Germline -Specification, Sex, and Stem Cells-”

Total Page:16

File Type:pdf, Size:1020Kb

Germline -Specification, Sex, and Stem Cells-” CONTENTS Introduction・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 Organization of the National Institute for Basic Biology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2 Goals of the National Institute for Basic Biology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5 Personnel Changes and Awardees in 2012 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7 Cell Biology Division of Cell Mechanisms・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8 Division of Intercellular Signaling Biology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 11 Laboratory of Neuronal Cell Biology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 14 Laboratory of Cell Sociology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 16 Developmental Biology Division of Morphogenesis ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17 Division of Developmental Genetics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 20 Division of Molecular and Developmental Biology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 23 Division of Embryology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 26 Division of Germ Cell Biology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 29 Laboratory of Molecular Genetics for Reproduction ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 32 Laboratory of Plant Organ Development ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 34 Neurobiology Division of Molecular Neurobiology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 36 Division of Brain Biology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ ・・・・・・・・・・・・ 39 Division of Brain Circuits・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 42 Laboratory of Neurophysiology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 44 Evolutionary Biology and Biodiversity Division of Evolutionary Biology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 45 Division of Symbiotic Systems・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 48 Laboratory of Morphodiversity ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ ・・・・・・・・・・・ 51 Laboratory of Bioresources・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 52 Laboratory of Biological Diversity・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 54 Environmental Biology Division of Molecular Environmental Endocrinology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 60 Division of Environmental Photobiology・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 63 Theoretical Biology Laboratory of Genome Informatics・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 65 Imaging Science Laboratory for Spatiotemporal Regulations ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 67 Research Support NIBB Core Research Facilities・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 68 NIBB BioResource Center・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 73 NIBB Center of the IBBP・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 76 Center for Radioisotope Facilities (Okazaki Research Facilities) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 77 Strategic Planning Department・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 78 Office of Public Relations・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 79 Office of International Cooperation・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 79 Technical Division ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 80 Okazaki Biology Conference ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 81 NIBB Conference ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 83 NIBB-MPIPZ -TLL Symposium・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 85 NIBB International Practical Course / NIBB Genome Informatics Training Course・・・ 86 NIBB Internship Program / Bioimaging Forum・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 87 Index ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 88 Access to NIBB ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ Inside back cover The cover photographs are related to a study showing the role of the middle domain-specific WOX genes in leaf development of Arabidopsis thaliana (Nakata et al., Plant Cell, 2012). This study led a proposal that a new domain, named the middle domain, located between the adaxial and abaxial domains, has a distinct role from that of the previously identified two domains above: namely, the middle domain-specific WOX genes organize blade outgrowth together with adaxial and abaxial regulators and prevent the mixing of the adaxial and abaxial domains to maintain proper patterns during leaf development. See page 34 of this report for details. INTRODUCTION n order to understand the survival strategies of a I variety of organisms NIBB uses model organisms in collaboration with Japanese and international researchers to uncover both the basic mechanisms that are common to all living things, as well as the varied and unique systems organisms have evolved to allow them to adapt to their environments. It is necessary to continue to promote top- level research in this field, therefore it is important that we boldly pioneer new areas of study, and exert our energies to foster the young researchers who will lead us in the future. In addition, as an inter-university research institute it is essential that the National Institute for Basic Biology spares no effort in promoting cooperative use and collaborative research. In answer to the desires of the research community, NIBB has been strengthening our cooperative use and collaborative research structure by setting up the DSLM (Digital Scanned Light-sheet Microscope) cooperative research program, the next Generation DNA sequencer cooperative research program, and we have established the “NIBB BioResource Center” and the “NIBB Core Research Facilities”. In addition, in order to protect biological resources that are indispensable to the advancement of the biological sciences we have begun operating as the core facility of the Interuniversity Bio-Backup Project (IBBP), together with implementing plans in this fiscal year to begin joint-use research aimed at the development of new cryopreservation technology of biological resources. With the current climate of emphasis being placed on the practical application of research NIBB is expected to play a central role in promotion of the importance of the study of basic biology. To this end I believe it is necessary for NIBB to come together and strive to propel research, as well as expanding cooperative use and collaborative research with universities and institutes throughout the world. In 2012 we welcomed several new colleagues, including 4 assistant professors and 5 NIBB research fellows, while 2 colleagues transferred to other institutes. Finally I would like to congratulate Prof. Yoshinori Ohsumi for winning the Kyoto Prize, which is widely regarded as one of the most prestigious international awards for lifetime achievement in the arts and sciences, and Assistant Prof. Shinichi Miyagawa for winning the NINS young Researcher Award. I would also like to congratulate Dr. Kazuya Kuboyama, Dr. Michitaro Shibata, and Dr. Kenji Fukushima for receiving recognition for their research achievements as detailed on page 7. We always welcome any questions, comments and suggestions concerning research activities and administration of NIBB. Mikio Nishimura, D. Agric. Deputy Director General June 11, 2013 1 ORGANIZATION OF THE NATIONAL INSTITUTE FOR BASIC BIOLOGY The National Institute for Basic Biology (NIBB) was ■ Organization founded in 1977 on a hill overlooking the old town of Okazaki in Aichi prefecture as one of the Inter-University Research Institutes to promote and stimulate studies of 1DWLRQDO,QVWLWXWHVRI biology. NIBB conducts first-rate research on site as well as 1DWXUDO6FLHQFHV in cooperation with national, public and private universities 1,16 and research organizations. NIBB attempts to elucidate the general and fundamental mechanisms underlying various 3UHVLGHQW biological phenomena throughout a wide variety of 6$72.DWVXKLNR biological fields, such as cell biology, developmental 1DWLRQDO$VWURQRPLFDO biology, neurobiology, evolutionary biology, environmental 2EVHUYDWRU\RI-DSDQ 1$2 biology, and theoretical biology. NIBB and four other national institutes, the National $GYLVRU\ 1DWLRQDO,QVWLWXWHIRU Astronomical Observatory (NAO), the National Institute for &RPPLWWHH )XVLRQ6FLHQFH 1,)6 Fusion Science (NIFS), the National Institute for IRU 3URJUDPPLQJ Physiological Sciences (NIPS), and the Institute for DQG Molecular Science (IMS), constitute the National Institutes 1DWLRQDO,QVWLWXWHIRU 0DQDJHPHQW
Recommended publications
  • Furui Yoshikichi on Physical and Mental Illness, Death, Social
    LIMINALITY IN THE LATE TWENTIETH CENTURY Furui Y oshikichi on physical and mental illness, death, social ostracism, and workplace and ageing stress. (-:S«»-.;_~v ~) By Jennifer Scott BA(Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania February 2002 This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the Candidate's knowledge anq belief no material previously published or written by another person except where due acknowledgment is made in the text of the thesis. This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Jennifer Mary Scott Date \\' 0:)..02 ABSTRACT The liminal is a condition of human existence which has been the concern of Japanese literature throughout its history, since it is an essential ingredient in the experience of crisis. This thesis examines Furui's contribution to this literature of the liminal (my term) - his careful and detailed psycho-socio-analytical studies of the late twentieth century mind in the liminal state. The introductory chapter begins with a brief overview of Furui 's writing and its place in contemporary Japanese literature, especially the literature of the liminal. I go on to outline the general theoretical approaches of the thesis. I base my argument on Turner's socio-anthropological interpretation of the tripartite structure of rites of passage, and focus on his view of the liminal as a threshold period or state in which normal social structures and hierarchies are replaced by the relatively unstructured egalitarianism of community (communitas).
    [Show full text]
  • Endogenous Phospholipase A2 Inhibitors in Snakes: a Brief Overview
    Campos et al. Journal of Venomous Animals and Toxins including Tropical Diseases (2016) 22:37 DOI 10.1186/s40409-016-0092-5 REVIEW Open Access Endogenous phospholipase A2 inhibitors in snakes: a brief overview Patrícia Cota Campos†, Lutiana Amaral de Melo†, Gabriel Latorre Fortes Dias and Consuelo Latorre Fortes-Dias* Abstract The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops alternatus and Crotalus durissus terrificus – snake species will be emphasized. Keywords: PLA2 inhibitor, Phospholipase A2, Snake blood, Natural resistance, Snakes Background domain of Ca2+-dependent lectins, and preferentially in- A number of venomous and nonvenomous snake species hibit acidic PLA2s. Beta-type inhibitors (sbβPLIs) exhibit are naturally resistant to the deleterious actions of snake tandem leucine-rich repeats (LRRs), and specifically inhibit venom components, in many cases due to the presence basic PLA2s.
    [Show full text]
  • Azure-Winged Magpie Onaga (Jpn) Cyanopica Cyana
    Bird Research News Vol.6 No.6 2009.6.24. Azure-winged Magpie Onaga (Jpn) Cyanopica cyana Morphology and classification Flock: Azure-winged Magpies live in a flock in the breeding and non- Classification: Passeriformes Corvidae breeding seasons, holding their flock territory throughout the year (Hosono 1989). In breeding period they roost in a flock except for Total length: 366.8mm (319-390) Wing length: 130.7mm (122-141) females incubating eggs and nestlings. In Nagano Pref., for instance, Tail length: 214.8mm (192-240) Culmen length: 25.7mm (24-30) the mean flock and home range sizes were 23 birds (9-45) and 21.8 ha Tarsus length: 33.3mm (32-35) Weight: 83.4g (69-96) (11-48), respectively in Kawanakajima (Hosono 1968), 28.7 birds and 135.1ha (103-243) in Ina, and 16.7 birds and 287.6 ha (130-376) in Measurements by Kuzu (1942). Nobeyama (Imanishi 2003). In Saitama Pref., on the other hand, they Appearance: were 24 birds (17-31, n = 16) and 13.4ha (6.2-24.8, n = 11) respec- Azure-winged Magpies are similar in tively in Tokorozawa, where Azure-winged Magpies are assumed to plumage coloration in males and fe- occur in the highest density. They also roost in a flock, but more than one flock occasionally roosted together in the same site. They use as a males. Males are slightly larger than roost site a dense thicket of bamboo, a coniferous wood and a broad- females in body size. They are gray on leaved deciduous wood. A coniferous wood and a thicket of bamboo the upperpart and white or light gray were used with higher frequency in winter, but a broad-leaved decidu- on the underpart (Photo 1).
    [Show full text]
  • A Rapid Survey of Online Trade in Live Birds and Reptiles in The
    S H O R T R E P O R T 0ൾඍඁඈൽඌ A rapid online survey was undertaken EHWZHHQDQG)HEUXDU\ GD\V DSSUR[LPDWHO\KRXUVVXUYH\GD\ RQ pre-selected Facebook groups specializing in the trade of live pets. Ten groups each for reptiles and birds were selected based on trading activities in the previous six months. The survey was carried out during ZHHN GD\V 0RQGD\ WR )ULGD\ E\ JRLQJ through each advertisement posted in A rapid survey of online trade in the groups. Information, including that live birds and reptiles in the Philippines relating to species, quantity, and asking HYDROSAURUS PUSTULATUS WWF / URS WOY WOY WWF / URS PUSTULATUS HYDROSAURUS SULFH ZDV QRWHG 6SHFLHV ZHUH LGHQWL¿HG Report by Cristine P. Canlas, Emerson Y. Sy, to the lowest taxonomic level whenever and Serene Chng possible. Taxonomy follows Gill and 'RQVNHU IRU ELUGV DQG 8HW] et al. IRUUHSWLOHV7KHDXWKRUVFDOFXODWHG ,ඇඍඋඈൽඎർඍංඈඇ WKH WRWDO SRWHQWLDO YDOXH R൵HUHG IRU ELUGV and reptiles based on prices indicated he Philippines is the second largest archipelago in the world by traders. Advertisements that did not comprising 7641 islands and is both a mega-biodiverse specify prices were assigned the lowest country for harbouring wildlife species found nowhere known price for each taxon. Valuations in else in the world, and one of eight biodiversity hotspots this report were based on a conversion rate having a disproportionate number of species threatened with RI86' 3+3 $QRQ ,WLV ,//8675$7,213+,/,33,1(6$,/),1/,=$5' TH[WLQFWLRQIXUWKHULWKDVVRPHRIWKHKLJKHVWUDWHVRIHQGHPLFLW\LQWKH not always possible during online surveys world (Myers et al 7KHLOOHJDOZLOGOLIHWUDGHLVRQHRIWKHPDLQ WRYHULI\WKDWDOOR൵HUVDUHJHQXLQH UHDVRQVEHKLQGVLJQL¿FDQWGHFOLQHVRIVRPHZLOGOLIHSRSXODWLRQVLQ$VLD LQFOXGLQJWKH3KLOLSSLQHV $QRQ6RGKLet al1LMPDQDQG 5ൾඌඎඅඍඌ 6KHSKHUG'LHVPRVet al5DRet al 7KHWildlife Act of 2001 (Republic Act No.
    [Show full text]
  • Prey-Handling Behavior of Hatchling Elaphe Helena (Colubridae)
    Herpetologica, 59(4), 2003, 469–474 Ó 2003 by The Herpetologists’ League, Inc. PREY-HANDLING BEHAVIOR OF HATCHLING ELAPHE HELENA (COLUBRIDAE) 1,2 RITA S. MEHTA Department of Biology, University of Texas, Tyler, TX 75719, USA ABSTRACT: The effects of prey size on prey-handling behavior for 60 ingestively naive hatchling Elaphe helena were studied in the laboratory. Hatchlings were randomly assigned to one of three diet categories in which prey (Mus musculus) varied by relative mass differences of 20–35%, 40–46%, or 50–59% of an individual snake’s own body mass. The effects of prey size on capture position, direction of ingestion, condition of prey at ingestion (dead/alive), feeding duration, and prey-handling tactic were observed and recorded for each feeding episode. Results indicated that prey size significantly affected the prey-handling behavior of hatchling E. helena. In the largest relative mass category, hatchlings captured prey by the anterior end more often than in the smaller two relative mass categories. Prey from the smallest relative mass category were simply seized whereas, in the medium and large categories, pinion and constriction behaviors were observed. Time to subdue and ingest the prey item increased with prey size categories. Key words: Colubridae; Effects of prey size; Elaphe helena; Prey-handling behavior THE SIZE, type, and activity level of various (i.e., press prey against the substrate with the prey are thought to influence the feeding anterior portion of the body) and constrict behaviors for many advanced snakes (de small active mice than nestling rats. Further- Queiroz, 1984; Moon, 2000).
    [Show full text]
  • Se Busca Nuevo Campeón
    CONFERENCIA ESTE CONFERENCIA OESTE DEPORTES Cavaliers 45-23 .662 Warriors 55-14 .797 7 Celtics 44-26 .629 Spurs 52-16 .765 MARZO 2017 Wizards 42-27 .609 Rockets 48-22 .686 LUNES 20 Warriors, Spurs y Rockets: clasificados al play off Se busca Colombia va en serio nuevo campeón aliet arzola lima de títulos y un tercer esca- Sin dudas, un choque de ño en el 2013. De cara a ese trenes para el cual los puer- En la madrugada del domin- encuentro ya han anuncia- torriqueños anunciaron al go, Estados Unidos se des- do como abridor al derecho lanzador derecho Jorge Ló- quitó de República Domi- Tanner Roark, y además se pez, mientras los tulipanes nicana y tumbó al campeón unirá al conjunto el cerra- todavía no habían decidido, vigente del Clásico Mundial dor Mark Melancon, hom- aunque bien podrían incli- de Béisbol, cuya cuarta edi- bre con 147 rescates en las narse por los diestros Rick La franquicia Heroicos de Colombia lidera el grupo A de la Serie Mundial de ción tendrá un nuevo mo- últimas cuatro campañas de Van Den Hurk o Jair Jurr- Boxeo. FOTO TOMADA DE FACEBOOK narca el próximo miércoles mlb. jens. Por cierto, «la naran- en el Dodger Stadium de Los De los nipones no hay noti- ja beisbolera» tendrá a su yosel e. martínez castellanos entonces las manos a la espera Ángeles. cias sobre su abridor, que pu- disposición al veloz tirador del match de revancha entre Agarrados del guante de diera ser Tomoyuki Sugano, el de Los Dodgers de Los Án- Inmaculada y con un boxeo nuestros púgiles y los colom- Adam Jones −robando jonro- mismo que lanzó en el segun- geles, Kenley Jansen, cerra- contundente prosigue la fran- bianos, pautado para el 21 de nes sobre las cercas−, del po- do duelo contra Cuba.
    [Show full text]
  • Risk Analysis of the Russian Rat Snake ( ) in the Netherlands Elaphe Schrenckii
    RISK ANALYSIS OF THE RUSSIAN RAT SNAKE (ELAPHE SCHRENCKII ) IN THE NETHERLANDS Commissioned by: Invasive Alien Species Team Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs, Agriculture and Innovation RISK ANALYSIS OF THE RUSSIAN RAT SNAKE (ELAPHE SCHRENCKII) IN THE NETHERLANDS S. van de Koppel MSc drs. N. van Kessel ir. B.H.J.M. Crombaghs W. Getreuer dr. H.J.R. Lenders Commissioned by: Invasive Alien Species Team Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs, Agriculture and Innovation 2012-04-25 2012 Natuurbalans Limes-Divergens BV Text and composition: S. van de Koppel MSc1, drs. N. van Kessel 1, ir. B.H.J.M. Crombaghs1, W. Getreuer2, dr. H.J.R. Lenders3 1 Natuurbalans-Limes Divergens BV, Nijmegen, the Netherlands 2 ReptielenZoo SERPO, Delft, the Netherlands 3 Radboud University, Nijmegen, the Netherlands Signed for publication: Managing Director, Natuurbalans-Limes Divergens BV, Nijmegen, the Netherlands ir. B.H.J.M. Crombaghs Project code: 11-131 Commissioned by: ir. J.W. Lammers Invasive Alien Species Team, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs, Agriculture and Innovation (Team Invasieve Exoten, Nederlandse Voedsel en Waren Autoriteit, Ministerie van Economische Zaken, Landbouw en Innovatie) Cover photos: W. Getreuer, S. van de Koppel Citation: Van de Koppel, S., N. van Kessel, B.H.J.M. Crombaghs, W. Getreuer & H.J.R. Lenders, 2012. Risk Analysis of the Russian Rat Snake (Elaphe schrenckii) in the Netherlands. Natuurbalans - Limes Divergens BV, Nijmegen / ReptielenZoo SERPO, Delft / Radboud University, Nijmegen. No part of this report may be reproduced and/or published by means of scanning, internet, photocopy, microfilm or any other means, without the prior written consent of the client indicated above and Natuurbalans-Limes Divergens BV nor may it, without such approval, be used for any work other than for which it was manufactured.
    [Show full text]
  • Canon Foundation in Europe Fellow Register
    Canon Foundation in Europe Fellow Register NATIONALITY: Japan Dr. Yoshinori Masuo Fellowship year: 1990 Current organisation: Toho University Faculty: Faculty of Science Dept.: Dept. Biology Address: 2-2-1 Miyama Postcode: 274-8510 City: Funabashi Pref: Chiba Country Japan Email address: [email protected] Organisation at time of application: Tsukuba University Country: Japan Host organisation: Hôpital Sainte-Antoine Host department: U339 City: Paris Cedex 12 Country: France Host professor: Professor W. Rostène Research field: Neurosciences Summary of project: Personal achievements: Obtained doctoral degree in 1990 (Neuroscience, University of Paris 6) and doctoral degree in 1994 (Medicine, University of Tokyo) Publication with an Effects of Cerebral Lesions on Binding Sites for Calcitonin and Calcitonin acknowledgement to Gene-related Peptide in the Rat Nucleus Accumbens and Ventral the Canon Foundation: Tegmental Area Subtitle or journal: Journal of Chemical Neuroanatomy Title of series: Number in series: Volume: Vol. 4 Number: Publisher name: Place of publication: Copyright month/season Copyright year: 1991 Number of pages: pp. 249-257 Tuesday, May 12, 2020 Page 1 of 595 Canon Foundation in Europe Fellow Register Publication with an Les systèmes neurotensinergigues dans le striatum et la substance acknowledgement to noire chez le rat. the Canon Foundation: Subtitle or journal: Efficts de lésions cérébrales sur les taux endogènes et les récepteurs de la neurotensine. Title of series: Number in series: Volume: Number: Publisher name: Place of publication: Paris Copyright month/season Copyright year: 1990 Number of pages: 248 pages Publication with an Interaction between Neurotensin and Dopamine in the Brain acknowledgement to the Canon Foundation: Subtitle or journal: Neurobiology of Neurotensin Title of series: Number in series: Volume: Vol.
    [Show full text]
  • Ebook Download Pro Baseball Records
    PRO BASEBALL RECORDS : A GUIDE FOR EVERY FAN PDF, EPUB, EBOOK Matt Chandler | 64 pages | 01 Feb 2019 | COMPASS POINT BOOKS | 9781543559354 | English | North Mankato, United States Pro Baseball Records : A Guide for Every Fan PDF Book Koichiro Sasaki Kintetsu Buffaloes. Since the Pacific League won every Japan Series after introducing this league playoff system, an identical system was introduced to the Central League in , and the post-season intra-league games were renamed the " Climax Series " in both leagues. Chad Orvella. Ben Steiner. We're Social Norihiro Nakamura. This brought the number of Central League teams down to an ungainly arrangement of seven. Players either were paid for playing or were compensated with jobs that required little or no actual work. Tsutomu Wakamatsu. Dick Smith. Nearly anything you can think of is available to find by just a few clicks. Appearance on this list means the player attended the school, not that they played on the school's baseball team. Nagoya , Aichi. Streak Tools : Player , Team. This enabled the Central League to shrink to an even number of six teams. By using LiveAbout, you accept our. Other agreements included the leagues adopting interleague play to help the Pacific League gain exposure by playing the more popular Central league teams. Hiromitsu Ochiai. Emmitt Smith is the NFL's all-time leader in 1,yard rushing seasons The Japanese baseball is wound more tightly than an American baseball. Home Runs in a Month Records. Doug Strange. Retrieved December 22, The active leader is Roger Clemens, a no-doubt first-ballot Hall of Fame pitcher, with victories entering the season.
    [Show full text]
  • Molecular Cloning and Structural Modelling of Gamma-Phospholipase A2 Inhibitors from Bothrops Atrox and Micrurus Lemniscatus
    International Journal of Biological Macromolecules 103 (2017) 525–532 Contents lists available at ScienceDirect International Journal of Biological Macromolecules j ournal homepage: www.elsevier.com/locate/ijbiomac Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes a b b b Carina G. Picelli , Rafael J. Borges , Carlos A.H. Fernandes , Fabio M. Matioli , a a a a,c,d Carla F.C. Fernandes , Juliana C. Sobrinho , Rudson J. Holanda , Luiz S. Ozaki , a a b a Anderson M. Kayano , Leonardo A. Calderon , Marcos R.M. Fontes , Rodrigo G. Stábeli , a,e,∗ Andreimar M. Soares a Centro de Estudos de Biomoléculas Aplicadas a Saúde, CEBio, Fundac¸ ão Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia and Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho, RO, Brazil b Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil c Center for the Study of Biological Complexity, Life Sciences, Virginia Commonwealth University, 23284, Richmond, USA d PVE-CNPq, Brazil e Centro Universitário São Lucas, UNISL, Porto Velho, RO, Brazil a r t i c l e i n f o a b s t r a c t Article history: Phospholipases A2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential Received 30 January 2017 role in this resistance. These endogenous inhibitors may be classified by their fold in PLI␣, PLI␤ and Received in revised form 3 May 2017 ␥ PLI . Phospholipases A2 (PLA2s) develop myonecrosis in snake envenomation, a consequence that is Accepted 15 May 2017 not efficiently neutralized by antivenom treatment.
    [Show full text]
  • The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals
    RESEARCH ARTICLE The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals Kenji K. Kojima1,2,3*, Yosuke Seto2¤, Haruhiko Fujiwara2 1 Genetic Information Research Institute, Mountain View, CA, 94043, United States of America, 2 Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277±8562, Japan, 3 Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan a11111 ¤ Current address: Tokyo Metropolitan University, Hachioji, Tokyo, 192±0397, Japan * [email protected] Abstract Transposons, or transposable elements, are the major components of genomes in most OPEN ACCESS eukaryotes. Some groups of transposons have developed target specificity that limits the Citation: Kojima KK, Seto Y, Fujiwara H (2016) The integration sites to a specific nonessential sequence or a genomic region to avoid gene dis- Wide Distribution and Change of Target Specificity ruption caused by insertion into an essential gene. R2 is one of the most intensively investi- of R2 Non-LTR Retrotransposons in Animals. PLoS ONE 11(9): e0163496. doi:10.1371/journal. gated groups of sequence-specific non-LTR retrotransposons and is inserted at a specific pone.0163496 site inside of 28S ribosomal RNA (rRNA) genes. R2 is known to be distributed among at Editor: Ruslan Kalendar, University of Helsinki, least six animal phyla even though its occurrence is reported to be patchy. Here, in order to FINLAND obtain a more detailed picture of the distribution of R2, we surveyed R2 using both in silico Received: May 17, 2016 screening and degenerate PCR, particularly focusing on actinopterygian fish. We found two families of the R2C lineage from vertebrates, although it has previously only been Accepted: September 9, 2016 found in platyhelminthes.
    [Show full text]
  • Captive Wildlife Regulations, 2021, W-13.12 Reg 5
    1 CAPTIVE WILDLIFE, 2021 W-13.12 REG 5 The Captive Wildlife Regulations, 2021 being Chapter W-13.12 Reg 5 (effective June 1, 2021). NOTE: This consolidation is not official. Amendments have been incorporated for convenience of reference and the original statutes and regulations should be consulted for all purposes of interpretation and application of the law. In order to preserve the integrity of the original statutes and regulations, errors that may have appeared are reproduced in this consolidation. 2 W-13.12 REG 5 CAPTIVE WILDLIFE, 2021 Table of Contents PART 1 PART 5 Preliminary Matters Zoo Licences and Travelling Zoo Licences 1 Title 38 Definition for Part 2 Definitions and interpretation 39 CAZA standards 3 Application 40 Requirements – zoo licence or travelling zoo licence PART 2 41 Breeding and release Designations, Prohibitions and Licences PART 6 4 Captive wildlife – designations Wildlife Rehabilitation Licences 5 Prohibition – holding unlisted species in captivity 42 Definitions for Part 6 Prohibition – holding restricted species in captivity 43 Standards for wildlife rehabilitation 7 Captive wildlife licences 44 No property acquired in wildlife held for 8 Licence not required rehabilitation 9 Application for captive wildlife licence 45 Requirements – wildlife rehabilitation licence 10 Renewal 46 Restrictions – wildlife not to be rehabilitated 11 Issuance or renewal of licence on terms and conditions 47 Wildlife rehabilitation practices 12 Licence or renewal term PART 7 Scientific Research Licences 13 Amendment, suspension,
    [Show full text]