce ra 51 grams 12454 5907

-" - I.- 21 125' I200 115O I IO" I r I I I I I I 1 I 1 I I I I Copepoda

grn/1000rn3

N N -=1.4 -=1.0 D T 40 CALCOFI CRUISE 5507

8 - 23 JULY 1955

STATIONS: 0 NIGHT o SUNRISE FRANCISCO ' , 0 DAY e SUNSET

CONCEPTION 35

30

MEAN WEIGHT (gm/1000 m3 ) PER SAMPLE 2 5' - LINES 63-67 70-77 80-87 90-97 100-107 110-117 1 120-127 130-137

20c

Biomass Copepoda 8954 grams 26614 5507 20 125" 120" 115' I100 I I 1 I I I 1 I 1 I 1 I 1 I Copepoda

gm / 1000 m3

N N - = 1.3 -= 1.3 D T 40' CALCOFI CRUISE 5607 6 - 25 JULY 1956

35

30'

2 5'

60 5 110-119

120-127 L 266 130-137 1 I

20'

Biomass 21 % IO0 Copepoda 10606 grams 51230 5607 29 125O I200 I I5O I IO" I I I I ,:: I I I I I 'I' 'I' 'I --_-__-______I Copepoda I I gm / 1000m3 3.. I I CAPE 4 N N ,:. - = 1.7 -= 1.5 ....*. MENDOCINO I D T 40' - y.. I - I CALCOFI CRUISE 5707 I 4 8 JULY AUGUST I - 3 1957

3 5'

300

25"

80-87

90-97 100-107 I 110-119

120-127 105 130- I37 I 20" - 11111111111l1111111IIIIIIIIII

Biomass 42 010 100 Copepoda 6380 grams 15031 5707 30 125O 120" 115O I100 I I I I I I I I I I I I 1 1 I <:, I 1

40'

35'

30

25'

20'

Biomass 35 % 100 Copepoda 5293 grams 14922 5807 31

Biomass Copepoda, adjusted 5807 32 125' 120" 115" 1100 I I 1 I {;I I I 1 I 1 1 1 1 1 1 1 1 1 Copepoda

grn / 1000rn3

N N '2.2 --'1.3 jj T 40 CALCOFI CRUISE 5907 00

9 JULY - 3 AUGUST 1959

35

30

25' LINES 60-.67 70-77 80-87 90-97

100 - IO7 110-119 120-127

I 30 - 137

20

I I I I 1 I I I 1 1 1 1 1 1 1 125' 1200 I IY 1100

Biomass 30 70 100 J Copepoda 3752 I2454 5907

-I I -w- .--.",.-"."p-". -I 33 125O 1200 115' I100 I 1 I I y I 1 I 1 I 1 I 1 I I 1 \;-_------I Copepoda, adjusted I

N N -I 2.2 -= 1.3 D T 40' CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

35'

30

25' LINES 60-67 70-77 80-87 93-97

100-107 . 110-119 120-127

130-137

20'

I I I I 1 I I 1 I I I I I I I 125' 120" 115" I IO"

Biomass Copepoda, adjusted 5907 34 125" 1200 115' I IO" I I I 1 1 I I 1 I I I I I I 1 ______Crustacean larvae I I gm/1000m3

I N N CAPE - 1.2 -= 0.6 MENDOCINO I D T 40 IO0 I CALCOFI CRUISE 5507 I I 8 - 23 JULY 1955

35

30

25'

100-107 110-117 - 120-127 130- I37 111111111111111,1~11~1,~

20" 10"

Biomass 0.I 70 100 1 Crustacean larvae 34 grams 26614 5507 35 125' I200 115O I100 I I I I I I I I I I I

I Crustacean larvae I I gm / 1000 m3 I I N N -=I3 -=IO MENDOCINO I D T 40' - I 40' r CALCOFI CRUISE 5607 I I 6 - 25 JULY 1956

3 5' 35"

3oe 30"

25" !50

100-107 I I IO- I19 120-1271 130-137r 111111111~~~~1~1111~111,

20" !OO

I I I I I I I I I I I I I

Biomass 0.I % IO0 I I Crustacean larvae 65 grams 51230 5607 36 125" I200 115" I100 I I I I I 1 I I I I 1 I I I I ______I Crustacean larvae I I grn / 1000 rn3 I

I N N CAPE - = 1.3 -= 1.4 MENDOCINO I D T 40 - I I CALCOFI CRUISE 5707

I I 8 JULY - 3 AUGUST 1957

35 -

30' -

25' - LINES 60-67 70-77 80-87 90-97 100-107 D 110-119 120-127 130-137 -1111111111111111111IIIll~, 20'

I I I 1 1 I I 1 I I I I I I 1

Biomass 0.4 70 I00 I Crustacean larvae 58 15031 5707 37 125O 1200 115O I100 I I I I I I I I I 1 I I I I ___------Crustacean larvae

, gm/ 1000m3 4 I CAPE N N --= 3.2 -2 1.1 0 MENDOCINO I D T -0 I I CALCOFI CRUISE 5807

I I 30 JUNE - 22 JULY 1958

SAN STATIONS: 0 NIGHT o SUNRISE FRANCISCO ' , o DAY o SUNSET

0.016OH -,. C~NCEPTION , 0062 35

..... SAN / DIEGO

3c

25' 50-57 60-67 70-77 m- 80-87 90-97 100-107 m 110-119 I 120-127 130-137 -I1 I IIlI,I 11I I 11 111111,1, 20"

Biomass 0.2 % 100 I Crustacean larvae 29 grams 14922 5807 38 125' 120" 115' IIO" I I I I I I I I I I 1 I 1 1

100

35' 35"

3w 30'

25' 25'

20" 20"

Biomass Crustacean larvae, adjusted 5807 39 125" 120" 115' 110" I I I I I 1 I 1 1 1 1 1 1 1 1 ______-_-___- I Crustacean larvae I 6 gm / 1000m3 I I N N CAPE - = 1.3 -= 0.8 MENDOCINO I D T 40 - 10" I CALCOFI CRUISE 5907 I {!,:' .. 9 JULY - 3 AUGUST 1959 0 0

35 - 350

30 - 30"

25 - 2 5" LINES 60-67

70-77 80-87 90-97 100-107 110-119 120-127 I30 - I37

20 20"

I I I I I I I 1 1 1 1 1 1 1 1 125' 120" 115" 1100

Biomass 0.2 % 100 I I Crustacean larvae 20 grams I2454 5907 40 125' 120" 115' I IO" I I I I I I I I I I I I I I ______Ctenophora I gm / 1000m3 I

I N N CAPE - 0.2 -= 0.3 MENDOCINO 4 D T 40 I 4 CALCOFI CRUISE 5507 I I I 8 - 23 JULY 1955

35

30

25' LINES 63-67 70-77 80-87 90-97 100-107 110-117 120-127 130-I37

20'

I I I I I 1 I I I I I I I I 1 I 125O 1200 115" I100

Biomass 2 % 100 I 1 Ctenophora 537 grams 26614 5507 41 125O I200 115O I100 I I I I I I I 1 I I I

,I C tenophora

I I gm/1000m3

I N -N = 1.0 - = 0.5 MENDOCINO I D T 40 10" I CALCOFI CRUISE 5607 I I 6 - 25 JULY 1956

35

30 30"

25 25" LINES 60-67 70-77 80-87 90-97 100-107 110-119 120-I27 130-137

20 20"

I I I I 1 I I I I I 1 I I 1 I 125O 1200 115O I100

Biomass 0.5 % 100 I I Ctenophora 273 51230 5607 42 I25O 1200 115" I100 I I I I I I I 1 I I I

I Ctenophora

I I gm / 1000m3

I N N - ~0.8 -= 0.3 MENDOCINO I D T 4c 0" I CALCOFI CRUISE 5707

I I 8 JULY - 3 AUGUST 1957

3:

3c 0"

25' - LINES 60-67

70-77 80-87 90-97

100- IO7 110-119

120-127 130-137

20'

Biomass 2.1 % 100 I C tenop hora 322 grams I503I 5707 43

35

30

25’

100-107 I 110-119 120-127 130-137 111111IIIIIIIIIIIIIl1111

20‘

Biomass 0.6 70 100 Ctenophora 95 grams 14922 5807 44 125" I200 115' I100 I I I I 1 I 1 I I I I 1 I I

______I Ctenop hora I

:<.. I N N (! CAPE -=I9 -=0.1 . ..:... MENDOCINO I D T 40 100 CALCOFI CRUISE 5907 - d,, 9 JULY - 3 AUGUST 1959 -R ' :..

35

30 30"

oo 5:>,:.... '>?..\.:' 25 \ 2 5O Q:<.;>, :ii & 60-67 ...... ::::.;,:.. ,<;:; \ .-.: "".:., ..:...... , 70-77 I okoo@..:..., ..:. 0 :@w ...... L.. .._ 80-87 :c: 2 i: ,.?V .. , . 90-97 - .'.' 100-107 -I I IO- I19 120-127 130-137 I1 I Ill I I Il1IlIIII I IIIIII

20 !O"

Biomass 1.1 % 100 R C te nop hora I34 grams 12454 5907 45 125" 120" 115" I IO" I I I I I I I I 1 I 1 I I I ::. ' I

N d - = 3.9 -=23 D r 4c CALCOFI CRU SE 5507

8 - 23 JULY 1955

SAN STATIONS 0 NIGHT o SUNRISE FRANCISCO ' . 0 DAY e SUNSET

0 MIN 0.001 0 062

0 25 35 I

4 MAX a7 16

30

25'

100-107 = 110-117 B 120-127 130-137 I IIIIIIIIIIIlIIIIIII11111

20'

Biomass 0.3 % 100 7I Decapoda 06 grams 26614 5507 46 125" 120" 115" I IO" I I I I I 1 1 1 1 1 1 1 1 1

Decapoda, adjusted gm /IOOOm3

- CAPE -=3gN N,23 MENDOCINO D T 40 CALCOFI CRUISE 5507 0"

8 - 23 JULY 1955

STATIONS- NIGHT o SUNRISE o DAY e SUNSET

CONCEPTION 35 5"

30 '00

MEAN WEIGHT (gm 1000m3 ) PER SAMPLE 25" - 15" LINES 63-67 70-77 80-87 90-97 100-107 110-117

120-127 130- I37

20"

I I I 1 I I I I I 1 1 1 1 1 1 125" 120" 115" I IO"

Biomass De capo d a, adj u ste d 5507 41 125" 1200 115' I IO" I I I I 1 I I I 1 1 I I I 1

Decapoda

gm / 1000 m3

N N -=4.4D -=28T 40 CALCOFI CRUISE 5607

6 - 25 JULY 1956

35

30

25'

100-107 - 110-119 - 120-127 D 130-137 IllIll IIIII IIIII 1~111I I I

20"

Biomass 0.2 % 100 I I I I Decapoda 118 grams 5 I230 5607 40 125' 120" 115' I IO" I 1 i I I I I I I I I I I 1 I 1

- ______-__--I Decapoda, adjusted gm / 1OOOrn3 -

I N N CAPE -=44 -=2.0 MENDOCINO I D T 40" 1- - , CALCOFI CRUISE 5607 I 6 - 25 JULY 1956 , -

LINES 60-67 70-77 80-87 90-97

100-107 110-119 120-127 130-137

20" 1 i200

Biomass Decapoda, adjusted 5607 49

I 1 I I I I I I I I 1 I I 1 I

______------I Decapoda I )I 4 gm / 1000m3 .... I .i' I N N CAPE - = 2.9 -= 2.1 ..._.;. MENDOCINO 4 D T '.+. I 40 CALCOFI CRUISE 5707 I I 8 JULY - 3 AUGUST 1957

35

3c

2:

2c

Biomass I % IO0 Decapoda I58 grams 15031 5707 50 125" 120" 115" I100 I I I I 1 I I I I I 1 I I I $), I Decapoda, adjusted

grn / 1000 rn3

N N -=2.9 -= 2.1 D T 4c CALCOFI CRUISE 5707

8 JULY - 3 AUGUST 1957

35

30

25 - LINES 60-67

70-77 80-87 90-97 100-107 B 110-119 120-127 130-137 IIIIIIII IIIIII1III IIIIII

20

Biomass Decapoda, adjusted 5707 51 125" 1200 115' I IO" I I I 1 I I I I I 1 I I I 1 I

3"

35 5"

30 0"

25

100-107 I . 110-119 I 120-127 . 130-137 -IIIlIIIIIIIIIIlIlII11111 2c

Biomass nc % 100 Decapoda 91 grams 14922 5807 52 125" 120" 115' I100 I I I I I I I 1 I I 1 I I I

______---___ Decapoda, adjusted I am/ 1000m3

N N - = 7.1 - = 4.0 D T 40" CALCOFI CRUISE 5807 10" I I 30 JUNE - 22 JULY 1958 I

B SAN STATIONS: 0 NIGHT o SUNRISE FRANCISCO ' , o DAY e SUNSET

0 MIN 0 0.062 POINl €g& / CONCEPTION 0.25 3 5' 35" I

SAN 4 / DIEGO

30" 30"

MEAN WEIGHT (gm/1000m3 1 PER SAMPLE

25" 25"

.:.> 90-97 D 100-107 110-119 - 120-127 - 130-137 - 111111111111111111111111

20" 200

Biomass Decapoda, adjusted 5807 53 125" 1200 115' I100 I I I 1 1 1 1 I I I 1 1 I I ______Decapod a

gm/ 1000 m3

N N CAPE - = 3.5 -= 2.7 MENDOCINO D T 40 CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

35

30

2 5' LINES 60-67 70-77 80-87 90-97 100-107 t 110-119 120-127 130-137

20'

Biomass 3 % IO0 I Decapoda 37 I grams 12454 5907 54 125" 120" 115" I IO" I I I 1 1 1 I I I I I I I 1

______- I Decapoda, adjusted I I gm/1OOOm3 I I N N CAPE - = 3.5 - = 2.7 MENDOCINO I D T $00 CALCOFI CRUISE 5907 I I 9 JULY - 3 AUGUST 1959

STATIONS NIGHT o SUNRISE o DAY 0 SUNSET

35 35"

30 30"

MEAN WEIGHT (gm/1000 rn3 1 PER SAMPLE 25 250 LINES 60-67 70-77 80-87 90-97 100-107 110-119 120-127 130-137

20 - 20"

I I I 1 I 1 1 I I I I I I I I I 125O 1200 I I5O I IO"

Biomass Decapoda, adjusted 5907 55 125' I200 115" I IO" I I I I 7;' I I I 1 1 I I I 1 I I I Euphausiacea

N N --:7.3 -=4.6 D T CALCOFI CRUISE 5507

8 - 23 JULY 1955

35

3c

25

100-IO? 110-117 - . I 120-127 I

. 130-137 L 111111111111111111111111

2c

I I I I 1 I I I 1 I I I I I I

Biomass 5 Yo IO0 m 1 Euphausiacea I306 grams 26614 5507

I , . 56 125O 1200 115O I IO" I I I 1 1 I I 1 1 I I I I I

---_-_------I Euphausiacea, adjusted I I I grn/lOOOm3

\-%EDomo e:.,$'?..

40 +OO I CALCOFI CRUISE 5507 I I 8 - 23 JULY 1955

35 35O

30 30°

2 5' 25"

100-107 110-117 = 120-127 130- I37

20' !O"

Biomass Eup hau si acea, adjusted 5507

.- 57 135" 1300 I I5O 1100

I I ----- Euphausiacea \ grn / 1000m3 N N CAPE - =4.9 -=1.2 .....:. MENDOCINO D T - ?:. 40 CALCOFI CRUISE 5607 6 - 25 JULY 1956

'?., ..:..

35

3c

25

80-87 y - .. .,.:::, . 90-97 100-107 - . 110-119 I 120-127 I

2c

Biomass 2 Yo 100 Euphaus iacea 1231 grams 51230 5607 58 125" I200 115O I100 I I I I I I I I I I I

_____------Euphausiacea, adjusted I

I I -=49N -=1.2N MENDOCINO I D T 40' CALCOFI CRUISE 5607 I I 6 - 25 JULY 1956 I

35'

30

25 'c ...... ,.:; 90-97 100-107 - 110-119 =- 120-127 130-137 -I IIIIII I I IllIIIII I I IIIIII

20

I I 1 I I I I I 1 I I 1 I I I

Biomass Eup hausiacea, adjusted 5607 59 125" I200 115O I IO" I I I I I I I I I I I I I 1

I Euphausiacea I I gm / 1000m3 I I N N - = 5.0 -= 2.8 I D T 4c I CALCOFI CRUISE 5707 I I

I 8 JULY - 3 AUGUST 1957

3:

3c

25

60-67 70-77 80-87 90-97 -I 100-107 110-119 I 120-127 I 130-137 I IllIlII1II1II 111I I Ill I1I

20

Biomass 5.5 % 100 m I Eu p ha u si a cea 823 grams I503 I 5707 60 125" 120" 115' i100 I I I 1 I I 1 1 1 1 1 1 1 i Euphausiacea, adjusted

gm / 1000 m3

N N -= 5.0 -= 2.8 D T 40' CALCOFI CRUISE 5707

8 JULY - 3 AUGUST 1957

35 -

30 -

25 - LINES 60- 67

70-77 80-87 90-97 100-107 110-119 120-127 130- 137

20

I I I I 1 I I 1 1 1 1 1 1 1 1 125O 1200 115" I IO"

Biomass Euphausiacea, adjusted 5707 61 125' 120" 115" I IO" I I I I 1 1 I I I I 1 1 I I 1 I

3"

35 5"

30 0"

25 5"

100-107 I - 110-119 I 120-127 I . 130-137 -l,llllll,lllllllll~ 2c 10"

Biomass II % 100 1 Eupha us iacea 1651 grams 14922 5807 62 125" 120" 115' I100 I I I 1 1 1 I I I I I I 1 I

C. I. .. tuphausiacea, adjusted

& 2382 t @ 4 N N CAPE - = 16.8 -= 5.3 !------MENDOCINO I D T 0" CALCOFI CRUISE 5807 I I 30 JUNE - 22 JULY 1958 I

SAN STATIONS. 0 NIGHT 0 SUNRISE FRANCISCO ' , o DAY e SUNSET

0 MIN 0.02 0.25 POINT I 35 5"

64 -_ 256 1024 MAX 2382

3c

2: ' 50 'z

100-107 110-119 - . 120-127 -

. 130-137 I IIIIIII lllliiJllll~lL,l~11(1

2c

Biomass Euphausiacea, adjusted 5807 63

I 1 1 I I 1 1 I 1 Euphausiacea

gm / 1000m3

I N N CAPE -=IO4D -=2.8T ... MENDDCINO I \.:. 40' CALCOFI CRUISE 5907 I

9 JULY - 3 AUGUST 1959

3 5'

30' io"

2 5' !5" LINES 60- 67

70-77 80-87 90-97

130-137

20'

1 I L I 1 I I I I 1 I I I 1 I 1 125" 1200 I I5O I IO"

Biomass 14 % 100 1 Eu p ha usiacea 1741 grams 12454 5907 64

Euphausiacea, adjusted

I N (,CAPE -=10.4 = 2.8 MENDOCINO 6 D x:. 4c y., I CALCOFI CRUISE 5907 I I 9 JULY - 3 AUGUST 1959

3c

MEAN WEIGHT (gml1000 m3 1 PER SAMPLE 25

100-107 110-119 - 120-127 -

20

Biomass Euphausiacea, adjusted 5907 65

I I 1 I I I I I 1 1 I I 1 I Heteropoda

gm / 1000 rn3

.? N N CAPE --.07 --.I3 (... MENDOCINO D T .?, 40 .O" CALCOFI CRUISE 5507 , I 8 - 23 JULY 1955

35 15"

30 IO"

MEAN WEIGHT (grnl1000 rn3 1 PER SAMPLE 2 5' -~ ' 5"

63-67

100-107 110-117 - m 120-127

I I 37 - 30- 11111ll11111111111,11 Ill

20' '00

Biomass 0 06 % too Heteropoda 16 grams 26614 5507 66

I I I I I I I I 1 1 I I I I Hete ropoda

gm / 1000m3

f;, CAPE I N -= 1.4 -= 0.7 , ..:... MENDOCINO I D T ..:., CALCOFI CRUISE 5607 I JULY {,'.i.. 6 - 25 1956 ..:..

35

30

25

100-107 r 110-119 - 120-127

130-137 IIIIIII IIIIIIIlIIlll111

20

I I 1 I 1 I 1 1 I I I I I I I

Biomass 0.I % 100 I 1 Heteropoda grams 51230 45 5607 67 125' 120" 115' I100 I I I I 5;. ' I 1 I I I I I I I I I Heteropoda

gm / 1000rn3

N N CAPE -TO? -10.7 MENDOCINO D T CALCOFI CRUISE 5707

8 JULY - 3 AUGUST 1957

STATIONS NIGHT e SUNRISE 0 DAY e SUNSET

35

30

MEAN WEIGHT (gm/ 1000 m3 I PER SAMPLE 25' - LINES 60-67 70-77 80-87 90-97 100-107 - 110-119 120-127

. 130-137 111111111111111111 IIIIII

20

Biomass 03 % 100 Heteropoda 42 grams 15031 5707 68 125" I 20° 115' I100 I I 1 I I I I I I I I I I 1 I i;: I 1

35

30

25

100-107 110-119 -I 120-127 - 130-137 IIIIII1I 111111111,1111I(

20

Biomass 0.1 I % 100 I Heteropoda 17 grams 14922 5807 69 125' 120" 115" I100 I I I I I I I I I I 1 1 I 1 1 I

35

30

25'

100-107 I

' 110-119 I 120-127 130-137 I 111'1l1111111111111111111

20'

Biomass Heteropoda, adjusted 5807 125O I200 115" I100 I 1 I I ::;;, 1 I 1 I 1 I I I 1 1 I I I Hetero poda

gm / 1000m3

N N -=l,l -= 1.4 D T CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

35

30

MEAN WEIGHT (gm/ 1000 m3 1 PER SAMPLE 25 LINESoI I I 01I I I I 0.2I 1 1 I 03I I I I 04I I I I(

60-67 70-77 80-87 90-97 100-107 110-119 - 120-127 -I 130-137 1111111111111111111IIIII

20

I I I I 1 I 1 I I I I I I I I 1 125" 120" I I5O I IO"

Biomass 0.5 Oh 100 Heteropoda 60 grams 12454 5907

-_ ._."I""-- I_ I" 71 125' I200 115" I100 I 1 I I I 1 1 1 I I 1 I I I I __ I Larvacea ,I , gm/1000m3

35

3c

25'

100-107

110-117 1 120-127 0 72 130-137 I IIIIiIIIIIIIIIIIIII1111111111

I I I I I I I I I I 1 I I I I

Biomass 0.4 % 100 I I Lar vacea grams 26614 96 5507 12 125" I200 115' I100 I I I I 5:. ' I I I I I I I I 1 I I I ______Lar vacea I gm/ 1000m3 I

I N N CAPE -= 0.7 -= 0.8 MENDOCINO I D T 40' 1 IO" I CALCOFI CRUISE 5607 I 6 - 25 JULY 1956 I

35 15"

30' IO" I

2 5' !5"

100-107 110-119 - 120-127 - 130-137 - IIIIIIIIIIIIIII 111~111111,1,111-

20' !OO

I 1 I I 1 I I I I 1 I I I 1 I

Biomass 0.5 70 IO0 Lar vacea 240 grams 51230 5607 73 125" 120" 115" I IO" I I I I 1 1 1 I I I 1

I Larvacea I 4 gm/1000m3

I N -N=15 -=1.2 MENDOCINO I D T 40 - .O" I CALCOFI CRUISE 5707

I JULY 3 AUGUST 1957 I 8 -

35

30

25 15"

100-107 L 110-119

I20- I27 1.61 130-137 I IIIIIIIIIIIIIIIIIIIIIIII

20 100

Biomass 0.0 % 100 La r va cea I26 grams 15031 5707 14 125" 120" 115" I IO"

______-.--- I Larvacea I grn / 1000m3

N N -= 1.0 -= 1.0 D T CALCOFI CRUISE 5807 I I 30 JUNE - 22 JULY 1958

STATIONS- 0 NIGHT 0 SUNRISE o DAY e SUNSET

CONCEPTION 3:

3c I

2:

100-107

110-119 120-127 0.54 130-137 I111111111111111I11111Ill

2c

125' I200 115" I IO"

Biomass 0.4 % 100 Larvacea 59 grams 14922 5807 15 125" 1200 115' I IO" I I 1 I 1 1 I I I I I I I 1 1 Larvacea

gm / 1000 m3

0"

I 9 JULY - 3 AUGUST 1959

3 5' 5"

30' 00 I

2 5' 5"

100-107 . 110-119 120-127 r 0.76 I30 - I37 I 11l11111111l1111/1111111_

20' 0"

Biomass 0.8 % 100 r I La r vacea 103 grams 12454 5907 16 125" 120" 115" I IO" I I 1 I I 1 1 I I I 1

, Medusae

grn / 1000 m3 I I --.OBN --:OBN D T 40' I I I CALCOFI CRUISE 5507

I I 8 - 23 JULY 1955

35

30

25' - LINES 63-67 70-77 80-87 90-97 100-107 110-117 120-127 130-137

20'

1 I 1 1 1 I I I I I I I I I I 125" 1200 115" I100

Biomass 6 % 100 I Medusae 1568 grams 26614 5507 77 125" I200 115" I IO" I I I I I I I I 1 I I I I 1 Medusae

gm / 1000 m3

4

6 - 25 JULY 1956

3t

3c

25

100-107

110-119 120-127 130-137 lllll,(~~J~III~llll~I1111 I I_

20c

I I I I 1 I I

Biomass 2 70 100 fil Medusae 936 grams 51230 5607 70 125' I200 115" I100 I I 1 I I I I I I I I I I I I --______I Medusae I ,1 gm / iOOOm3 I N N CAPE -= 1.6 -= 1.0 MENDOCINO I D T 4c - I CALCOFI CRUISE 5707 I 4 8 JULY - 3 AUGUST 1957

30

25

100-107 I 110-119 120-127 130-137 r IIIIIIIlIIIIIIIIIII~1~1~

20 0"

Biomass 3.4 % 100 I Medusae 514 grams 1503 I 5707 79 I25O 1200 115” I100 I I I I I I I I I I I I I I $.: I I

40°

35 35”

30 30”

25 ? 5”

100-107

110-119 120-127 -I 130-137 IIIIIIII!II!,IJIIII~lll/

20‘ !O”

Biomass 3 % 100 I Medusae 501 grams 14922 5807 80 I25O 1200 115' 1100 I I I 1 1 1 1 1 1 1 1 1 1 1 --______Medusae

grn / 1000 m3

CAPE N N MENDOCINO -D 1.4 -=T 1.0 4c CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

3:

30

23 LINES 60-67

70-77 80-87 90-97 100-107 110-119 120-127 130-137

20'

Biomass 4.2 % 100 Medusae 530 grams 12454 5907 81 125" I200 115" I IO" I 1 I I 1 I 1 1 1 1 1 1 1 1

I Mysidacea , , grn / 1000rn3 I NN CAPE - AND 7 INDETERMINABLE MENOOCINO I D 40' 0" CALCOFI CRUISE 5507

8 - 23 JULY 1955

35 0

0

30

2 5'

I, 1 I I I I, I I I I I 63-67 70-77 - 80- 87 90-97 100-107 110-117 120-127 I 130-137 -IIIIIIIlIIIlIIIIIII11111 20'

I I 1 1 1 I I 1 1 1 1 1 1 1 1

Biomass 0.006 % IO0 Mysidacea 2 grams 26614 5507 a2 125' I200 115O I100 I I 1 I I 1 1 1 1 I I 1

4I Mysidacea

gm / 1000m3 8 I

MENDOCINO I D AND INDETERMINABLE 40 I I CALCOFI CRUISE 5607 I I 6 - 25 JULY 1956

35

30

25

100-107 110-119 120-127

130-137 L IIIIIIII IIIIIIIIJ1111111

20

I I I I I I I I I 1 I I I 1 I

Biomass 0.007 % 100 Mysidacea 3 grams 51230 5607 83 125' 120" 115' I IO" I I I I I I I I 1 I I I I 1 I $ I I:-- - Mysidacea gm / 1000m3

I NN CAPE - AND 7 INDETERMINABLE MENDOCINO I D 4c I I CALCOFI CRUISE 5707 I I I 0 JULY - 3 AUGUST 1957 &,, .... SAN STATIONS: NIGHT o SUNRISE FRANCISCO ' , 0 DAY e SUNSET

N e .( 0 e

3:

30

I 25

100-107 110-119 120-127 130- 137

20

Biomass 01 % 100 Mysidacea 18 grams 15031 5707

- --my- -- ..- - 84 125" I200 115" IIO" I I I I I 1 I 1 1 I 1 I

8I Mysidacea

0 I e gm / 1000m3 I I ANDNINDETERMINABLE MENDOCINO I DT 4c '0 I 0" 0 I CALCOFI CRUISE 5807

35 '5"

30

25

100-107

110-119 120-127 130-137

20

I I I I I I I I I I I 1 I I I I 125O 120" I I5O 1100

Biomass 0.0 I 70 100 f 1 Mysidacea I.5 grams 14922 5807 I Mysidacea

,f grn / 1000rn3

I CAPE AND INDETERMINABLE MENDOCINO , D 40' - I t CALCOFI CRUISE 5907 I 9 JULY - 3 AUGUST 1959

0 0

3 5' -

300 -

MEAN WEIGHT (gm/ 1000 m3 ) PER SAMPLE 25' - 0.I 02 0.3 04 LINES 1111~1111~1111~1111~1111 60-67 70-77 80-87 90-97 100-107 110-119 120-127 130-137 IIIIIIIIIIIIIIIIIIIIIIll

20" -

I I I I I I I 1 1 1 1 1 1 1 1

Biomass 0.003 % 100 Mysidacea 0.4 grams 12454 5907 86

I I I 1 I I I I I 1 I I I

___ I Ostracoda

+.v I N N CAPE - ~2.9 -= 1.3 MENDOCINO I D "\<:. T 40 - y., I I I CALCOFI CRUISE 5507

8 - 23 JULY 1955

STATIONS 0 NIGHT e SUNRISE FRANCISCO ' , o DAY e SUNSET

CONCEPTION 35 -

30 -

MEAN WEIGHT (gm/ 1000 m3 I PER SAMPLE 25

120-127 130-137 IIIIIIIIIILLllLLLu.1-

20

I I 1 I I 1 I I I I 1 I I I 1 I 125" I200 I I5O I100

Biomass 0.3 010 100 I 1 I I Ostracoda 82 grams 26614 5507 87 125' 120° 115' I IO" I 1 1 I I I I I 1 I I I I I

______-- Ostracoda, adjusted I

N N -=29 --'I3 D T CALCOFI CRUISE 5507

8 - 23 JULY 1955

STATIONS: 0 NIGHT o SUNRISE FRANCISCO , o DAY e SUNSET

CONCEPTION 35 -

30 -

MEAN WEIGHT (gm/ 1000rn3 PER SAMPLE 25 - LINES 63-67 70-77 80-87 90-97 100-107 110-117 120-127 'I:I 0 64 130- I37 1-I IIIIIIIIII Ill1 20

Biomass Ost racoda, adjusted 5507 88 125O I200 115' I100 I I I I I I I 1 1 I I I I I I Ostracoda

gm/ 1000m3

N N -= 1.2 ~'4I T 40 CALCOFI CRUISE 5607

6 - 25 JULY 1956

35 55"

3c 50"

25 15"

110-119 I

120-127 I .02 130-I37 I I I I I I I I I I I I I I I I I I t.LLLLVI I I I I

2c

I I 1 I 1 I I I I I I I I I I

Biomass 0.2 % 100 Ost racoda 101 grams 51230 5607 89 125" 1200 115' I IO" I I I I 1 I I 1 I 1 I I I I I

I Ostracoda, adjusted

I N N - 4.1 -=I 2 MENDOCINO I D T 40 - CALCOFI CRUISE 5607 I 6 - 25 JULY 1956 1

35 -

30 -

25 - LINES 60-67 70-77 80-87 90-97 100-107 110-119

120-127 130- I37

20 - 4 20"

Biomass Ostracoda, adjusted 5607 90

Ostracods

3m / 1000 m3

....' 1 N N (, CAPE -=44 -=20 MENDOCINO I <:. D T 40' '4 ( 1 CALCOFI CRUISE 5707 8 JULY - 3 AUGUST 1957 .:;. ..:'. ..:..

35

30

MEAN WEIGHT (gm/ 1000 m3 ) PER SAMPLE 25 - LINES', 1 01 02 03 0.4 I I,,I I I, I I,, I I I( 60-67 70-77 80-87 90-97 100-107 110-119 120-127 130-137 1111111111111111111IIIII

20

Biomass 0.5 YO 100 Ostracoda 73 grams 15031 5707 91 125" I200 115' I IO" I I I I I I I I I I I

I Ostracoda, adjusted

gm / 1000rn3

I N N - = 4.4 -= 2.0 MENOOCINO I D T 40 CALCOFI CRUISE 5707 I , 8 JULY - 3 AUGUST 1957 I

35

3c IO"

2 5' - LINES 60-67 70-77 80-87 90-97 100-107 - 110-119 I20 - I27 . 130-137

20

Biomass Ostracoda, adjusted 5707 92

3"

35 5"

30 0"

25 ' 50

100-107 , . 110-119 120-127 r 130-137 IIIIIIIllllllllll/l/11/1

2c

Biomass 0.4 % IO0 Ostracoda 61 grams 14922 5807 93 125' 120" 115O I IO"

______- Ostracoda, adjusted I I gm / lOOOm3 , N N -=7.3 -=3.1 D T CALCOFI CRUISE 5807 I , 30 JUNE - 22 JULY 1958

STATIONS. 0 NIGHT 0 SUNRISE FRANCISCO ' , o DAY e SUNSET

CONCEPTION 3 5'

30

MEAN WEIGHT (gm / 1000m3 PER SAMPLE

25'

20'

Biomass 0 s t racod a, adjusted 5807 94 125" 120" 115' 1100 I 1 I I 1 1 1 1 1 1 1 1 1 I <:. I Ostracoda

N CAPE i.4.6 -=2.6T MENDOCINO 00 40' CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

35 59

30 0"

25 50 LINES 60-67 70-77

80-87 90-97 100-107 110-119

120- I27 130-137

20 0"

I I I I I I I 1 1 1 1 1 1 1 1 125" 1200 1150 I IO"

Biomass 0.4 % 100 I I Ostracoda 55 grams 12454 5907 95 125" 120" 115" I IO" I I I I 1 I 1 I I I I 1 I I

______.-.--Ostracoda, adjusted I gm / lOOOm3 I N N CAPE - = 4.6 -= 2.6 MENDOCINO I D T 40' CALCOF CRUISE 5907

9 JULY - 3 AUGUST 1959

IONS NIGHT o SUNRISE 0 DAY e SUNSET

CONCEPTION 35

..-.

30

MEAN WEIGHT (gm/1000 m3 ) PER SAMPLE 25

20

Biomass Ost racoda, adjusted 5907 96

100-107 - 110-117 120-127 - 130-137

Biomass 0.I % 100 I Pteropoda 29 grams 26614 5507 97 125O 1200 115" I IO" 1 1 I 1 I 'I' 'I' *I ___----____-- Pteropoda I gm / 1000m3 I N N CAPE -=22 -=1.6 MENDOCINO t D T 40' - 0" I CALCOFI CRUISE 5607 I 6 - 25 JULY 1956

35 5"

30' 0"

MEAN WEIGHT (gm/IOOO m3 ) PER SAMPLE 2 5' - 5"

60-67

70-77 90-9780-87LINEsol 100-107 . 110-119

120-127

130-137

20' 00

I I 1 I I I I I I 1 I 1 I 1 I 125O 1200 115O I100

Biomass 0.2 % 100 Pteropoda 117 grams 51230 5607 98 125' 120" 115' I100 I I I I I I I I 1 1 I I I I I

__-----___- I Pteropoda, adjusted I gm 1000m3 I

I N N CAPE -z22 -=I6 MENDOCINO I D T 40' CALCOFI CRUISE 5607

6 - 25 JULY 1956

3 5'

30'

25

100-107 = 110-I19

120 - I27 - 130-137 1111~I111~1111~JIII~IIII

20

I I 1 I 1 I I I I I I I I 1 I

Biomass Pteropoda, adjusted 5607 99 125" 120" 115" I100 I I I 1 I I I I 1 I I I 1 I Pteropoda

gm / 1000m3

N N --.I8 --.IO D T 00 CALCOFI CRUISE 5707

8 JULY - 3 AUGUST 1957

35 5"

3c '00

25 ! 5"

100-107 I 110-119 120-127 130-137 -1111111111111111111IIIII 2c 100

Biomass 0.6 % 100 I Pte ropoda 97 grams 15031 5707 100 125" 120" 115" I100 I 1 1 I I I I I 1 1 I 1 I 1 I

40

35

3c

25

2c

Biomass 0.4 % 100 Pteropoda grams 14922 50 5807 101 125" 120" 115" I IO" I I I I ' I I I 1 1 1 I I 1 I 1

35

3c

25

100-107 . 110-119 - 120-127 I

. 130-137 I111111111111111llllllll

2c

Biomass Pteropoda, adjusted 5807 102 125' 120" 115" I100 I I I 1 I I I I 1 I 1 I I I

______.--- P teropoda

gm / 1000m3

N N CAPE -=1.2 -=I.I MENDOCINO D T 40' CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

35

30 0"

MEAN WEIGHT (gm/ 1000m3 ) PER SAMPLE 25

100-107 . 110-119 - 120-127 V

2c 10"

Biomass 2 % 100 I I Pteropoda 246 grams 12454 5907 103 125' 120" 115' I IO" 1 I I I 1 I I I I 1 1 I 1 I Radiolaria

gm / 1000m3

N -_ - 1.4 -= 1.7 T 40" 100 CALCOFI CRUISE 5507

8 - 23 JULY 1955

3 5c 350

300 30'

25' 2 5"

100-107 110-117 I 120-127 I 130-137 IllIll1 IIIII I IllIIIIII 1 I

20' 200

Biomass 0.6 % 100 Radiolaria I73 grams 26614 5507 104 125O 120" 115O I100 I 1 I I I I 1 I p' 1 I 1 1 I I I Radio Ia r i a I I gm / 1000m3

I N N CAPE -=D 1.2 -=T 0.8 MENDOCINO 4 100 40 CALCOFI CRUISE 5607 I 6 - 25 JULY 1956

35

3c 30"

MEAN WEIGHT (gm/ 1000 m3 ) PER SAMPLE 2: - 2 5"

100-107 110-119 I 120-127 130- I37 IllIIIIIIIIIIIIIIIIII IIIIIIII

2c

I I I I I I 1 1 I I I I I I I

Biomass 0.9 % 100 Radiolaria 455 grams 51230 5607 105 125O 120" 115' I100 I I I I 1 1 1 1 I 1 I Radiolar ia I , gm / 1000m3

I -106N --.OBN MENDOCINO t D T 10" 40 CALCOFI CRUISE 5707 I I JULY 3 AUGUST 1957 I 8 -

35 15"

3c 30'

25" 25"

100-107 110-119 - 1 120-127 I 130- I37 1111111111111111111IIIII

20' 20"

Biomass

2.5~~ % 100 I Radiolaria 376 grams 15031 5707 106 125" 1200 1150 I IO" I I I I 5:. 1 I I 1 1 1 1 1 1 1 1

40

35 55"

30 30'

0 n 0-

2e 2 5"

I. .. 90-97 100-107 I- 110-119 I 120-127 130-137 1/111///IIIII/IIIIIIIIII

2c

Biomass 1.6 % 100 Radiolaria 243 grams 14922 5807

*.,-- --e-- Is - -- 107 125' I200 115' I IO" I I I I I 1 1 I I I I I I I I

40' 5807

958

o SUNRISE e SUNSET

35

30

25

100-107 11O-Il9 I 120-127 130- I37 I IIIIIII111111l1111111 I1

20

Biomass Radiolaria, adjusted 5807 108 125" I200 115' 1100 I I 1 I 1 I 1 I I I 1 1 1 1 I i;;, I Radio Iar ia

gm / 1000 m3

D AND INDETERMINABLE $00 40' CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

3 5' 350

30 30"

MEAN WEIGHT (gm/1000 m3 1 PER SAMPLE 2 5" 2 5" LINESol l 1 I I, 131I 1,41 I 60-67

70-77 80-87 90-97 - 100-107 110-119 120-127 130-137 I I IIIII IIIIII 1111I,I I 111

2OC 20"

I I I 1 1 I I I I I I 1 1 1 1

Biomass I .o % 100 Radiola ria 128 grams 12454 5907 109 125' I200 115" I IO" I I 1 I I I I I I I 1 I 1 I

______I Siphonophora , I gm / 1000m3 I

! N N CAPE --.I2 --.IO MENDOCINO I D T 40 I CALCOFI CRUISE 5507 I 8- 23 JULY 1955

35

30

25'

100-107 110-117 T 120-127 130-137 -I I IIIIIIIIII IIIIII IIIIIIIII I I I

20'

Biomass 12 0% 100 Si phonophora 3104 grams 26614 5507 110 125" 120" 115" I IO" I I I I I I 1 I 1 I I I 1 I Siphonophora

gm / 1000m3

N N -1D 1.4 -=T 1.4

40 8 4 CALCOFI CRUISE 5607 I 6 - 25 JULY 1956 I

35

30

2 5' - LINES 60-67

70-77

80-87 90-97

100-107 110-119

120-127

130-137

20'

I 1 I I I I I 1 I I I I I I I 125" 1200 115" 110"

Biomass 3 % IO0 Siphonophora 1585 grams 51230 5607 111 125" 1200 115' I IO" I I I 1 1 1 I I I 1 I 1 I 1

_.___-.___--Si phonop hora I I gm / 1000m3

I CAPE -=N 1.3 -=N 1.2 MENDOCINO I D T 40' CALCOFI CRUISE 5707 I ( 8 JULY - 3 AUGUST 1957 'I.. ..:..

STATIONS. 0 NIGHT o SUNRISE 0 DAY e SUNSET

CONCEPTION 35 -

..-.

30 -

MEAN WEIGHT (gm/ 1000 m3 ) PER SAMPLE 25 - LINES 60-67

70-77 80-87 90-97 - D 100-107 110-119

120-127

130- I37

2c

Biomass IO % 100 Siphonop hora 1551 grams 15031 5707 112 125" 1200 115" I I00 I I I 1 1 I I I 1 I 1 I I l I {;, I

I N CAPE N,[2 - = 1.4 MENDOCINO I D T 4oc

30 JUNE - 22 JULY 1958

3 5' i5'

30 IO"

2 5' ? 5"

80-87 90-97

100-107

110-119

120-127

130-137 !lllllJ I_L_L_I_u1I1iI1Il1II1I

20'

Biomass Siphonophora I I74 grams 14922 5807 113

I 1 1 1 I I 1 1 1 1 1 1 1 1

__- Siphonophora , gm / 1000m3

40 3"

k.. 9 JULY - 3 AUGUST 1959

35 5"

30 0"

25 50 LINES 60-67 70-77 80-87 90-97

100-107 110-119

120-127 130-137

2c

1 I I I I I I 1 1 1 1 1 1 1 1 125' 1200 115'

Biomass 16 % 100 Siphonophora 1953 grams 12454 5907

II II -1 - ^_. 114

Thaliacea

,I gm/1000m3 N N -= 1.3 -= 1.9 D T 40 CALCOFI CRUISE 5507

I 8 - 23 JULY 1955 4 e. SAN STATIONS 0 NIGHT o SUNRISE -&SFFRANCISCO ' , o DAY e SUNSET

0 MIN 0 I POINT CONCEPTION 4 35 - 16

64

256

I024

3c -

MEAN 2: - LINES 63-67'OiLLZ

50 5 100-107 110-117 120-127 130-137 1IIIlIII 1111111111111111.

2(

I I I I I I I I I I 1 I I L I IO" I Biomass 34 % 100 rm.J T ha I iacea 9151 grams 26614 5507 115 125" 120" 115" I IO" I I I I I 1 1 I I 1 1 I 1 I

_-- I Thaliacea

gm/1OOOm3

N I -=I I f' 1.0 D 40' CALCOFI CRU SE 5607 6 - 25 JUL) 1956

STA~IONS' 0 NIGHT o SUNRISE 0 DAY e SUNSET

0 I

4 35 16

64

256

I024 MAX 1438 4096

30

MEAN WEIGHT Igm/ 1000 m3 I PER SAMPLE 2: -

2c I Biomass 66 % 100 Thaliacea 33645 51230 5607

I_. ~x llyI -*_ 1 -_ 116 125O I200 115" I IO" I I I I I I I I I I 1 I I I 1 Thaliacea

gm / 1000m3

CALCOFI CRUISE 5707 10"

8 JULY - 3 AUGUST 1957

3e 350

30 300

25 ? 5"

100-107 110-119 - 120-127 -I 130-137 I 1111111,111~~~~~~~1~~~~~

20 !OO

Biomass

21 100~~ T ha I iacea 3176 grams 1503 I 5707 117 125" 120" 115" 1100 I I 1 I ' I I I I I I I 1 I I I --.______Thaliacea I grn / 1000 rn3 I I N N -=0.5 --=I.l MENDOCINO I D T 40' I CALCOFI CRUISE 5807

I 30 JUNE - 22 JULY 1958

STATIONS. 0 NIGHT e SUNRISE FRANCISCO ' , o DAY e SUNSET

CONCEPTION 3 5'

30'

MEAN WEIGHT (grn/1000 rn3 ) PER SAMPLE

2 5'

100-107 I 110-119 I 120-127 I 130-137 llllllllljlllll,~,,1,111

20'

Biomass 28 % 100 Thaliacea 4254 grams 14922 5807 118 125" 120" 115' I IO" I I I I 1 I I I I I I 1 I I T ha1 iacea

gm I 1000m3

N N -= 1.3 -= 1.2 D T 40' CALCOFI CRUISE 5907

9 JULY - 3 AUGUST 1959

STATIONS NIGHT o SUNRISE o DAY SUNSET

35'

3c

MEAN WEIGHT (gm/1000 m3 1 PER SAMPLE 25 LINES 60-67

70-77 80-87 90-97 100-107 . 110-119 120-127 130-137

2c -

1 I I I I I I I I I 1 I I I I 125" 1200 115O I IO

Biomass 16 % 100 T ha I iacea 1997 grams 12454 5907 e B4

.\ \ \

These maps are designed to show essential details of the area most intensively studied by the California Cooperative Oceanic Fisheries Investigations. This is approximately the same area as is shown in color on the front cover. Geographical place names are those most commonly used in the various publications emerging from the re- search. The cardinal station lines extending southwestward from the coast are shown. They are 120 miles apart. Additional lines are uti- lized as needed and can be as closely spaced as 12 miles apart and still have individual numbers. The stations along the lines are num- bered with respect to the station 60 line, the numbers increasing to the west and decreasing to the east. Most of them are 40 miles apart, and are numbered in groups of 10. This permits adding stations as close as 4 miles apart as needed. An example of the usual identifica- tion is 120.65. This station is on line 120, 20 nautical miles south- west of station 60. The projection of the front cover is Lambert's Azimuthal Equal Area Projection. The detail maps are a Mercator projection.

'S., //a./ 7'' JALISCO CONTENTS

A. Fleminger, J. D. Isaacs and J. G. Wyllie Zooplankton biomass measurements from CalCOFI cruises of V July 1955 to 1959 and remarks on comparison with results from October, January and April cruises of 1955 to 1959 Charts 1-1 18