Uitheemse Slangen in Nederland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution, Abundance and Morphological Characteristics of the Transcaucasian Rat Snake (Serpentes: Zamenis Hohenackeri Strauch, 1873) in Azerbaijan
World Journal of Zoology 12 (1): 01-06, 2017 ISSN 1817-3098 © IDOSI Publications, 2017 DOI: 10.5829/idosi.wjz.2017.01.06 Distribution, Abundance and Morphological Characteristics of the Transcaucasian Rat Snake (Serpentes: Zamenis hohenackeri strauch, 1873) in Azerbaijan T.M. Iskanderov, S.B. Ahmedov and G.A. Qasymova Institute of Zoology of the NAS of Azerbaijan AZ-1073, A. Abasov street, travel 1128, block 504, Baku city, Azerbaijan Abstract: The article deals with the distribution, number and morphological features and specifies new places for finding the Transcaucasian rat snake in Azerbaijan. Due to these findings, the distribution borders of the species in Azerbaijan along the slopes of the Greater Caucasus widened in the northeast direction (Guba region, Hashi village). The population size is established, which varies in the range of 0.02-0.03 individuals per hectare of biotope area. Locations of the main localities are shown. Morphological characteristics of the species and the main indicators of morphometry and folidosis are given. Morphometric indicators of both sexes indicate the presence of sexual dimorphism. Body length in females is greater (72.9 ± 4.6 cm) than in males (61.5 ± 2.3). Compared to males, the female has a longer body than the tail. Key words: Transcaucasian Rat Snake Distribution Density Morphometric Parameters INTRODUCTION numbers. Special studies on the study of biology, ecology and the state of populations of the The Transcaucasian rat snake (Zamenis Transcaucasian rat snake in Azerbaijan were not hohenackeri Strauch, 1873, synonyms: Coluber carried out. Therefore, sufficient information on the hohenackeri Strauch, 1873; Elaphe taurica Werner, 1898) status of the species in Azerbaijan, in particular, in Azerbaijan is represented by the nominative subspecies information on the number does not exist. -
Endogenous Phospholipase A2 Inhibitors in Snakes: a Brief Overview
Campos et al. Journal of Venomous Animals and Toxins including Tropical Diseases (2016) 22:37 DOI 10.1186/s40409-016-0092-5 REVIEW Open Access Endogenous phospholipase A2 inhibitors in snakes: a brief overview Patrícia Cota Campos†, Lutiana Amaral de Melo†, Gabriel Latorre Fortes Dias and Consuelo Latorre Fortes-Dias* Abstract The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops alternatus and Crotalus durissus terrificus – snake species will be emphasized. Keywords: PLA2 inhibitor, Phospholipase A2, Snake blood, Natural resistance, Snakes Background domain of Ca2+-dependent lectins, and preferentially in- A number of venomous and nonvenomous snake species hibit acidic PLA2s. Beta-type inhibitors (sbβPLIs) exhibit are naturally resistant to the deleterious actions of snake tandem leucine-rich repeats (LRRs), and specifically inhibit venom components, in many cases due to the presence basic PLA2s. -
Azure-Winged Magpie Onaga (Jpn) Cyanopica Cyana
Bird Research News Vol.6 No.6 2009.6.24. Azure-winged Magpie Onaga (Jpn) Cyanopica cyana Morphology and classification Flock: Azure-winged Magpies live in a flock in the breeding and non- Classification: Passeriformes Corvidae breeding seasons, holding their flock territory throughout the year (Hosono 1989). In breeding period they roost in a flock except for Total length: 366.8mm (319-390) Wing length: 130.7mm (122-141) females incubating eggs and nestlings. In Nagano Pref., for instance, Tail length: 214.8mm (192-240) Culmen length: 25.7mm (24-30) the mean flock and home range sizes were 23 birds (9-45) and 21.8 ha Tarsus length: 33.3mm (32-35) Weight: 83.4g (69-96) (11-48), respectively in Kawanakajima (Hosono 1968), 28.7 birds and 135.1ha (103-243) in Ina, and 16.7 birds and 287.6 ha (130-376) in Measurements by Kuzu (1942). Nobeyama (Imanishi 2003). In Saitama Pref., on the other hand, they Appearance: were 24 birds (17-31, n = 16) and 13.4ha (6.2-24.8, n = 11) respec- Azure-winged Magpies are similar in tively in Tokorozawa, where Azure-winged Magpies are assumed to plumage coloration in males and fe- occur in the highest density. They also roost in a flock, but more than one flock occasionally roosted together in the same site. They use as a males. Males are slightly larger than roost site a dense thicket of bamboo, a coniferous wood and a broad- females in body size. They are gray on leaved deciduous wood. A coniferous wood and a thicket of bamboo the upperpart and white or light gray were used with higher frequency in winter, but a broad-leaved decidu- on the underpart (Photo 1). -
Cleaning the Linnean Stable of Names for Grass Snakes (Natrix Astreptophora, N
70 (4): 621– 665 © Senckenberg Gesellschaft für Naturforschung, 2020. 2020 The Fifth Labour of Heracles: Cleaning the Linnean stable of names for grass snakes (Natrix astreptophora, N. helvetica, N. natrix sensu stricto) Uwe Fritz 1 & Josef Friedrich Schmidtler 2 1 Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, 01109 Dresden, Germany; [email protected] — 2 Liebenstein- straße 9A, 81243 Munchen, Germany; [email protected] Submitted July 29, 2020. Accepted October 29, 2020. Published online at www.senckenberg.de/vertebrate-zoology on November 12, 2020. Published in print Q4/2020. Editor in charge: Ralf Britz Abstract We scrutinize scientifc names erected for or referred to Natrix astreptophora (Seoane, 1884), Natrix helvetica (Lacepède, 1789), and Natrix natrix (Linnaeus, 1758). As far as possible, we provide synonymies for the individual subspecies of each species, identify each name with one of the mtDNA lineages or nuclear genomic clusters within these taxa, and clarify the whereabouts of type material. In addi tion, we feature homonyms and names erroneously identifed with grass snakes. For Natrix astreptophora (Seoane, 1884), we recognize a second subspecies from North Africa under the name Natrix astreptophora algerica (Hecht, 1930). The nominotypical subspecies occurs in the European part of the distribution range (Iberian Peninsula, adjacent France). Within Natrix helvetica (Lacepède, 1789), we recognize four subspecies. The nominotypical subspecies occurs in the northern distribution range, Natrix helvetica sicula (Cuvier, 1829) in Sicily, mainland Italy and adjacent regions, Natrix helvetica cetti Gené, 1839 on Sardinia, and Natrix helvetica corsa (Hecht, 1930) on Corsica. However, the validity of the latter subspecies is questionable. -
First Record of Zamenis Lineatus (Camerano, 1891) (Serpentes Colubridae) in Ischia Island (Italy)
Biodiversity Journal , 2020, 11 (1): 41–43 https://doi.org/ 10.31396/Biodiv.Jour.2020.11.1.41.43 First record of Zamenis lineatus (Camerano, 1891) (Serpentes Colubridae) in Ischia Island (Italy) Mauro Grano 1* , Raffaella Scotti 2 & Giovanni Paolino 3 1Sezione Lazio of Societas Herpetologica Italica, Via Valcenischia 24, 00141 Rome, Italy 2Via Quercia 10, 8077 Ischia, Italy; email: [email protected] 3Viale Lombardia 64, 20131 Milano, Italy *Corresponding author, email: [email protected] ABSTRACT With this work, we report for the first time the presence of the Italian Aesculapian snake Za - menis lineatus (Camerano, 1891) in Ischia island (Italy). Up to date, in this Mediterranean island, among ophidic species the presence of only Hierophis carbonarius (Bonaparte, 1833) has been reported; although, recently, the invasive species Indotyphlops braminus (Daudin, 1803) has been also detected. Further studies will be necessary to clarify whether the presence of Zamenis lineatus in Ischia island is autochthonous or whether is just an accidental obser - vation due to a passive transport from the nearby coast of the Gulf of Naples. KEY WORDS Zamenis lineatus ; Italian Aesculapian snake; Ischia. Received 11.12.2019; accepted 15.02.2020; published online 25.02.2020 INTRODUCTION MATERIALS AND METHODS Reptiles and amphibians in Campania (Italy) Ischia is a volcanic and mountainous island in have been widely reported in the regional Atlas of the Tyrrhenian Sea that lies at the northern end of amphibians and reptiles (Guarino et al., 2012). Sub - the Gulf of Naples, about 30 kilometers from the sequently, Raimondi et al. (2014) published a paper city of Naples (Paolino et al., 2019). -
A Rapid Survey of Online Trade in Live Birds and Reptiles in The
S H O R T R E P O R T 0ൾඍඁඈൽඌ A rapid online survey was undertaken EHWZHHQDQG)HEUXDU\ GD\V DSSUR[LPDWHO\KRXUVVXUYH\GD\ RQ pre-selected Facebook groups specializing in the trade of live pets. Ten groups each for reptiles and birds were selected based on trading activities in the previous six months. The survey was carried out during ZHHN GD\V 0RQGD\ WR )ULGD\ E\ JRLQJ through each advertisement posted in A rapid survey of online trade in the groups. Information, including that live birds and reptiles in the Philippines relating to species, quantity, and asking HYDROSAURUS PUSTULATUS WWF / URS WOY WOY WWF / URS PUSTULATUS HYDROSAURUS SULFH ZDV QRWHG 6SHFLHV ZHUH LGHQWL¿HG Report by Cristine P. Canlas, Emerson Y. Sy, to the lowest taxonomic level whenever and Serene Chng possible. Taxonomy follows Gill and 'RQVNHU IRU ELUGV DQG 8HW] et al. IRUUHSWLOHV7KHDXWKRUVFDOFXODWHG ,ඇඍඋඈൽඎർඍංඈඇ WKH WRWDO SRWHQWLDO YDOXH R൵HUHG IRU ELUGV and reptiles based on prices indicated he Philippines is the second largest archipelago in the world by traders. Advertisements that did not comprising 7641 islands and is both a mega-biodiverse specify prices were assigned the lowest country for harbouring wildlife species found nowhere known price for each taxon. Valuations in else in the world, and one of eight biodiversity hotspots this report were based on a conversion rate having a disproportionate number of species threatened with RI86' 3+3 $QRQ ,WLV ,//8675$7,213+,/,33,1(6$,/),1/,=$5' TH[WLQFWLRQIXUWKHULWKDVVRPHRIWKHKLJKHVWUDWHVRIHQGHPLFLW\LQWKH not always possible during online surveys world (Myers et al 7KHLOOHJDOZLOGOLIHWUDGHLVRQHRIWKHPDLQ WRYHULI\WKDWDOOR൵HUVDUHJHQXLQH UHDVRQVEHKLQGVLJQL¿FDQWGHFOLQHVRIVRPHZLOGOLIHSRSXODWLRQVLQ$VLD LQFOXGLQJWKH3KLOLSSLQHV $QRQ6RGKLet al1LMPDQDQG 5ൾඌඎඅඍඌ 6KHSKHUG'LHVPRVet al5DRet al 7KHWildlife Act of 2001 (Republic Act No. -
Prey-Handling Behavior of Hatchling Elaphe Helena (Colubridae)
Herpetologica, 59(4), 2003, 469–474 Ó 2003 by The Herpetologists’ League, Inc. PREY-HANDLING BEHAVIOR OF HATCHLING ELAPHE HELENA (COLUBRIDAE) 1,2 RITA S. MEHTA Department of Biology, University of Texas, Tyler, TX 75719, USA ABSTRACT: The effects of prey size on prey-handling behavior for 60 ingestively naive hatchling Elaphe helena were studied in the laboratory. Hatchlings were randomly assigned to one of three diet categories in which prey (Mus musculus) varied by relative mass differences of 20–35%, 40–46%, or 50–59% of an individual snake’s own body mass. The effects of prey size on capture position, direction of ingestion, condition of prey at ingestion (dead/alive), feeding duration, and prey-handling tactic were observed and recorded for each feeding episode. Results indicated that prey size significantly affected the prey-handling behavior of hatchling E. helena. In the largest relative mass category, hatchlings captured prey by the anterior end more often than in the smaller two relative mass categories. Prey from the smallest relative mass category were simply seized whereas, in the medium and large categories, pinion and constriction behaviors were observed. Time to subdue and ingest the prey item increased with prey size categories. Key words: Colubridae; Effects of prey size; Elaphe helena; Prey-handling behavior THE SIZE, type, and activity level of various (i.e., press prey against the substrate with the prey are thought to influence the feeding anterior portion of the body) and constrict behaviors for many advanced snakes (de small active mice than nestling rats. Further- Queiroz, 1984; Moon, 2000). -
Risk Analysis of the Russian Rat Snake ( ) in the Netherlands Elaphe Schrenckii
RISK ANALYSIS OF THE RUSSIAN RAT SNAKE (ELAPHE SCHRENCKII ) IN THE NETHERLANDS Commissioned by: Invasive Alien Species Team Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs, Agriculture and Innovation RISK ANALYSIS OF THE RUSSIAN RAT SNAKE (ELAPHE SCHRENCKII) IN THE NETHERLANDS S. van de Koppel MSc drs. N. van Kessel ir. B.H.J.M. Crombaghs W. Getreuer dr. H.J.R. Lenders Commissioned by: Invasive Alien Species Team Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs, Agriculture and Innovation 2012-04-25 2012 Natuurbalans Limes-Divergens BV Text and composition: S. van de Koppel MSc1, drs. N. van Kessel 1, ir. B.H.J.M. Crombaghs1, W. Getreuer2, dr. H.J.R. Lenders3 1 Natuurbalans-Limes Divergens BV, Nijmegen, the Netherlands 2 ReptielenZoo SERPO, Delft, the Netherlands 3 Radboud University, Nijmegen, the Netherlands Signed for publication: Managing Director, Natuurbalans-Limes Divergens BV, Nijmegen, the Netherlands ir. B.H.J.M. Crombaghs Project code: 11-131 Commissioned by: ir. J.W. Lammers Invasive Alien Species Team, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs, Agriculture and Innovation (Team Invasieve Exoten, Nederlandse Voedsel en Waren Autoriteit, Ministerie van Economische Zaken, Landbouw en Innovatie) Cover photos: W. Getreuer, S. van de Koppel Citation: Van de Koppel, S., N. van Kessel, B.H.J.M. Crombaghs, W. Getreuer & H.J.R. Lenders, 2012. Risk Analysis of the Russian Rat Snake (Elaphe schrenckii) in the Netherlands. Natuurbalans - Limes Divergens BV, Nijmegen / ReptielenZoo SERPO, Delft / Radboud University, Nijmegen. No part of this report may be reproduced and/or published by means of scanning, internet, photocopy, microfilm or any other means, without the prior written consent of the client indicated above and Natuurbalans-Limes Divergens BV nor may it, without such approval, be used for any work other than for which it was manufactured. -
Journal of Science Evaluation of the Reptilian Fauna in Amasya Province, Turkey with New Locality Records
Research Article GU J Sci 31(4): 1007-1020 (2018) Gazi University Journal of Science http://dergipark.gov.tr/gujs Evaluation of The Reptilian Fauna in Amasya Province, Turkey with New Locality Records Mehmet Kursat SAHIN1,2, *, Murat AFSAR3 1Hacettepe University, Faculty of Science, Biology Department, 06800, Ankara, Turkey 2Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Biology Departmet, Karaman, Turkey 3Manisa Celal Bayar University, Faculty of Science and Letters, Biology Department, Manisa, Turkey Article Info Abstract The present study investigated the reptilian fauna in Amasya Province, Turkey. Reptile species Received: 14/01/2018 were identified from collections made during field studies or recorded in literature, with some Accepted: 18/06/2018 new locality records obtained. Field studies were undertaken over two consecutive years (2016 and 2017). Two lacertid species, one skink species, two colubrid species and one viper species were officially recorded for the first time or their information was updated. In addition to Keywords species locality records, chorotypical and habitat selection were also assessed and the Viper International Union for Conservation of Nature Red List of Threatened Species criteria Reptilia included. Data on the distribution and locality information for each taxon is also provided. Our Fauna findings demonstrate that Amasya might be an ecotone zone between the Mediterranean, Chorotype Caucasian, and European ecosystems. Although there are some concerns for the sustainable Eunis dynamics of reptilian fauna, relatively rich and different European nature information system habitat types provide basic survival conditions for reptilian fauna in the province. 1. INTRODUCTION Turkey is the only country that almost entirely includes three of the world’s 34 biodiversity hotspots: the Caucasus, Irano-Anatolian, and Mediterranean [1]. -
Dicephalism in Aesculapian Snake, Zamenis Longissimus (Serpentes, Colubridae) from Montenegro
Herpetology Notes, volume 14: 649-651 (2021) (published online on 10 April 2021) Dicephalism in Aesculapian snake, Zamenis longissimus (Serpentes, Colubridae) from Montenegro Slađana Gvozdenović1,*, Vuk Iković1, and Marko Nikolić2 Dicephalism, also known as axial bifurcation or caught by a domestic cat but was not collected, so the somatodichotomy, is a phenomenon when an animal description of the specimen’s morphology is given have two heads. According to Devkota et al. (2020), based on photographs. dicephalism rarely occurs in nature, while most reports The specimen was alive, juvenile, with well developed, involve snakes. According to Devkota et al. (2020), completely separated heads – prodichotomy and both up until now, the number of verified and recorded heads were with two eyes (Fig. 2). The individual was cases of dicephalism in snakes is 1987. The most about 15–20 cm in length. The colour pattern was as common types of dicephalism are: prodichotomy usual in aesculapian juveniles, several rows of small – complete separation and development of two heads dark spots on the dorsal side and a boldly marked head and craniodichotomy – heads are not entirely separated, with yellow blotch on sides of both heads (Fig. 2). After has two snouts and either three or four eyes, depending locals took photographs, the cat took the snake away. It upon the separation of the heads (Wallach and Herman, is not known if the snake survived. 2019). Dicephalism can be a result of both, genetic and This is the second documented finding of two-headed environmental factors. Wallach (2007) marked different snakes in Montenegro. The first finding was a juvenile causes of bicephaly: incomplete division of a single Four-lined snake (Elaphe quatuorlineata) in Dobrota, embryo; partial fusion of two embryos; abnormally low Kotor (Gvozdenović and Čavor, 2015). -
Molecular Cloning and Structural Modelling of Gamma-Phospholipase A2 Inhibitors from Bothrops Atrox and Micrurus Lemniscatus
International Journal of Biological Macromolecules 103 (2017) 525–532 Contents lists available at ScienceDirect International Journal of Biological Macromolecules j ournal homepage: www.elsevier.com/locate/ijbiomac Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes a b b b Carina G. Picelli , Rafael J. Borges , Carlos A.H. Fernandes , Fabio M. Matioli , a a a a,c,d Carla F.C. Fernandes , Juliana C. Sobrinho , Rudson J. Holanda , Luiz S. Ozaki , a a b a Anderson M. Kayano , Leonardo A. Calderon , Marcos R.M. Fontes , Rodrigo G. Stábeli , a,e,∗ Andreimar M. Soares a Centro de Estudos de Biomoléculas Aplicadas a Saúde, CEBio, Fundac¸ ão Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia and Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho, RO, Brazil b Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil c Center for the Study of Biological Complexity, Life Sciences, Virginia Commonwealth University, 23284, Richmond, USA d PVE-CNPq, Brazil e Centro Universitário São Lucas, UNISL, Porto Velho, RO, Brazil a r t i c l e i n f o a b s t r a c t Article history: Phospholipases A2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential Received 30 January 2017 role in this resistance. These endogenous inhibitors may be classified by their fold in PLI␣, PLI and Received in revised form 3 May 2017 ␥ PLI . Phospholipases A2 (PLA2s) develop myonecrosis in snake envenomation, a consequence that is Accepted 15 May 2017 not efficiently neutralized by antivenom treatment. -
(CAMERANO, 1891). Where Z
41768P_Herpetozoa_Kern_S79_96_ohne_41768P_Herpetozoa_Kern_S79_96.qxd 27.01.11 11:32 Seite 8 86 SHORT NOTE HERPETOZOA 23 (3/4) Wien, 30. Jänner 2011 SHORT NOTE HERPETOZOA 23 (3/4) Wien, 30. Jänner 2011 SHORT NOTE 87 and the Italian Aesculapian Snake Z. linea- tus (CAMERANO, 1891), which is endemic to the central-southern Italian Peninsula and Sicily; its occurrence in Sardinia needs to be confirmed (see RAZZETTI & ZANGHELLINI 2006). LENK & WÜSTER (1999) indicated the northern limit of Z. lineatus near Pannarano (province of Benevento, Campania region, southern Italy) and established the southern limit of Z. longissimus near Rosello (pro- vince of Chieti, Abruzzi, Central Italy; see also RAZZETTI & ZANGHELLINI 2006). How- ever, recently, CAPULA et al. (2006) revised the distribution of both species in Italy con- sidering the Campania region (Southern Italy) as a parapatric contact area and sug- gested an analogous pattern for the Apulian region where they recorded Z. longissimus for the first time. Finally, CORSETTI & RO- MANO (2008) provided records of the pres- ence of both species in a mountainous chain of the Pre-Apennine, the Volsci Chain (Latium, Central Italy), establishing the northern limit of the range of Z. lineatus in the province of Frosinone and the western limit in the province of Latina which consti- tutes a consierable northward extension of the previously known boundaries. Here we provide a new record from the Lepini Mountains, a northern subgroup of the Volsci Chain, which further extends S the range limit of the species. In May 2010 we found a road-killed Z. lineatus. The site is called “Piano della Civita”, in the town of Artena, province of Rome (WGS84; UTM coordinates: X = 0326303, Y = 4621384; altitude: 900 m a.s.l.; Fig.