Extreme Laser Pulses for Possible Development of Boron Fusion Power Reactors for Clean and Lasting Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TAE Technologies G Round Introduction July 2019
TAE Technologies G Round Introduction July 2019 PRIVILEGED AND CONFIDENTIAL 1 Contents TAE Technologies Overview 3 TAE Fusion 10 TAE Life Sciences 13 Disclaimer 17 Contact Information 18 PRIVILEGED AND CONFIDENTIAL 2 TAE Technologies Overview PRIVILEGED AND CONFIDENTIAL 3 “I would like to see the development of fusion power to give an unlimited supply of clean energy and a switch to electric cars.” Stephen Hawking watch video online PRIVILEGEDPRIVILEGED AND AND CONFIDENTIAL CONFIDENTIAL4 4 Vast fusion-incubated IP portfolio primed for commercialization Enables disruptive high-growth businesses Game-changing targeted radiation cancer therapy Revolutionary electric drivetrain platform for road, rail, air and sea Advanced particle accelerators for fusion, POWER GENERATION POWER DISTRIBUTION medicine and more • Fusion R&D • Microgrids • Confinement licensing • Energy storage/buffering • Plasma control • Power switching • Consulting services • Power factor correction PRIVILEGEDPRIVILEGED AND CONFIDENTIAL 5 Investment Opportunity Synopsis TAE is commercializing its intellectual property portfolio • Inflection point in TAE’s evolution • After over 1,100 patents filed and 20 years of R&D – starting to commercialize our technologies and realize accelerated revenues • Multiple tiered opportunities that drive significant value creation around • Fusion power generation technology ($7 trillion cumulative market out to 2040) • Targeted radiation oncology ($30+ billion/yr market for head & neck tumors w/ 6% CAGR) • Mobility technology (e.g. $20+ billion/yr EV drivetrain market w/ 19% CAGR) • Power management technologies (e.g. $10+ billion/yr data center power market w/ 7% CAGR) PRIVILEGED AND CONFIDENTIAL 6 Board, management and investors well-matched to opportunity Drawing on leadership from industry, technology and finance Strong and engaged board including: • Former U.S. -
Progress Towards Polar-Drive Ignition for the NIF
Home Search Collections Journals About Contact us My IOPscience Progress towards polar-drive ignition for the NIF This content has been downloaded from IOPscience. Please scroll down to see the full text. 2013 Nucl. Fusion 53 113021 (http://iopscience.iop.org/0029-5515/53/11/113021) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.125.179.18 This content was downloaded on 06/11/2013 at 22:08 Please note that terms and conditions apply. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 113021 (5pp) doi:10.1088/0029-5515/53/11/113021 Progress towards polar-drive ignition for the NIF R.L. McCrory1,a, R. Betti1,a, T.R. Boehly1, D.T. Casey2, T.J.B. Collins1, R.S. Craxton1, J.A. Delettrez1, D.H. Edgell1, R. Epstein1, J.A. Frenje2, D.H. Froula1, M. Gatu-Johnson2, V.Yu. Glebov1, V.N. Goncharov1, D.R. Harding1, M. Hohenberger1, S.X. Hu1, I.V. Igumenshchev1, T.J. Kessler1, J.P. Knauer1, C.K. Li2, J.A. Marozas1, F.J. Marshall1, P.W. McKenty1, D.D. Meyerhofer1,a, D.T. Michel1, J.F. Myatt1, P.M. Nilson1, S.J. Padalino3, R.D. Petrasso2, P.B. Radha1, S.P. Regan1, T.C. Sangster1, F.H. Seguin´ 2, W. Seka1, R.W. Short1, A. Shvydky1, S. Skupsky1, J.M. Soures1, C. Stoeckl1, W. Theobald1, B. Yaakobi1 and J.D. Zuegel1 1 Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, USA 2 Plasma Science Fusion Center, 173 Albany Street, Massachusetts Institute of Technology, Cambridge MA 02139, USA 3 Department of Physics, State University of New York at Geneseo, 1 College Circle, Geneseo NY 14454, USA E-mail: [email protected] Received 31 December 2012, accepted for publication 4 September 2013 Published 27 September 2013 Online at stacks.iop.org/NF/53/113021 Abstract The University of Rochester’s Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. -
Nuclear Fusion
Copyright © 2016 by Gerald Black. Published by The Mars Society with permission NUCLEAR FUSION: THE SOLUTION TO THE ENERGY PROBLEM AND TO ADVANCED SPACE PROPULSION Gerald Black Aerospace Engineer (retired, 40+ year career); email: [email protected] Currently Chair of the Ohio Chapter of the Mars Society Presented at Mars Society Annual Convention, Washington DC, September 22, 2016 ABSTRACT Nuclear fusion has long been viewed as a potential solution to the world’s energy needs. However, the government sponsored megaprojects have been floundering. The two multi-billion- dollar flagship programs, the International Tokamak Experimental Reactor (ITER) and the National Ignition Facility (NIF), have both experienced years of delays and a several-fold increase in costs. The ITER tokamak design is so large and complex that, even if this approach succeeds, there is doubt that it would be economical. After years of testing at full power, the NIF facility is still far short of achieving its goal of fusion ignition. But hope is not lost. Several private companies have come up with smaller and simpler approaches that show promise. This talk highlights the progress made by one such private company, namely LPPFusion (formerly called Lawrenceville Plasma Physics). LPPFusion is developing focus fusion technology based on the dense plasma focus device and hydrogen-boron 11 fuel. This approach, if it works, would produce a fusion power generator small enough to fit in a truck. This device would produce no radioactivity, there would be no possibility of a meltdown or other safety issues, and it would be more economical than any other source of electricity. -
First Simulations of Turbulent Transport in the Field-Reversed Configuration C
Lau DOI:10.1088/1741-4326/ab1578 EX/P6-37 First Simulations of Turbulent Transport in the Field-Reversed Configuration C. K. Lau1, D. P. Fulton1, J. Bao2, Z. Lin2, T. Tajima1,2, and L. Schmitz1,3 The TAE Team 1TAE Technologies, Inc., Foothill Ranch, CA 92688, USA 2University of California Irvine, CA 92697, USA 3University of California Los Angeles, CA 90095, USA Corresponding Author: C. K. Lau, [email protected] Experimental progress by TAE Technologies has led to successful suppression of MHD insta- bilities in field-reversed configuration (FRC) plasmas using C-2U and C-2W devices. Resultant particle and energy confinement times are on the order of several milliseconds, governed by mi- croturbulence driven transport processes. Understanding these mechanisms is essential towards improved confinement and a viable FRC fusion reactor. Experimental measurements of low frequency density fluctuations in C-2 have shown that fluctuations of the FRC core and SOL exhibit distinct qualities. In the SOL, fluctuations are highest in amplitude at ion-scale lengths and exponentially decrease towards electron-scale lengths. In the core, fluctuations are overall lower in amplitude with a dip in the ion-scale lengths and a slight peak in electron-scale lengths. Using the Gyrokinetic Toroidal Code (GTC), local linear simulations of drift-wave instabilities have found qualitatively similar trends. The SOL is linearly unstable for a wide range of length scales and pressure gradients. On the other hand, the core is shown to be robustly stable due to the stabilizing FRC traits of short field-line connection lengths, radially increasing magnetic field strength, and the large finite Larmor radius (FLR) of ions. -
Digital Physics: Science, Technology and Applications
Prof. Kim Molvig April 20, 2006: 22.012 Fusion Seminar (MIT) DDD-T--TT FusionFusion D +T → α + n +17.6 MeV 3.5MeV 14.1MeV • What is GOOD about this reaction? – Highest specific energy of ALL nuclear reactions – Lowest temperature for sizeable reaction rate • What is BAD about this reaction? – NEUTRONS => activation of confining vessel and resultant radioactivity – Neutron energy must be thermally converted (inefficiently) to electricity – Deuterium must be separated from seawater – Tritium must be bred April 20, 2006: 22.012 Fusion Seminar (MIT) ConsiderConsider AnotherAnother NuclearNuclear ReactionReaction p+11B → 3α + 8.7 MeV • What is GOOD about this reaction? – Aneutronic (No neutrons => no radioactivity!) – Direct electrical conversion of output energy (reactants all charged particles) – Fuels ubiquitous in nature • What is BAD about this reaction? – High Temperatures required (why?) – Difficulty of confinement (technology immature relative to Tokamaks) April 20, 2006: 22.012 Fusion Seminar (MIT) DTDT FusionFusion –– VisualVisualVisual PicturePicture Figure by MIT OCW. April 20, 2006: 22.012 Fusion Seminar (MIT) EnergeticsEnergetics ofofof FusionFusion e2 V ≅ ≅ 400 KeV Coul R + R V D T QM “tunneling” required . Ekin r Empirical fit to data 2 −VNuc ≅ −50 MeV −2 A1 = 45.95, A2 = 50200, A3 =1.368×10 , A4 =1.076, A5 = 409 Coefficients for DT (E in KeV, σ in barns) April 20, 2006: 22.012 Fusion Seminar (MIT) TunnelingTunneling FusionFusion CrossCross SectionSection andand ReactivityReactivity Gamow factor . Compare to DT . April 20, 2006: 22.012 Fusion Seminar (MIT) ReactivityReactivity forfor DTDT FuelFuel 8 ] 6 c e s / 3 m c 6 1 - 0 4 1 x [ ) ν σ ( 2 0 0 50 100 150 200 T1 (KeV) April 20, 2006: 22.012 Fusion Seminar (MIT) Figure by MIT OCW. -
Retarding Field Analyzer (RFA) for Use on EAST
Magnetic Confinement Fusion C. Xiao and STOR-M team Plasma Physics Laboratory University of Saskatchewan Saskatoon, Canada \ Outline Magnetic Confinement scheme Progress in the world Tokamak Research at the University of Saskatchewan 2 CNS-2019 Fusion Session, June 24, 2019 Magnetic Confinement Scheme 3 CNS-2019 Fusion Session, June 24, 2019 Charged particle motion in straight magnetic field A charged particle circulates around the magnetic field lines (e.g., produced in a solenoid) Cross-field motion is restricted within Larmor radius 푚푣 푟 = 퐿 푞퐵 Motion along the field lines is still free End loss to the chamber wall Chamber Wall 4 CNS-2019 Fusion Session, June 24, 2019 Toriodal geometry is the solution However, plasma in simple toroidal field drifts to outboard on the wall 5 CNS-2019 Fusion Session, June 24, 2019 Tokamak Bend solenoid to form closed magnetic field lines circular field line without ends no end-loss. Transformer action produces a huge current in the chamber Generate poloidal field Heats the plasma Tokamak: abbreviation of Russian words for toroidal magnetic chamber 6 CNS-2019 Fusion Session, June 24, 2019 Stellarator • The magnetic field are generated by complicated external coils • No plasma current, no disruptions • Engineering is challenge 7 CNS-2019 Fusion Session, June 24, 2019 Wendelstein 7-X, Greifswald, Germany • Completed in October 2015 • Superconducting coils • High density and high temperature have been achieved 8 CNS-2019 Fusion Session, June 24, 2019 Reversed Field Pinch • Toroidal field reverses direction at the edge • The magnetic field are generated by current in plasma • Toroidal filed and poloidal field are of similar strength. -
TAE Milestone Press Release
Fusion Energy Milestone from TAE Technologies Validates Path to Cost-Competitive Carbon-Free Baseload Energy Company Raises Additional $280M for Reactor-Scale Demonstration Facility “Norman” Platform Outperforms Goals; Generates Stable High-Temperature Plasmas Additional Funds Will Support Final Step Toward Commercialization Foothill Ranch, CA -- April 8, 2021 -- TAE Technologies, the world’s largest private fusion energy company, has announced a landmark fusion technology milestone by producing stable plasma at 50M+ degrees Celsius in a proprietary compact reactor design that can scale to competitive fusion-generated power. This milestone furthers confidence in TAE’s path to commercialization, and has aided the company in raising $280M in additional funding. When combined with prior rounds, TAE has now raised over $880M from some of the world’s most sophisticated investors. The latest financing is the direct result of TAE achieving its most recent scientific milestone on the path to delivering carbon-free baseload energy from the Hydrogen-Boron (aka H-B11 or p-B11) fuel cycle, the most abundant and environmentally friendly fuel source on Earth, capable of sustaining the planet for millennia. This success crucially confirms a key differentiator of TAE’s patented technology: a positive relationship between plasma confinement and reactor temperature, meaning that the company’s compact linear configuration improves plasma confinement as temperatures rise. By generating such stable high temperature plasmas, TAE has now validated that the company’s unique approach can scale to the conditions necessary for an economically viable commercial fusion power plant by the end of the decade. A portion of the capital will be used to initiate development of a demonstration facility called “Copernicus” that will operate well in excess of 100 million degrees Celsius to simulate net energy production from the conventional Deuterium-Tritium (D-T) fuel cycle. -
NIAC 2011 Phase I Tarditti Aneutronic Fusion Spacecraft Architecture Final Report
NASA-NIAC 2001 PHASE I RESEARCH GRANT on “Aneutronic Fusion Spacecraft Architecture” Final Research Activity Report (SEPTEMBER 2012) P.I.: Alfonso G. Tarditi1 Collaborators: John H. Scott2, George H. Miley3 1Dept. of Physics, University of Houston – Clear Lake, Houston, TX 2NASA Johnson Space Center, Houston, TX 3University of Illinois-Urbana-Champaign, Urbana, IL Executive Summary - Motivation This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities. - Highlights of Research Results This NIAC Phase I study provided led to several findings that provide the foundation for further research leading to a higher TRL: first a quantitative analysis of the intrinsic limitations of a propulsion system that utilizes aneutronic fusion products directly as the exhaust jet for achieving propulsion was carried on. Then, as a natural continuation, a new beam conditioning process for the fusion products was devised to produce an exhaust jet with the required characteristics (both thrust and specific impulse) for the optimal propulsion performances (in essence, an energy-to-thrust direct conversion). -
Fission and Fusion Can Yield Energy
Nuclear Energy Nuclear energy can also be separated into 2 separate forms: nuclear fission and nuclear fusion. Nuclear fusion is the splitting of large atomic nuclei into smaller elements releasing energy, and nuclear fusion is the joining of two small atomic nuclei into a larger element and in the process releasing energy. The mass of a nucleus is always less than the sum of the individual masses of the protons and neutrons which constitute it. The difference is a measure of the nuclear binding energy which holds the nucleus together (Figure 1). As figures 1 and 2 below show, the energy yield from nuclear fusion is much greater than nuclear fission. Figure 1 2 Nuclear binding energy = ∆mc For the alpha particle ∆m= 0.0304 u which gives a binding energy of 28.3 MeV. (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ) Fission and fusion can yield energy Figure 2 (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html) Nuclear fission When a neutron is fired at a uranium-235 nucleus, the nucleus captures the neutron. It then splits into two lighter elements and throws off two or three new neutrons (the number of ejected neutrons depends on how the U-235 atom happens to split). The two new atoms then emit gamma radiation as they settle into their new states. (John R. Huizenga, "Nuclear fission", in AccessScience@McGraw-Hill, http://proxy.library.upenn.edu:3725) There are three things about this induced fission process that make it especially interesting: 1) The probability of a U-235 atom capturing a neutron as it passes by is fairly high. -
Fusion Ignition Via a Magnetically-Assisted Fast Ignition Approach
Fusion ignition via a magnetically-assisted fast ignition approach W.-M. Wang1,3*, P. Gibbon2,4†, Z.-M. Sheng3,5,6‡, Y. T. Li1,3, and J. Zhang3,6 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China 2Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre, D-52425 Jülich, Germany 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 4Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 5SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom 6Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China * E-mail: [email protected] † E-mail: [email protected] ‡ E-mail: [email protected] 1 Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-propagate along a 3.5 kilotesla external magnetic field. Within a period of 5 picoseconds, the laser pulses heat a nuclear fuel to reach the ignition conditions. Furthermore, we present the parameter windows of lasers and magnetic fields required for ignition for experimental test. To achieve controlled nuclear fusion energy, the central ignition concept of inertial confinement fusion (ICF) was proposed in 1970s [1-4]. -
Small-Scale Fusion Tackles Energy, Space Applications
NEWS FEATURE NEWS FEATURE Small-scalefusiontacklesenergy,spaceapplications Efforts are underway to exploit a strategy that could generate fusion with relative ease. M. Mitchell Waldrop, Science Writer On July 14, 2015, nine years and five billion kilometers Cohen explains, referring to the ionized plasma inside after liftoff, NASA’s New Horizons spacecraft passed the tube that’s emitting the flashes. So there are no the dwarf planet Pluto and its outsized moon Charon actual fusion reactions taking place; that’s not in his at almost 14 kilometers per second—roughly 20 times research plan until the mid-2020s, when he hopes to faster than a rifle bullet. be working with a more advanced prototype at least The images and data that New Horizons pains- three times larger than this one. takingly radioed back to Earth in the weeks that If that hope pans out and his future machine does followed revealed a pair of worlds that were far more indeed produce more greenhouse gas–free fusion en- varied and geologically active than anyone had ergy than it consumes, Cohen and his team will have thought possible. The revelations were breathtak- beaten the standard timetable for fusion by about a ing—and yet tinged with melancholy, because New decade—using a reactor that’s just a tiny fraction of Horizons was almost certain to be both the first and the size and cost of the huge, donut-shaped “tokamak” the last spacecraft to visit this fascinating world in devices that have long devoured most of the research our lifetimes. funding in this field. -
On TAE's Path to Fusion
On TAE’s Path to Fusion A Private-Sector Perspective Michl Binderbauer | President & CTO | TAE Technologies Committee on aCOMMITTE Strategic ON Plan A STRATEGIC for US Burning PLAN FOR Plasma U.S. BURNING Research, PLASMA General RESEARCH Atomic, | FEBRUARY Feb 26-28, 2018 2018 1 Agenda • Concept, Motivation and History • Key Past Program Accomplishments • Current Status and Next Steps • Overall Perspective Forward – Public-Private Partnership COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 2 TAE Concept Advanced beam driven FRC • High plasma β~1 • compact and high power density • aneutronic fuel capability • indigenous kinetic particles • Tangential high-energy beam injection • large orbit ion population decouples from micro-turbulence • improved stability and transport • Simple geometry • only diagmagnetic currents • easier design and maintenance • Linear unrestricted divertor • facilitates impurity, ash and power removal COMMITTE ON A STRATEGIC PLAN FOR U.S. BURNING PLASMA RESEARCH | FEBRUARY 2018 3 Goals, Issues and Initiatives for FRC Research FESAC TAP report (2008) & ReNeW (2009) Long-range mission • Develop compact (high-β) reactor without toroidal field coils or a central solenoid ITER era goal • Achieve stable, long-pulse keV plasmas with favorable confinement scaling Key issues • Is global stability possible at large s (a/ρi ≥ 30) with low collisionality? • What governs energy transport and can it be reduced at high temperature? • Is energy-efficient sustainment possible at large-s and with good confinement? • Theory and simulation challenges (high-β, kinetic effects, transport) Suggested possible initiatives • Build larger facility with rotating magnetic fields or neutral beam injection (NBI) • Develop comprehensive diagnostics suite (profiles, fluctuations, …) COMMITTE ON A STRATEGIC PLAN FOR U.S.