Feasibility of Colliding Beam Fusion-Catalyzed Fast Fission

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Colliding Beam Fusion-Catalyzed Fast Fission Reactor Physics: General—II 787 Bogdan C. Maglich California Science & Engineering Corporation, 16540 Aston St., Irvine CA. 92606 [email protected] (7) Invention of ion colliding beams1 (1972) presented a 2 challenging alternative to confinement of ions in plasmas ݊஽஽ሺʹǤͶሻ ൅ ܷ ՜ ʹܻ ൅ ʹǤͷ݊ ൅ ʹͳͷ (8) (1960). Unique feature of colliding-beam machines, as opposed ݊ு௘்ሺ͸ሻ ൅ ܷ ՜ ʹܻ ൅ ʹǤͷ݊ ൅ ʹͳͷ (9) to plasmas, is the long energy confinement time of colliding ்் beam systems from τE = 7 hours (Brookhaven) to 3 months ݊ ሺ͵Ǥͷሻ ൅ ܷ ՜ ʹܻ ൅ ʹǤͷ݊ ൅ ʹͳͷ (10) (Fermilab, CERN) because they operate above the critical ஽் energy ~ 200 keV. Unlike random motion, colliding beams ݊ ሺͳͶሻ ൅ ܷ ՜ ܷ ൅ Ͷ݊ 4th generation: CHAIN FISSION are ordered systems and as such, subject to (1) magnetic U beam injection, mostly focusing forces, (2) external control by a combination of external periodic or aperiodic signals and (3) time average (11) neutralization via electron cloud oscillations. st with݊௙ሺ lowͳǤͷ levelሻ 1൅ ܷgeneration ՜ ʹܻ ൅ ʹǤͷ݊injection ൅ ʹͳͷ (1 – 2). This is a follow-up of paper #14125 at this Meeting describing a compact colliding beam fusion test breeder reactor Migma IV that stored self-colliding deuterons of 725 keV with an energy confinement time of 24 s, resulting in copious production of tritium and helium-3 isotopes. A quest is presented here of the feasibility of injecting a 4 MeV 238U+ beam3 in addition to 2 MeV D+ beam, into auto- collider Migma IV at 1.4 MeV4-6; this is equivalent to kinetic temperature of ~1010 oK. (Figs. 1 and 2). D+D neutrons catalyze fusion-fission chain until the operating regime is reached in 4th generation in 1 – 10 s (jump-start), as follows 1st generation: D+ beam injection (1) ܦ൅ܦ՜ܶ൅݌൅Ͷ (2) ଷ ܦ൅ܦ՜݊൅ ܪ݁ ൅ ͵Ǥ͵ 2nd generation: D+ beam injection (2) ଷ ܦ൅ܦ՜݊൅ ܪ݁ ൅ ͵Ǥ͵ (3) ܦ ൅ ܶ ՜ ݊ ൅ ߙ ൅ ͳ͹Ǥ͸ (4) Fig. 1. D+D Auto-Collider Migma IV. Reactor chamber (a ଷ ܪ݁ ൅ܶ՜݊൅݌൅ߙ൅ͳʹ (5) disc 1 m diameter, 0.2 m long) is sandwiched between pairs of superconducting NiTi weak focusing magnets (6 T on coil, ܶ ൅ ܶ ՜ ߙ ൅ ʹ݊ ൅ ͳͳǤ͵ 3.2 T midplane); V = 5 liter, baked 450 °C for 24 hours. 3rd generation: STRAIGHT FISSION Chamber interior is lined with fast neutron reflector. See Fig. U and D beam simultaneous injection 3 ­ Van de Graaf + n's from reactions (2, 3, 4, 5) colliding with U. Accelerator injected 1.45 MeV, D2 ions into chamber center (6) where Lorentz plus collisional dissociation converted them into self-colliding orbits of 725 keV (Fig. 4). ݊஽்ሺͳͶሻ ൅ ܷ ՜ ʹܻ ൅ ʹǤͷ݊ ൅ ʹͳͷ Transactions of the American Nuclear Society, Vol. 112, San Antonio, Texas, June 7–11, 2015 788 Reactor Physics: General—II Fig. 2 Modifications of Migma 4 system for Deuterium and Uranium auto-collider. Top view show U beam injection and fission fragments ejection perpendicular to it. Note the high reactivities of Reactions (1, 2) and (6 – 10) of and , respectively, for head-on + colliding D +D+ିଶଶ at 1 MeV each.ିଶଵ σf b as En 1 MeV. Inൌ addition ͵ ൈ ͳͲ to powerͳൈͳͲ generation through fission, 4 otherۄߪݒۃ fusion reactions of the type D+3He b՜ͳ α +p+ 18՜ MeV and will generate directly convertibleଷ power. Contribution to energy balance from fusionܪ݁ ൅ and ܶ ՜ spallation ݀ ൅ ߙ ൅ neutrons ͳͶǤ͵ is not considered at this stage. Fission fragments, Y, charge multiplicity m = 5-10, are magnetically funneled into decelerator for DC conversion or modulated for microwave pickup (Fig. 3). The process takes place in UH vacuum, hence all 215 MeV produced, less the neutrons, is carried by charged particles. Fig. 3. Conceptual design of direct electrostatic conversion of kinetic energy of fission fragments and of non-fissioned U + + ions via two electrostatic decelerators (arrows to left and Referring to Fig. 4, DC beams of D2 and U ions from right). Alternate method for direct conversion into RF power the same or two different accelerators are trapped in the is proposed in Ref. 8. Neutron reflector is indicated in green. center of a magnetic field B = 3.2 T by Lorentz and collisional dissociations and ionizations into self-colliding D+ and U + Unique feature of auto-collider, not obtained in the orbits, known as migma, and are stored continuously colliders, is the time-average neutralization of stored ion colliding with an energy confinement time τ~24 s (Fig. 5) in beam by the externally controlled oscillations of the electron vacuum 5x10-9 torr. With advanced vacuum technologies τ is cloud through the ions. Energy of the instability frequency is projected to exceed 1000 s. drained away by the imposed external frequency, thus Transactions of the American Nuclear Society, Vol. 112, San Antonio, Texas, June 7–11, 2015 Reactor Physics: General—II 789 potential instability perturbation is controlled. Hence, the Injection of D2 beam of 1,450 keV, 0.5 mA, stopped at 8 sec; nuclear reaction time << τ i.e. stored beam depletes via non-linear stabilization done by electron cloud oscillations fission reactions much faster than via classical beam losses. through stored ions took over (Ref. 6). Fig. 4. Reactor chamber (Diameter = 1 m) of Auto- Collider. Cross section through z=0 plane. A 1 MeV DC U2+ + and D2 beam, 10 A, is injected into central of symmetry of a Fig. 6. Electric power density m-3 assuming conversion focusing NiTi magnet Bz = 3.2 T, resulting in Lorentz and efficiency η = 1. F = no. of reactions involved. + collisional capture into U self-colliding orbits of 1 MeV. U : + orbits of trapped U migma ions; black circle: orbits of D migma. Neutron reflector is indicated in green. While many issues were left moot of this SUMMARY, our conceptual physics quest provides ballpark numbers of While Migma IV used weak-focusing magnets, the the power density that might be produced: 100 - 1,000 proposed system must use strong focusing migma magnets MW/m3, in a disk shaped cylinder or cell, with obvious 9 designed for the purpose by Blewett to gain a factor of 100 ecological advantages over DT fusion reactors for which (i) in colliding beam density. direct conversion is unthinkable and (ii) thermal conversion Referring to Fig. 6, with 400 Amp D and U current, 100 of 14 MeV is an order of magnitude more cumbersome than 238 MW m-3 may be achievable with pure U in operating that of fission reactors (iii) 20 - fold energy release per regime. reaction and (iv) cost of T fuel per energy produced is 100 235 238 -3 If 1% U is injected together with U, 1 GWm may be times that of fission. This offers a reasonable incentive to achieved with 400 amp on operating regime, with F = 5 where conduct a simulation and engineering study. F = no. of Reaction (6 – 10). Key issue is to bring the system Compared to the Migma IV described here, to operating regime. 1. Strong focusing9 confinement should replace the weak focusing to gain the usual factor of 100-1000 in stored ion density (Fig. 7); and confinement time; 2. Stabilization by driven oscillations of electron cloud should include new development that took place in the field of election cloud stabilization of colliding beams; 3. Study of extraction of the electrically charged fission fragments and fusion products is required to determine conversion efficiency; 4. Design study of a multi cylinder fission engine by stacking cells. Fig. 5. Measurement of ion energy confinement time τE = 24 4 s, in Migma IV. Amplitudes of radial and axial RF spectra produced by 725 keV self-colliding orbits of D+. േ Transactions of the American Nuclear Society, Vol. 112, San Antonio, Texas, June 7–11, 2015 Transactions of the American Nuclear Society, Vol. 112, San Antonio, Texas, June 7–11, 2015 790 Reactor Physics: General—II 6. MAGLICH BC, CHANG TF: Stabilization by electron oscillations of stored ions at densities in excess of space-charge limit; Phys. Rev. Lett. 70, 299 (1993). Maglich BC, Menasian S.: U.S. Patent 4,788,024. 7. MAGLICH BC, HESTER T, SRIVINIVASAN M: Production of Tritium at zero cost in Blewett strong-focusing self-collider; Northern American particle accelerator conference, Sept. 29, 2013. 8. S. MENASIAN, Radio frequency direct conversion of Migma power Ref. 3. p. 209 9. BLEWETT J.P., Ring magnets in migma systems Ref. 3, p. 214; also Part. Acc. 34, 13 (1990). 10. MAGLICH BC, et al., “50 Years with Fission” Symp. Nat. Ac. Sci. (USA), p. 761 (89) Amer. Nucl. Soc. (Publisher). Fig. 7. EXYDER7,9. Strong focusing fusion-catalyzed fission reactor with 8 injectors (1 – 8). RFQ accelerators; (compare with Fig. 4); ion sources not shown. Note added in proof: It was pointed – out that the proposed system is highly proliferation resistant because the production of Pu induced by fast neutrons, which is the case here, has thousand times lower cross section than that produced with thermal neutrons. This paper opens the category of Colliding-Beam Hybrid Fusion Fission Reactor (CB-HFFR). Acknowledgements: Thanks are due to profs. K. Shultis and R. Glauber , Dr. W. Fischer (BNL), and Dr. T. Hester for their constructive input. *Patent pending. 1. JOHNSON K, CERN intersecting storing rings (ISR); Proc. Nat. Acad. Sci.; USA 70, 619 (1973). 2. GILBERT FC, HECKROTTE W, HESTER RE, KILLEEN J, VAN ATTA CM: High energy molecular ion injection into a mirror machine; UCRL-5827 Controlled Thermonuclear Processes, UC20, TID-4500, Feb. 1960 TID 4500 (15th Edition). 3. W. FISCHER, Measurement of the total cross section of uranium-uranium collisions at √s=192.8 GeV.
Recommended publications
  • Digital Physics: Science, Technology and Applications
    Prof. Kim Molvig April 20, 2006: 22.012 Fusion Seminar (MIT) DDD-T--TT FusionFusion D +T → α + n +17.6 MeV 3.5MeV 14.1MeV • What is GOOD about this reaction? – Highest specific energy of ALL nuclear reactions – Lowest temperature for sizeable reaction rate • What is BAD about this reaction? – NEUTRONS => activation of confining vessel and resultant radioactivity – Neutron energy must be thermally converted (inefficiently) to electricity – Deuterium must be separated from seawater – Tritium must be bred April 20, 2006: 22.012 Fusion Seminar (MIT) ConsiderConsider AnotherAnother NuclearNuclear ReactionReaction p+11B → 3α + 8.7 MeV • What is GOOD about this reaction? – Aneutronic (No neutrons => no radioactivity!) – Direct electrical conversion of output energy (reactants all charged particles) – Fuels ubiquitous in nature • What is BAD about this reaction? – High Temperatures required (why?) – Difficulty of confinement (technology immature relative to Tokamaks) April 20, 2006: 22.012 Fusion Seminar (MIT) DTDT FusionFusion –– VisualVisualVisual PicturePicture Figure by MIT OCW. April 20, 2006: 22.012 Fusion Seminar (MIT) EnergeticsEnergetics ofofof FusionFusion e2 V ≅ ≅ 400 KeV Coul R + R V D T QM “tunneling” required . Ekin r Empirical fit to data 2 −VNuc ≅ −50 MeV −2 A1 = 45.95, A2 = 50200, A3 =1.368×10 , A4 =1.076, A5 = 409 Coefficients for DT (E in KeV, σ in barns) April 20, 2006: 22.012 Fusion Seminar (MIT) TunnelingTunneling FusionFusion CrossCross SectionSection andand ReactivityReactivity Gamow factor . Compare to DT . April 20, 2006: 22.012 Fusion Seminar (MIT) ReactivityReactivity forfor DTDT FuelFuel 8 ] 6 c e s / 3 m c 6 1 - 0 4 1 x [ ) ν σ ( 2 0 0 50 100 150 200 T1 (KeV) April 20, 2006: 22.012 Fusion Seminar (MIT) Figure by MIT OCW.
    [Show full text]
  • Nuclear Fusion Enhances Cancer Cell Killing Efficacy in a Protontherapy Model
    Nuclear fusion enhances cancer cell killing efficacy in a protontherapy model GAP Cirrone*, L Manti, D Margarone, L Giuffrida, A. Picciotto, G. Cuttone, G. Korn, V. Marchese, G. Milluzzo, G. Petringa, F. Perozziello, F. Romano, V. Scuderi * Corresponding author Abstract Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11Bà3a reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha-particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated. 1 The urgent need for radical radiotherapy research to achieve improved tumour control in the context of reducing the risk of normal tissue toxicity and late-occurring sequelae, has driven the fast- growing development of cancer treatment by accelerated beams of charged particles (hadrontherapy) in recent decades (1). This appears to be particularly true for protontherapy, which has emerged as the most-rapidly expanding hadrontherapy approach, totalling over 100,000 patients treated thus far worldwide (2).
    [Show full text]
  • Maximizing Specific Energy by Breeding Deuterium
    Maximizing specific energy by breeding deuterium Justin Ball Ecole Polytechnique F´ed´eralede Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland E-mail: [email protected] Abstract. Specific energy (i.e. energy per unit mass) is one of the most fundamental and consequential properties of a fuel source. In this work, a systematic study of measured fusion cross-sections is performed to determine which reactions are potentially feasible and identify the fuel cycle that maximizes specific energy. This reveals that, by using normal hydrogen to breed deuterium via neutron capture, the conventional catalyzed D-D fusion fuel cycle can attain a specific energy greater than anything else. Simply surrounding a catalyzed D-D reactor with water enables deuterium fuel, the dominant stockpile of energy on Earth, to produce as much as 65% more energy. Lastly, the impact on space propulsion is considered, revealing that an effective exhaust velocity exceeding that of deuterium-helium-3 is theoretically possible. 1. Introduction The aim of this work is to investigate the basic question \What fuel source can provide the most energy with the least mass?" For this question, we will look into the near future and assume that the current incremental and steady development of technology will continue. However, we will not postulate any breakthroughs or new physical processes because they cannot be predicted with any certainty. It is already well-known that the answer to our question must involve fusion fuels [1,2], but nothing more precise has been rigorously establishedz. A more precise answer may be useful in the future arXiv:1908.00834v1 [physics.pop-ph] 2 Aug 2019 when the technology required to implement it becomes available.
    [Show full text]
  • Yol 2 7 Ns 1 0 Barc/1995/P/005 O O 5 Government of India 6 Atomic Energy Commission
    TRN-IN9600313 S BARC/i995)!>/005 CO I> NUCLEAR PHYSICS DIVISION BIENNIAL REPORT 1993-1994 Edited by K. Kumar and S. K. Kataria 1995 YOL 2 7 NS 1 0 BARC/1995/P/005 O O 5 GOVERNMENT OF INDIA 6 ATOMIC ENERGY COMMISSION U 0! NUCLEAR PHYSICS DIVISION BIENNIAL REPORT 1993-1994 Edited by: K. Kumar and S.K. Kataria Nuclear Physics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1995 BARC/1993/P/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as p»r IS t 9400 - 1980) 01 Security classification t Unclassified 02 Distribution : External 03 Report status t New 04 Series 3 BARC External 03 Report type : Progress Report 06 Report No. : BARC/1995/P/005 07 Part No. or Volume No. t 08 Contract No. s 10 Title and subtitle i Nuclear Physics Division biennial report 1993-1994 11 Collation t 93 p., figs., tabs. 13 Project No. : 2O Personal author (s) i K. Kumar; S.K. Kataria (eds.) 21 Affiliation of author (s) i Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay 22 Corporate author(s) i Bhabha Atomic Research Centre, Bombay-400 083 23 Originating unit s Nuclear Physics Division, BARC, Bombay 24 Sponsor(s) Name i Department of Atomic Energy Type i Government 30 Date of submission s August 1993 31 Publication/Issue date September 1995 ccntd...(ii> (ii) 40 Publisher/Distributor i Head, Library and Information Division, Bhabha Atomic Research Centre, Bombay 42 Form of distribution i Hard Copy 90 Language of text i English 91 Language of summary i English 92 No.
    [Show full text]
  • Energy Devices and Processes Generally Suppressed
    Energy Devices and Processes Generally Suppressed Strategic Overview of Energy Technology Suppression Introduction Research shows that over the past 75 years a number of significant breakthroughs in energy generation and propulsion have occurred that have been systematically suppressed. Since the time of Tesla, T. Townsend Brown and others in the early and mid-twentieth century we have had the technological ability to replace fossil fuel, internal combustion and nuclear power generating systems with advanced non-polluting electromagnetic and electro-gravitic systems. The open literature is replete with well-documented technologies that have surfaced, only to later be illegally seized or suppressed through systematic abuses of the national security state, large corporate and financial interests or other shadowy concerns. Technologically, the hurdles to achieve what is called over- unity energy generation by accessing the teeming energy in the space around us are not insurmountable. Numerous inventors have done so for decades. What has been insurmountable are the barriers created through the collusion of vast financial, industrial, oil and rogue governmental interests. In short, the strategic barriers to the widespread adoption of these new electromagnetic energy-generating systems far exceed the technological ones. The proof of this is that, after many decades of innovation and promising inventions, none have made it through the maze of regulatory, patenting, rogue national security, financial, scientific and media barriers that confront the inventor or small company. Categories of Suppression Our review of now-obscure technological breakthroughs show that these inventions have been suppressed or seized by the following broad categories of actions: Acquisition of the technology by 'front' companies whose intent have been to 'shelve' the invention and prevent the device from coming to market.
    [Show full text]
  • Nuclear-Physics Aspects of Controlled Thermonuclear Fusion: Analysis of Promising Fuels and Gamma-Ray Diagnostics of Hot Plasma V
    Physics of Atomic Nuclei, Vol. 63, No. 12, 2000, pp. 2051–2066. Translated from Yadernaya Fizika, Vol. 63, No. 12, 2000, pp. 2147–2162. Original Russian Text Copyright © 2000 by Voronchev, Kukulin. REVIEW Nuclear-Physics Aspects of Controlled Thermonuclear Fusion: Analysis of Promising Fuels and Gamma-Ray Diagnostics of Hot Plasma V. T. Voronchev1) and V. I. Kukulin Institute of Nuclear Physics, Moscow State University, Vorob’evy gory, Moscow, 119899 Russia Received February 15, 2000 Abstract—A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydro- gen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B, and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is consid- ered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of low-energy D + 6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear- structure factors leads to an additional enhancement of the rate parameters 〈σv〉 for the (d, pt) and (d, nτ) chan- nels by 10–40%.
    [Show full text]
  • Introduction to Fusion Energy Plasma Physics (K
    BOOK REVIEWS S',".'"" o book, tor review " based on the editor's 'P'"'""' ",,,d'", possible reader E interest and on the availability of the book to the editor. Occasional selections may include II. L><:5.NB; ns books on topics somewhat peripheral to the subject matter ordinarily considered acceptable. 1111. Controlled Nuclear Fusion - Fundamentals of Its experiments and design studies have evidently so consumed Utilization for Energy Supply the time of experienced workers that there is a great short­ age of rigorous but comprehensible review articles that Authors J. Raeder, K. Borass, R. Bunde, W. should serve as the basis for such a text. Danner, R. Klingelhofer, L. Lengyel, In summary, the book by Raeder et al. should serve as F. Leuterer, M. Soli a useful supplementary text for courses on controlled fusion and a useful enough reference to justify its purchase by Publisher John Wiley & Sons, Inc., Somerset, researchers and instructors active in the various fields of New Jersey (1986) tokamak research that it covers. Despite the recent publica­ tion of a number of very good efforts, the definitive, self­ Pages 316 (illustrated) contained, introductory text on fusion reactor design and a more widely useful reference work for tokamak researchers Price $100.00 remain to be written. Clifford E. Singer Reviewer Clifford E. Singer received his PhD at the University of California, Berkeley. He has worked on the theory and This book is a translation of Kontrol/ierte Kernfusion, applied physics ofplasma transport in tokamak experiments written in 1980. Despite the delay in translation, the book and reactors at Princeton Plasma Physics Laboratory (and remains a timely summary of many aspects of tokamak the University ofIllinois) since 1977.
    [Show full text]
  • Laser Boron Fusion Reactor with Picosecond Petawatt Block Ignition
    Laser boron fusion reactor with picosecond petawatt block ignition Heinrich Hora1*, Shalom Eliezer2, Jiaxiang Wang3, Georg Korn4, Noaz Nissim2, Yanxia Xu3, Paraskevas Lalousis5, Götz Kirchhoff6 and George H. Miley7 1Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia 2SOREQ Research Centre, Yavne, Israel 3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 4ELI-Beam, Prague, Czech Republic 5Institute of Electronic Structure and Laser FORTH, Heraklion, Greece 6UJG Management GmbH, 85586 Poing, Germany 7Dept. Nuclear, Plasma & Radiol. Engineering, University of Illinois, Urbana IL, USA *[email protected] Abstract. Fusion of hydrogen with the boron Isotope 11, HB11 at local thermal equilibrium LTE, is 105 times more difficult than fusion of deuterium and tritium, DT. If - in contrast - extreme non-equilibrium plasma conditions are used with picoseconds laser pulses of more than 10PW power, the difficulties for fusion of HB11 change to the level of DT. This is based on a non-thermal transfer of laser energy into macroscopic plasma motion by nonlinear (ponderomotive) forces as theoretically predicted and experimentally confirmed as “ultrahigh acceleration”. Including elastic nuclear collisions of the alpha particles from HB11 reactions results in an avalanche process such that the energy gains 1 from HB11 fusion is nine orders of magnitudes above the classical values. In contrast to preceding laser fusion with spherical compression of the fuel, the side-on direct drive fusion of cylindrical uncompressed solid boron fuel trapped by magnetic fields above kilotesla, permits a reactor design with only one single laser beam for ignition within a spherical reactor.
    [Show full text]
  • Fusion Reactions Initiated by Laser-Accelerated Particle Beams in a Laser-Produced Plasma
    ARTICLE Received 24 Jan 2013 | Accepted 27 Aug 2013 | Published 8 Oct 2013 DOI: 10.1038/ncomms3506 Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma C. Labaune1, C. Baccou1, S. Depierreux2, C. Goyon2, G. Loisel1, V. Yahia1 & J. Rafelski3 The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equili- brium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton- boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. 1 LULI, Ecole Polytechnique, CNRS, CEA, UPMC; Palaiseau 91128, France. 2 CEA, DAM, DIF, Arpajon F-91297, France. 3 Department of Physics, The University of Arizona, Tucson, Arizona 85721-0081, USA. Correspondence and requests for materials should be addressed to C.L. (email: [email protected]). NATURE COMMUNICATIONS | 4:2506 | DOI: 10.1038/ncomms3506 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3506 nertial confinement fusion research over the past 40 years Results has been focused on the laser-driven reaction of deuterium Experimental set-up.
    [Show full text]
  • The Fairy Tale of Nuclear Fusion L
    The Fairy Tale of Nuclear Fusion L. J. Reinders The Fairy Tale of Nuclear Fusion 123 L. J. Reinders Panningen, The Netherlands ISBN 978-3-030-64343-0 ISBN 978-3-030-64344-7 (eBook) https://doi.org/10.1007/978-3-030-64344-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland When you are studying any matter or considering any philosophy, ask yourself only what are the facts and what is the truth that the facts bear out.
    [Show full text]
  • New New Energy
    Cleantech.org Webinar Series NEW NEW ENERGY September 20, 2012 Dr. Edward Beardsworth Why we are here Current energy sources all have drawbacks and limitations: (fossil, solar, geothermal, nuclear, biomass, wind, oceans) We’re always looking for something new & better. We need and want (new) sources (aka “holy grails”) which are: 1. Cheap, 2. Clean and 3. Inexhaustible. Today -- an overview of what’s being looked at for: NEW NEW Sources of Energy 2 Outline NEW NEW ENERGY I. Breakthroughs -- ”Accepted Science” II. Breakthroughs -- "Not Accepted Science” -- The fun stuff Goal 1: Greater awareness of the range of stuff being worked on. Goal 2: Provide a deeper understanding of underlying science. 3 The Presenter’s Background Dr. Edward Beardsworth Energy Technology Advisors PhD in Physics from Rutgers University Brookhaven National Lab -- interdisciplinary analyses of energy systems during the first energy crisis of the 1970s. Electric Power Research Institute (EPRI) Jane Capital Partners LLC, Advisor to Nth Power, Garage Technology Ventures, the Cleantech Group, Cleantech Open, and many startups. UFTO program, providing technology scouting to 30 of the top utility R&D and corporate venture arms. Technical Director, The Hub Lab, a stealth R&D program funding revolutionary energy technologies. 4 The Presenter’s Background The Hub Lab a stealth grant program funding R&D in revolutionary energy technologies. • Two years of operation 2008-2010 • 7 small grants (the “Patron” model) • Specific (and restrictive) criteria: – Primary energy sources – New Science, not incremental. – “Scientific method” / ”rigor” / ”people” – Non-establishment actors more than welcome Grants made: • Anomalies in Energetics of a Magnetostrictive Alloy (2nd Law) • Semiconductor MEMS device (2nd Law) • Non-Semiconductor PV (2 projects...both raised further funds) • Fluid Dynamics without Numerical Simulation Successful.
    [Show full text]
  • Extreme Laser Pulses for Possible Development of Boron Fusion Power Reactors for Clean and Lasting Energy
    Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy H. Hora*1, S. Eliezer2, G. J. Kirchhoff3, G.Korn4, P. Lalousis5, G. H. Miley6 and S. Moustaizis7 1Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia 2SOREQ Research Centre, Yavne, Israel 3UJG Management GmbH, 85586 Poing, Germany 4 ELI-Beam, Prague, Czech Republic. 5Institute of Electronic Structure and Lasers FORTH, Heraklion, Greece 6Dept. Nuclear, Plasma & Radiol. Engineering, University of Illinois, Urbana IL, USA 7Technical University Crete, Laboratory of Matter Structure and Laser Physics, Chania, Greece *[email protected] ABSTRACT Extreme laser pulses driving non-equilibrium processes in high density plasmas permit an increase of the fusion of hydrogen with the boron isotope 11 by nine orders of magnitude of the energy gains above the classical values. This is the result of initiating the reaction by non-thermal ultrahigh acceleration of plasma blocks by the nonlinear (ponderomotive) force of the laser field in addition to the avalanche reaction that has now been experimentally and theoretically manifested. The design of a very compact fusion power reactor is scheduled to produce then environmentally fully clean and inexhaustive generation of energy at profitably low costs. The reaction within a volume of cubic millimetres during a nanosecond can only be used for controlled power generation. Keywords: boron laser fusion, ultrahigh acceleration, ultrahigh magnetic fields, avalanche HB11 reaction, 1. INTRODUCTION The pollution of the atmosphere with carbon dioxide CO2 was early recognized in a profoundly precise way by Al Gore [1] – when beginning his leadership in this field – with warning into what catastrophe the climate change will go by threatening the whole mankind [2].
    [Show full text]