Carl H. Lindroth Und Sein Beitrag Zur Carabidologiethorsten
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Mesocarabus) Problematicus Herbst 1786 in Aim to Establish the Position of Romanian Ssp
Research Journal of Agricultural Science, 48 (3), 2016 MOLECULAR PRELIMINARY STUDY ON THE C. (MESOCARABUS) PROBLEMATICUS HERBST 1786 IN AIM TO ESTABLISH THE POSITION OF ROMANIAN SSP. HOLDHAUSI BORN 1911 COMPARED TO THE OCCIDENTAL SUBSPECIES S. DRÉANO1, F. PRUNAR2, J. BARLOY3, Frédérique BARLOY-HUBLER1,4, Aline PRIMOT1 1UMR 6290, CNRS -Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, University Rennes I, France; 2Banat's University of Agricultural Sciences and Veterinary Medicine „King Michael I of Romania" from Timisoara, Romania; 3Agrocampus Ouest Rennes, France; 4Plateforme Amadeus-Biosit Rennes I, France, 12 avenue du Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex France. E-mail: [email protected]. Abstract. C. (Mesocarabus) problematicus Herbst 1786 is a fairly widespread European endemic species, especially on the Atlantic coast from the northern of Spain until Scandinavia. A recent map, based on the most recent data establishes the geographical distribution. From the eight European subspecies, the most isolated are the island subspecies, those from Faroe Islands (ssp. feroensis Lapouge, 1910) and Iceland (islandicus Lindroth, 1968) but also one continental subspecies from Romania (holdhausi Born 1911). Well represented in Western Europe, particularly in France (3 subsp.), the C. (Mesocarabus) problematicus Herbst 1786 species becomes very localized by going towards the East where is represented only by some relicts stations in Hungary and in Romania. In the last one the represented taxon holdhausi Born 1911, is quoted from eight localities among which two recent confirmed, all situated at high altitude (on 1500-1700 m). This fragmentation of the distribution and the localization in the mountainous zone pose two major questions: causes and anteriority of this residual localization in the refuges zones; genetic origin of this taxon and its link with the other forms of the species. -
Title Ethnoentomology of the Central Kalahari San Author(S) NONAKA
Title Ethnoentomology of the Central Kalahari San Author(s) NONAKA, Kenichi African study monographs. Supplementary issue (1996), 22: Citation 29-46 Issue Date 1996-12 URL https://doi.org/10.14989/68378 Right Type Journal Article Textversion publisher Kyoto University African Study Monographs, Supp!. 22: 29 - 46, December 1996 29 ETHNOENTOMOLOGY OF THE CENTRAL KALAHARI SAN Kenichi NONAKA Department of geography, Mie University ABSTRACT The Central Kalahari San use many kinds of insects for daily food and materials and as children's play things. This study describes how several insect species are used, which often follows a series of processes from collecting to consumption and the quite diversified insect utilization based on various skills and knowledge in ethnoento mology. Even though insects are not an important subsistence resource, the San have an extensive knowledge and make good use of insects. The insects even spice up the San daily life. Key words: insects, ethnoentomology, diversified utilization, food, material, children's play INTRODUCTION The San are known to use many kinds of natural resources and possess great knowledge of nature (Lee, 1979; Tanaka, 1980; Silberbauer, 1981). The principle objectives of San studies have focused on the hunting and gathering subsistence system. Although these studies detailed the uses of various resources, little atten tion has been paid to the uses of marginal resources, which I believe are essential in discussing the San's deep and broad knowledge of nature. This paper will describe their extensive knowledge of insects. Through my research, I found that the San are usually in contact with insects in their daily lives and interact with them in various ways. -
Toxicology in Antiquity
TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not. -
Scottish Beetles Introduction to Ground Beetles (Carabidae) There Are Almost 400 Species of Ground Beetles in the UK
Scottish Beetles Introduction to Ground Beetles (Carabidae) There are almost 400 species of ground beetles in the UK. This guide is an introduction to 17 species found in this family. It is intended to be used in combination with the beetle anatomy guide and survey and recording guides. This family has species in a wide variety of sizes ranging from 2 to 30 mm. There are 5 tarsal segments on each foot. These beetles generally have long antennae and long legs, and often, but not always elongated oval body shapes. Beetles in this family range in colour from black, through many metallic colours, to bright green. Many of the species of beetles found in Scotland need careful examination with a microscope to identify them. This guide is designed to introduce some of the ground beetles you may find and give some key identification features for each. Violet ground beetle (Carabus violaceus) 20-30mm A large black beetle with metallic blue or purple edging, this beetle can often be confused with Carabus problematicus, however, it has smoother, more finely granulated elytra, whereas C. problematicus has elytra that are more rounded, more strongly sculptured and less convex. The Violet ground beetle pronotum is more convex. Where to look - Found in woodlands and moorlands. Occasionally seen on paths from April to September. Found everywhere in Scotland except the Western Isles, Mull and the Shetlands. BY 2.0 CC Shcmidt © Udo Ridged violet ground beetle (Carabus problematicus) 20-28mm This is a large black beetle with blue or violet tinted edges to the thorax and elytra. -
Supplementary Materials To
Supplementary Materials to The permeability of natural versus anthropogenic forest edges modulates the abundance of ground beetles of different dispersal power and habitat affinity Tibor Magura 1,* and Gábor L. Lövei 2 1 Department of Ecology, University of Debrecen, Debrecen, Hungary; [email protected] 2 Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, Slagelse, Denmark; [email protected] * Correspondence: [email protected] Diversity 2020, 12, 320; doi:10.3390/d12090320 www.mdpi.com/journal/diversity Table S1. Studies used in the meta-analyses. Edge type Human Country Study* disturbance Anthropogenic agriculture China Yu et al. 2007 Anthropogenic agriculture Japan Kagawa & Maeto 2014 Anthropogenic agriculture Poland Sklodowski 1999 Anthropogenic agriculture Spain Taboada et al. 2004 Anthropogenic agriculture UK Bedford & Usher 1994 Anthropogenic forestry Canada Lemieux & Lindgren 2004 Anthropogenic forestry Canada Spence et al. 1996 Anthropogenic forestry USA Halaj et al. 2008 Anthropogenic forestry USA Ulyshen et al. 2006 Anthropogenic urbanization Belgium Gaublomme et al. 2008 Anthropogenic urbanization Belgium Gaublomme et al. 2013 Anthropogenic urbanization USA Silverman et al. 2008 Natural none Hungary Elek & Tóthmérész 2010 Natural none Hungary Magura 2002 Natural none Hungary Magura & Tóthmérész 1997 Natural none Hungary Magura & Tóthmérész 1998 Natural none Hungary Magura et al. 2000 Natural none Hungary Magura et al. 2001 Natural none Hungary Magura et al. 2002 Natural none Hungary Molnár et al. 2001 Natural none Hungary Tóthmérész et al. 2014 Natural none Italy Lacasella et al. 2015 Natural none Romania Máthé 2006 * See for references in Table S2. Table S2. Ground beetle species included into the meta-analyses, their dispersal power and habitat affinity, and the papers from which their abundances were extracted. -
Coleoptera: Chrysomelidae: Cassidinae: Leptispini) Kaniyarikkal Divakaran Prathapan1, Caroline S
Zoological Studies 48(5): 625-631 (2009) Natural History and Leaf Shelter Construction of the Asian Rice Leptispa Beetle Leptispa pygmaea Baly (Coleoptera: Chrysomelidae: Cassidinae: Leptispini) Kaniyarikkal Divakaran Prathapan1, Caroline S. Chaboo2,*, and Kolandaivelu Karthikeyan3 1Department of Entomology, Kerala Agricultural University, Vellayani P.O., Trivandrum 695 522, Kerala, India E-mail:[email protected] 2Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Dr., Suite 140, University of Kansas, Lawrence, KS 66049-2811, USA. E-mail:[email protected] 3Regional Agricultural Research Station, Kerala Agricultural University, Pattambi, Palakkad 679 306, Kerala, India E-mail:[email protected] (Accepted January 15, 2009) Kaniyarikkal Divakaran Prathapan, Caroline S. Chaboo, and Kolandaivelu Karthikeyan (2009) Natural history and leaf shelter construction of the Asian rice leptispa beetle, Leptispa pygmaea Baly (Coleoptera: Chrysomelidae: Cassidinae: Leptispini). Zoological Studies 48(5): 625-631. The leaf-roll construction by the Asian rice leptispa beetle Leptispa pygmaea Baly (Cassidinae: Leptispini) was studied. Consistent adult feeding on the adaxial side of tender rice leaves Oryza sativa Linnaeus (Poaceae) induces partial upward rolling of the leaf lamina. Adult leaf rolls are ephemeral and not apparent, and they unfurl once the beetle leaves the leaf. Females oviposit clutches of up to 8 eggs mostly on the adaxial side of the leaf within such rolls. Neonate larvae migrate to the base of the leaf axil and feed by scraping, which induces formation of leaf rolls from the base where the leaf is already curled up. All 5 larval instars feed in this manner, migrating to new leaves and forming new leaf rolls. -
Synchronous Coadaptation in an Ancient Case of Herbivory
Synchronous coadaptation in an ancient case of herbivory Judith X. Becerra* Department of Entomology, University of Arizona, Tucson, AZ 85721 Edited by William S. Bowers, University of Arizona, Tucson, AZ, and approved August 28, 2003 (received for review May 19, 2003) Coevolution has long been considered a major force leading to the one of the main Blepharida hosts is Commiphora. Diamphidia adaptive radiation and diversification of insects and plants. A from Africa and Podontia from Asia are also very closely related fundamental aspect of coevolution is that adaptations and coun- to Blepharida (14, 16). Diamphidia, the renowned poison-arrow teradaptations interlace in time. A discordant origin of traits long beetle of the !Kung San of South Central Africa, also feeds on before or after the origin of the putative coevolutionary selective Commiphora (16, 17). The hosts of Podontia are not well known, pressure must be attributed to other evolutionary processes. De- although a few species have been found on the Anacardiaceae spite the importance of this distinction to our understanding of genus Rhus (13). Because Blepharida feeds on members of the coevolution, the macroevolutionary tempo of innovation in plant same plant family in both the New and Old World tropics, it has defenses and insect counterdefenses has not been documented. been suggested that the interaction probably started before the Molecular clocks for a lineage of chrysomelid beetles of the genus separation of Africa and South America (15, 18). Blepharida and their Burseraceae hosts were independently cali- Some Bursera and Blepharida species exhibit remarkable brated. Results show that these plants’ defenses and the insect’s defensive and counterdefensive mechanisms that have been counterdefensive feeding traits evolved roughly in synchrony, attributed to their coevolution (19, 20). -
(Coleoptera: Carabidae) As Parasitoids C 719 of Any Race of A
Carabid Beetles (Coleoptera: Carabidae) as Parasitoids C 719 of any race of A. mellifera. Migratory beekeepers Capsid managing scutellata in the northern part of South Africa have moved bees into the fynbos region of The protein coat or shell of a virus particle; the South Africa where the Cape bee is present (the capsid is a surface crystal, built of structure units. reciprocal also happens). This has allowed Cape workers to drift into and parasitize Apis mellifera Capsids scutellata colonies. This action has been a significant problem for beekeepers because Cape-parasitized Some members of the family Miridae (order colonies often dwindle and die. Furthermore, Cape Hemiptera). bees are specialist foragers in the fynbos region and Plant Bugs they often perform poorly when taken outside of this Bugs region. So Apis mellifera scutellata colonies parasit- ized by Cape bees in the northern part of South Capsomere Africa can become useless to beekeepers. Beekeepers in South Africa often consider A cluster of structure units arranged on the sur- Cape bees more of a serious threat to their colo- face of the nucleocapsid, in viruses possessing nies than varroa mites (Varroa destructor, the most cubic symmetry. prolific pest of honey bees). Because of this, researchers globally have taken notice of Cape Carabidae bees. Many fear that if Cape bees ever spread out- side of South Africa, they may be a significant A family of beetles (order Coleoptera). They com- problem for beekeepers worldwide. monly are known as ground beetles. Beetles References Hepburn HR (2001) The enigmatic Cape honey bee,Apis mel- Carabid Beetles (Coleoptera: lifera capensis. -
Mapping Biodiversity in a Modified Landscape Charlotte Louise Owen
Mapping biodiversity in a modified landscape Charlotte Louise Owen 2008 Athesissubmittedinpartialfulfilmentofthe requirementsforthedegreeofMasterofScienceandthe DiplomaofImperialCollegeLondon Contents Abstract 1 1. Introduction 2 1.1Conservationinmodifiedlandscapes 2 1.2Mapping biodiversityatthe landscapescale 2 1.3Projectaimsandobjectives 4 2. Background 5 2.1Betadiversity 5 2.2Characteristicsofmodifiedlandscapes 6 2.3Carabidsasa bioindicator 8 2.4Carabidsinmodifiedlandscapes 9 2.5Thestudysite 11 3. Methods 13 3.1Selectionofsamplingsites 13 3.2Fieldsampling 14 3.3Environmentalvariables 15 3.4Statisticalanalysis 15 3.4.1Diversityindices 15 3.4.2Fragmentationandedgeeffects 16 3.4.3Carabidspecies assemblages 17 3.4.4Modellingcarabiddiversityatthelandscapescale 17 i 4. Results 18 4.1Abundance 18 4.2Diversityandevenness 20 4.3Fragmentationeffects 21 4.4Edgeeffectsacross transects 22 4.5Carabidspecies assemblages 24 4.6Predictedspeciesdiversity 27 4.7Predictedbetadiversity–generalizeddissimilaritymodelling 27 5. Discussion 30 5.1Carabidspeciesdiversity,evennessandabundance 30 5.2Edgeeffects 31 5.3Carabidspecies assemblages 32 5.4Predictedspeciesdiversity 33 5.5Predictedbetadiversity 34 6. References 37 7. Acknowledgements 46 8. Appendix 47 ii Abstract Themajorityoftheworld’s biodiversityexistsoutside protectedareas,inlandscapes heavilymodifiedbyanthropogenic activity.Itis thereforenecessarytogaina better understandingoftherolethatmodifiedlandscapes playinthemaintenanceof biodiversity.Theapplicationofmethodsusedtoassessandprioritiseareasfor -
Entomologische Blätter Und Coleoptera Bildunterschriften 9 10 Nach Überschrift = Einrücken 5 Mm Ent
Titel Schriftgröße 13 Abstand 14 Name 12 Abstract 8 12 Art-Überschrift 12 Txte 10 12 Entomologische Blätter und Coleoptera Bildunterschriften 9 10 nach Überschrift = einrücken 5 mm Ent. Bl. Col. (2016) 112 (1): 107 - 120 ISSN 0013-8835 © Wissenschaftlicher Verlag Peks Löschen 3,578 in Word festgelegt. Bilan d’une année de recherches ciblées de Carabiques en Suisse: découverte de Notiophilus quadripunctatus DEJEAN, 1826 et autres captures remarquables (Coleoptera, Carabidae) YANNICK CHITTARO & WERNER MARGGI Résumé De nombreuses espèces de Carabiques rares et menacées ont été recherchées de façon ciblée en Suisse par le premier auteur en 2015. Au total, 345 espèces ont été recensées, uniquement par des méthodes de chasse active (sans utilisation de pièges). Parmi elles, Notiophilus quadripunctatus s’avère être nouvelle pour la faune du pays. Confirmé maintenant par plusieurs captures récentes,Harpalus neglectus doit également être ajouté à la liste des Carabiques de Suisse. Considérés comme disparus, Acupalpus exiguus et Chlaenius olivieri ont été retrouvés, alors qu’Agonum anten- narium, Bembidion elongatum, Bembidion fumigatum, Dicheirotrichus placidus, Patrobus septentrionis et Platynus longiventris n’avaient plus été signalés à l’échelle nationale depuis plus de 20 ans. Quelques autres captures d’intérêt régional complètent ce bilan réjouissant. L’efficacité de la chasse active dans un but de recherche d’espèces rares est discutée. Abstract Results of one year of targeted carabid collecting in Switzerland: discovery of Notiophilus quadripunctatus DEJEAN, 1826 and other remark- able finds (Coleoptera, Carabidae). Numerous rare, threatened carabids were the subject of targeted investigations by the first author in 2015. In total, 345 species were recorded, using only active collecting methods (no traps). -
1 South Khoisan
1 South Khoisan (Taa subgroup) etymology Compiled by George Starostin The etymological database for the Taa subgroup of the South Khoisan, or Taa-!Wi (!Wi-Taa), language family. In order to simplify things and also due to specific problems concerning the quality of data on !Wi, the Taa database is directly linked to the Peripheral Khoisan (Juu-Taa) database rather than to its intermediate ancestor (South Khoisan). Data sources: the main and, in fact, only major source of data here is the excellent !Xóõ dictionary by Anthony Traill (Traill 1986). Considering the extreme complexity of !Xóõ phonology, it is not surprising that "Proto-Taa" essentially coincides with the corresponding !Xóõ forms (with but a few exceptions that are specifically noted in the database). Additional data on two Taa idioms - that of the Masarwa of Kakia and the |Nu//en - are extracted from Dorothea Bleek's materials (Bleek 1929 and Bleek 1956). They do not so much add to our knowledge of comparative Taa phonology as provide extra insight into the lexical history of this subgroup. The relatively poor quality of the transcription makes it hard to talk in terms of phonetic correspondences; for the most part, it seems that all the three analyzed idioms are quite close and the correspondences are mostly trivial, but this triviality is frequently made obscure by erroneous transcription of the forms (e. g. with a major confusion of both click influxes and effluxes). The database consists of the following fields: 1. Proto-Taa: the hypothetical protoform, usually stripped of easily detachable grammatical morphemes and unified in terms of transcription; otherwise practically the same as the corresponding !Xóõ entry.