<<

Energy Efficient : Polar and Direct-Digital Architectures

Jason Thaine Stauth Seth R. Sanders

Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2009-22 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-22.html

February 4, 2009 Copyright 2009, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures

by

Jason Thaine Stauth

B.A. (Colby College) 1999 B.E. (Dartmouth College) 2000 M.S. (University of California, Berkeley) 2006

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

in

Engineering – and Computer Sciences

in the

GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in Charge Professor Seth R. Sanders, Chair Professor Ali M. Niknejad Professor Paul K. Wright

Fall 2008

The dissertation of Jason Thaine Stauth is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

  JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR1`VH R1$1 :CQR%C: 1QJ `H.1 VH %`V 





Q]7`1$.  

7

:QJ.:1JV :% . 1

G `:H 

JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR 1`VH R 1$1 :C"QR%C: 1QJ

#`H.1 VH %`V

7

:QJ.:1JV :% .

QH Q`Q`.1CQQ].71JJ$1JVV`1J$TCVH `1H:CJ$1JVV`1J$:JRQI]% V`H1VJHV

J10V`1 7Q`:C1`Q`J1:5V`@VCV7

`Q`VQ`V .)8:JRV`5.:1`



Q1V` HQJ%I] 1QJ 1 :J 1JH`V:1J$C7 1I]Q` :J  1%V 1J .1$.C7 1J V$`: VR 11`VCV

7 VI8  .1CV :R0:JHV 1J VI1HQJR%H Q` VH.JQCQ$7 .:0V R`10VJ HQJ 1J%Q%

1J V$`: 1QJQ``V: %`V:JRV`01HV1J Q]Q` :GCVRV01HV5]Q1V`HQJ%I] 1QJ1JQ1:

I:=Q`C1I1 1J$`:H Q`QJHQI]% : 1QJ:CHQI]CV61 7:JR .V:G1C1 7 QHQII%J1H: VQ0V`

CQJ$R1 :JHV8/J]Q` :GCVHQII%J1H: 1QJRV01HV5 .V11`VCV `:JI1 V`1Q` VJ .V

RQI1J:J  Q%`HV Q` ]Q1V` HQJ%I] 1QJ5 %H. .:  1J `VHVJ  7V:` .V`V .: GVVJ :

I:=Q` V``Q`  Q 1I]`Q0V .V ]Q1V` V``1H1VJH7 Q` `:JI1 V` H1`H%1 5 V]VH1:CC7 .V

]Q1V`:I]C1`1V`^#_8/J:RR1 1QJ Q]Q1V`HQJ%I] 1QJ51 1JQ1:]]:`VJ  .: VJV`$7

HQJ%I] 1QJ1:J1I]Q` :J IV `1H`Q` `:JI1 V`H1`H%1 8JV`$7HQJ%I] 1QJIQ`V

:HH%`: VC7]`VR1H  .VG: V`7C1`V5V]VH1:CC71.VJ:]Q` :GCV7 VIQ]V`: V11 .:

11RV`:J$VQ`Q% ]% ]Q1V`8 2

/J .11Q`@5]QC:` `:JI1 V`:`H.1 VH %`V:`V]`VVJ VR::]`QI11J$:C V`J: 10V

Q HQJ0VJ 1QJ:C :` V1:J :`H.1 VH %`V8  `:R1 1QJ:C ]QC:` 7 VI %V R7J:I1H

IQR%C: 1QJQ` .V#]Q1V`%]]C7 Q `:JI1 :I]C1 %RV1J`Q`I: 1QJ8.1.VC]]QC:`

7 VI :H.1V0V .1$.V` :0V`:$V ^VJV`$7_ V``1H1VJH7 .:J :` V1:J 7 VI8  QC:`

7 VI.:0V%``V`VR``QIR`::H@`VC: VR QC1JV:`1 75 1IVR:C1$JIVJ Q`:I]C1 %RV

:JR ].:V 1$J:C5 :JR ]Q1V` %]]C7 JQ1V8  2%` .V`IQ`V5 .V :I]C1 %RV :JR ].:V

]: . `V_%1`V G:JR11R . 1$J1`1H:J C7 .1$.V` .:J .V :` V1:J /R4 G:1 0VH Q` Q

`V]`VVJ  .V11RVG:JR]QC:``V]`VVJ : 1QJQ` .V11`VCV1$J:C8

.1 1Q`@ `QH%V QJ V0V`:C HQJ `1G% 1QJ `VC: VR Q 1I]`Q01J$ .V Q]V`: 1QJ Q`

VJV`$7 V``1H1VJ  ]QC:` `:JI1 V`8  .V `1`  HQJ `1G% 1QJ 1 : ]Q1V` %]]C7 JQ1V

:J:C71 ``:IV1Q`@ `Q` JQI1J:CC7 C1JV:` ]Q1V` :I]C1`1V`8  .1 :J:C71 .VC] ]`VR1H 

%]HQJ0V`1QJQ`%]]C7JQ1V Q)2``V_%VJH1VT:HVJ:`1Q .: 1C1@VC71J]QC:`:JR

VJ0VCQ]V `:H@1J$%]]C7RIQR%C: VR `:JI1 V`8%]]C7JQ1V%]HQJ0V`1QJH:JH:%V

01QC: 1QJQ` .V]VH `:CI:@:JR1 11I]Q` :J  Q%JRV` :JR .V%JRV`C71J$H1`H%1 

IVH.:J1I`Q` .1].VJQIVJQJ8

# VHQJR HQJ `1G% 1QJ 1 :J Q] 1I:C Q]V`: 1J$  `: V$7 `Q` .7G`1R 11 H.1J$RC1JV:`

0QC :$V`V$%C: Q`8.VV`V$%C: Q`:`V: `:H 10V`Q`]QC:`7 VI1JHV .V7:H.1V0V

.V11RVG:JR5.1$.R`1RVC1 7]V``Q`I:JHVQ`:C1JV:``V$%C: Q`11 . .V]Q1V`V``1H1VJH7

Q`:11 H.1J$`V$%C: Q`8V.Q1 .: ]: 1I]CVIVJ : 1QJQ`.7G`1R`V$%C: Q`HQ%CR

:H.1V0V .1$.V` V``1H1VJH7 11 . :J Q] 1I1

:0V`:$1J$ Q RV V`I1JV .V Q] 1I%I H%``VJ  `Q` .V R  HQJ0V` V` 1J .V .7G`1R

`V$%C: Q`8  .V Q] 1I1

Q% ]% ]Q1V``:J$V .:J .V `:R1 1QJ:CQC% 1QJ8VRV0VCQ]V6]`V1QJ`Q`Q] 1I%I

V``1H1VJH7::`%JH 1QJQ`H.:`:H V`1 1HQ` .VVJ0VCQ]V1$J:C:JR .V%]]C70QC :$V

`Q` .VC1JV:``V$%C: Q`8

.V`1J:CHQJ `1G% 1QJ1:R1$1 :CR]QC:` `:JI1 V`G:VRQJ]%CVRRVJ1 7IQR%C: 1QJ

Q` .V )2 H:``1V`8  /J V:R Q` %1J$ ]Q1V` %]]C7 IQR%C: 1QJ5 .V :I]C1 %RV ]: . 1

HQJ `QCCVR11 .:R1$1 :CJQ1VR.:]1J$]`QHV8Q`VR%HV]Q1V`HQJ%I] 1QJ5JQ1V

.:]1J$11I]CVIVJ VR1J 1Q :$V7:G:VG:JR∆ΣIQR%C: Q`Q]V`: 1J$: "7<

:JR : ]`Q$`:IIVR ]%CVRRVJ1 7 IQR%C: Q` Q]V`: 1J$ :  897<8  # H1`H%1 

1I]CVIVJ VR1J JI";%V:HC: # Q:H.1V0V%] QRIQ% ]% ]Q1V`8

.V 7 VI :H.1V0V ]V:@ V``1H1VJH7 Q`  8 Q :  897< 1JHC%R1J$ ]Q1V` Q` .V #

R`10V`:JR`1C V`1JV` 1QJCQ8"1:]]`Q61I: VC78Q`Q` 4@:JRπL 4@

HQJ VCC: 1QJ `:=VH Q`1V8  .V ]VH `:C I:@ `Q` C%V QQ .8U ) 1: 1`1VR%JRV`

JQ`I:CHQJR1 1QJ8

;0V`:CC .11Q`@.1$.C1$. V0V`:C VH.J1_%V .: .VC]1I]`Q0VVJV`$7V``1H1VJH7Q`

11`VCV7 VI87Q]V`%CC7 .VVQC% 1QJ11CC]:1J :`Q:RI:]Q``% %`V1Q`@ .: 11CC

.VC] HQIIV`H1:C RV0VCQ]IVJ  :JR CV:R Q I:J7 H.:CCVJ$1J$ `VV:`H. ]`QGCVI :JR

:H:RVI1HHQJ `1G% 1QJ8

     `Q`VQ`V .)8:JRV` Dissertation Committee Chair Contents i



Contents

.:] V` J `QR%H 1QJ88888888888888888888888888888888888888888888888888888888888888888888888 .:] V` `:JI1 V`%JR:IVJ :C 8888888888888888888888888888888888888888888888888 88 QI]CV6"QR%C: 1QJ 8888888888888888888888888888888888888888888888888888888888888888888888888888888888 88 1$1 :C"QR%C: 1QJD1I1 : 1QJ 8888888888888888888888888888888888888888888888888888888888888888888 8 :` V1:J `:JI1 V` 88888888888888888888888888888888888888888888888888888888888888888888888888888888 88 :` V1:J`:JI1 V`79VJV`:C;]V`: 1QJ:JR/%V 88888888888888888888888888888  8 QC:` `:JI1 V` 8888888888888888888888888888888888888888888888888888888888888888888888888888888888888 88 QC:`/I]CVIVJ : 1QJ 88888888888888888888888888888888888888888888888888888888888888888888888888888  88 /%V1JQC:`7 VI 88888888888888888888888888888888888888888888888888888888888888888888888888888  8 Q1V` :JR JV`$7 ``1H1VJH77 QC:` :JR :` V1:J `H.1 VH %`V 88888888888888888 88 7]1H:CV: V`J7`QG:G1C1 7 VJ1 72%JH 1QJ^ 2_Q``:JI1  Q1V`  8 Q1V` :I]C1`1V` Q0V`01V17 $VJV`:C Q]V`: 1QJ :JR ]Q1V` V``1H1VJH7888888888888 8 8 Q1V`#I]C1`1V`;]V`: 1QJ88888888888888888888888888888888888888888888888888888888888888888888888  8 8 D1JV:`Q1V`#I]C1`1V`7C:# 888888888888888888888888888888888888888888888888888888888888  8 8 11 H.1J$Q1V`#I]C1`1V`7C:V6:I]CV 888888888888888888888888888888888888888888  8 8 ``1H1VJH71JQ1V`:H@Q``88888888888888888888888888888888888888888888888888888888888888888888888 

.:] V` Q1V`:J:$VIVJ `Q` `:JI1 V`:JRQC:` 7 VI   8 "Q 10: 1QJ7 ``1H1VJH7 88888888888888888888888888888888888888888888888888888888888888888888888888888888 88 J0VCQ]V`:H@1J$7 VI 888888888888888888888888888888888888888888888888888888888888888888888888  Contents ii

88 7J:I1H%]]C7QC:`"QR%C: 1QJ 88888888888888888888888888888888888888888888888888888888888  8 QC :$V %V$%C: Q` Q]QCQ$1V888888888888888888888888888888888888888888888888888888888888888888888 88 D1JV:`)V$%C: Q` 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888  88 11 H.1J$QC :$V)V$%C: Q` 8888888888888888888888888888888888888888888888888888888888888888888  88 77G`1RQC :$V)V$%C: Q`7/J `QR%H 1QJ88888888888888888888888888888888888888888888888888 

.:] V` Q1V` %]]C7$Q1V%J:C71`Q` %I]C1`1V`88888888888888888 8 &J `QR%H 1QJ88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 8 "Q 10: 1QJ Q` QC V``:R(V`1V `Q` (%]]C7 )Q1V `QGCVI 888888888888888888888888888 8 .VQ`7 Q` "%C 1]CVRQ` (%]]C7 &J V`IQR%C: 1QJ 8888888888888888888888888888888888888888  88 1J$CVR/J]% ^1QRQ` _QC V``:RV`1V#J:C71 8888888888888888888888888888888888888  88 "%C 1]CVRQ` QC V``:#J:C71 8888888888888888888888888888888888888888888888888888888888888888  8 :`$V `QGCVI :JR .:`:H V`1<: 1QJ Q` )QJC1JV:`1 1V8888888888888888888888888888888 8 (QC% 1QJ Q` QC V``: /]V`: Q` 8888888888888888888888888888888888888888888888888888888888888888888  8 QI]:`1QJ Q "V:%`VIVJ 888888888888888888888888888888888888888888888888888888888888888888888 8 8 1RVG:JR:JR))"V:%`VIVJ 88888888888888888888888888888888888888888888888888888888888 8 8 ]VH `:C)V$`Q1 ."V:%`VIVJ 88888888888888888888888888888888888888888888888888888888888  8 8 Q1V`%]]C7)V=VH 1QJ): 1Q7QI]QJVJ RDV0VC#J:C718888888888888888888888  8 QJHC%1QJ 8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 .:] V` &] 1I%I&]V`: 1J$ `: V$1V`Q`'7G`1RQC :$V V$%C: Q` 8 &J `QR%H 1QJ88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 8 /0V`01V1 888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  8 /] 1I%I 11: Q1J 7 "QRVC :JR :CH%C: 1QJ88888888888888888888888888888888888888888888888  8 ``1H1VJH7 /] 1I1<: 1QJ7 (1J%Q1R:C :JR 1QR QJV :``1V` "QR%C: 1QJ 8888888

8 .VQ`V 1H:C ]`VR1H 1QJ :JR 21H%1QJ88888888888888888888888888888888888888888888888888888 8 6]V`1IVJ :C %V%C  :JR QI]:`1QJ Q .VQ`788888888888888888888888888888888888888 8 :CH%C: 1QJ &JHC%R1J$ 4Q:R 27J:I1H88888888888888888888888888888888888888888888888888888888 8 (%II:`7 8888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 .:] V` +1`VH +1$1 :CQR%C: 1QJ7%$V1%]]`Q:H. QQC:` 7 VI  8 `:JI1 V` HQJHV]  `V011 VR88888888888888888888888888888888888888888888888888888888888888888 8 2: : HQJ0V`1QJ ]`1JH1]CV 88888888888888888888888888888888888888888888888888888888888888888888888 88 4%:J 1<: 1QJFQ1V 888888888888888888888888888888888888888888888888888888888888888888888888888888888  Contents iii

88 1H`V VR 1IV:I]C1J$888888888888888888888888888888888888888888888888888888888888888888888888888  88 `:H 1H:C:I]C1J$:JR`VHQJ `%H 1QJ 888888888888888888888888888888888888888888888888888  88 :I]C1J$11 .JQJRG:JRC1I1 VR1$J:C5:JR`VC: 1QJ.1]11 . _%:J 1<: 1QJJQ1V 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  8 /0V`:I]CVR 2: : QJ0V` V`888888888888888888888888888888888888888888888888888888888888888888 88 FQ1V.:]1J$888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  88 )2^F:``Q1G:JR_ 1$1 :CR#J:CQ$QJ0V`1QJ^ #_88888888888888888888888888888888  8 21`VH RR1$1 :C IQR%C: 1QJ `Q` %5 `:JI1 V` 8888888888888888888888888888888888888888888 88 :` V1:J)2 : :QJ0V`1QJ88888888888888888888888888888888888888888888888888888888888888888  88 QC:`)2 : :QJ0V`1QJ888888888888888888888888888888888888888888888888888888888888888888888888  88 /%V11 .]VH `:C1I:$V 88888888888888888888888888888888888888888888888888888888888888888888  8  867< %5 QC:` `:JI1 V` `Q` 1C%V QQ . 8U2% 888888888888888888888888888888 8 8 /J `QR%H 1QJ 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  8 8 #`H.1 VH %`V 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  8 8 %CVRRVJ1 7IQR%C: Q`^ "_ 8888888888888888888888888888888888888888888888888888888888888   8 8 QC:`1 71 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888   8 8 ∆ΣFQ1VR.:]1J$]`QHV88888888888888888888888888888888888888888888888888888888888888888888888  8 8 C:R # 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888  8 8 ";C: #/I]CVIVJ : 1QJ8888888888888888888888888888888888888888888888888888888888   8 8 7 VI/I]CVIVJ : 1QJ88888888888888888888888888888888888888888888888888888888888888888888888888  8 8 6]V`1IVJ :C`V%C  8888888888888888888888888888888888888888888888888888888888888888888888888888888 

.:] V` QJHC%1QJ:JR% %`VQ`@ 888888888888888888888888888888888888888888   List of Figures i

1 Q`1$%`V

Figure 1. CMOS ft and fmax (performance analog/mixed signal devices), International technology roadmap for (ITRS) [1]...... 1 21$%`V1`VCV7 VI7 `:JI1 V`5H.:JJVC5:JR`VHV10V`8...... 5 21$%`V87IGQCHQJ VCC: 1QJ11 .R1``V`VJ J%IGV`Q`G1 L7IGQC8 ...... 6 Figure 4. Complex and trajectory for (a) constant envelope modulation and (b) π/4DQPSK, which uses modulation for the same constellation points as (a)...... 7 21$%`V 8``Q`0VH Q`1 .VR1``V`VJHVGV 1VVJ .V:H %:C:JR1RV:C7IGQC0VH Q`8 .... 9 21$%`V 87]1H:C `:JI1 V`R1 Q` 1QJIVH.:J1I:``VH 1J$"8 ...... 10 Figure 7. output spectrum showing spectral regrowth...... 11 Figure 8. Direct-conversion Cartesian transmitter schematic diagram...... 12 Figure 9. Effects of I/Q and quadrature LO gain and phase imbalance...... 13 Figure 10. Kahn envelope elimination and restoration (EER) transmitter architecture [19]...... 14 Figure 11. General representation of the polar transmitter architecture...... 15 Figure 12. Phase-path circuit architectures: representative techniques ...... 17 Figure 13. Time- and -domain comparison: Cartesian and polar systems. I/Q waveform with two-tone zero mean sinusoid...... 18 Figure 14. mechanisms in polar systems: gain and phase vs supply voltage . 20 Figure 15. Common-source circuit showing mechanisms for AM-AM, AM-PM distortion ...... 20 Figure 16. Representative probability distribution function (PDF) for CDMA applications [31]...... 23 Figure 17. Power amplifier block diagram and schematic for a CMOS common-source PA ...... 24 Figure 18. Class-AB PA voltage and current ...... 27 Figure 19. Switching PA schematic and time-domain waveforms...... 29 Figure 20. Class E PA schematic...... 31 Figure 21. Power amplifier efficiency in power backoff overlaid with a representative PDF ...... 33 Figure 22. Efficiency versus output power: i.) conventional class B PA, ii.) class B PA with dynamic supply regulation, iii.) class B PA, dynamic VDD with realistic loss mechanisms...... 38 Figure 23. Envelope tracking transmitter using traditional Cartesian architecture with a dynamic supply modulator to improve average efficiency...... 39 Figure 24. Time domain waveforms for VDS RF carrier waveform and power loss: fixed VDD and dynamic VDD...... 40 Figure 25. Time domain envelope tracking waveforms ...... 40 Figure 26. Dynamic supply system ...... 42 List of Figures ii

Figure 27. Linear regulator topologies...... 45 Figure 28. Generic voltage-mode switching regulator block diagram ...... 46 Figure 29. DC-DC conversion cells: buck, boost, and inverting buck-boost ...... 46 Figure 30. Typical battery discharge curve and power converter mode of operation ..... 46 Figure 31. Pulse-width-modulation (PWM) waveform...... 48 Figure 32. Fundamental and harmonics of pulse-width modulated waveform versus duty cycle, normalized to fundamental peak...... 48 Figure 33. Contour representation of average efficiency of the switching regulator vs gate width...... 51 Figure 34. Hybrid voltage regulator schematic: a.) Series hybrid, b.) Parallel hybrid .... 52 Figure 35. Effect of supply noise on RF amplifier output spectrum ...... 55 Figure 36. Noise sources in RF systems ...... 59 Figure 37. Self-induced power supply noise from high supply impedance at the envelope frequency...... 66 Figure 38. CMOS inductor-degenerated common source amplifier showing nonlinear elements...... 68 Figure 39. MOSFET drain current versus gate-source and drain-source voltage. Nonlinearities are extracted around the dc operating point highlighted in the figure...... 68 Figure 40. QIIQJRQ%`HV:I]C1`1V`IQRVC ...... 77 Figure 41. D:GQ`: Q`7 V V %] ...... 77 Figure 42. .Q Q$`:].Q` .VR1VGQJRVRQJ .V$QCRR]C: VR V GQ:`R8 1V:`V:1 8II8II8...... 78 Figure 43. QI]:`1QJQ`IV:%`VR:JRH:CH%C: VR`%JR:IVJ :C:JR`1]]CV1RVG:JR ]Q1V`...... 79 Figure 44. QI]:`1QJQ`IV:%`VR:JRH:CH%C: VR`1]]CV1RVG:JR1JRVH1GCVRGVCQ1 H:``1V`8...... 80 Figure 45. Mea%`VR0V`%H:CH%C: VR]Q1V`]VH `:CRVJ1 7:  "7< ...... 82 Figure 46. "V:%`VR0V`%H:CH%C: VR]Q1V`]VH `:CRVJ1 7: 897< ...... 83 Figure 47. ))0H:``1V```V_%VJH75``QIQC V``:RV`1V:J:C715.Q11J$ HQJ `1G% 1QJQ`RQI1J:J H1`H%1 RCV0VCJQJC1JV:`1 1V8...... 85 21$%`V 8`:R1 1QJ:C]:`:CCVCC1JV:`R11 H.1J$.7G`1R`V$%C: Q` Q]QCQ$7...... 88 Figure 49. Model for parallel hybrid switching-linear regulator ...... 88 Figure 50. Two different time-domain envelope signals that share the same power spectrum: one with peak-average power ratio (PAPR) of 10.1dB, and another with PAPR or 5.2dB...... 92 21$%`V 8`Q]QVR.7G`1R11 H.1J$`V$%C: Q`IQRVC ...... 94 21$%`V 8J0VCQ]V:0V`Q`I71J%Q1R:C#":JRR QJVIQR%C: 1QJ ...... 97 21$%`V 8QJR%H 1QJ:J$CVRV`10: 1QJ71J%Q1R:C#"IQR%C: 1QJ5JQ`I:C1

21$%`V 86]V`1IVJ :CV %] ...... 107 21$%`V 8#0V`:$VV``1H1VJH7011 H.1J$`V$%C: Q`H%``VJ HQJ `1G% 1QJ71JR#" IQR%C: 1QJ...... 108 21$%`V 8#0V`:$VV``1H1VJH70VJ0VCQ]VIQR%C: 1QJ:I]C1 %RV71J%Q1R:C#" IQR%C: 1QJ8...... 108 21$%`V 81QR QJVIQR%C: 1QJ7HQI]:`1QJQ` .VQ`7 QIV:%`VIVJ ...... 110 21$%`V 8/R  "#5 8:D#FIV:%`VRV``1H1VJH7...... 110 * 21$%`V 8;] 1I%I11 H.1J$`V$%C: Q`H%``VJ ^JQ`I:C1

Figure 85. Digital polar modulation architecture...... 144 Figure 86. Candidate polar architectures ...... 146 Figure 87. Time and frequency domain examples for full- and half- ...... 148 Figure 88. Pulse-density modulator block ...... 150 Figure 89. 1-Bit polarity feedforward to reduce power from rapid phase transitions ... 152 Figure 90. Constellation diagram for 8DPSK with feedforward phase transition: π 5π → ...... 152 4 4 Figure 91. Polarity bit significantly reduces power in the RF clock signal waveform by smoothing phase transitions near origin ...... 153 Figure 92. Effect of polarity on amplitude quantization - ∆Σ process remains linear near zero...... 155 Figure 93. Error-feedback digital ∆Σ modulator ...... 156 Figure 94. Example baseband 3rd order ∆Σ modulator spectrum with a notch at ±12MHz, G(z) = −z −3 + 5.2 z −2 − 5.2 z −1 ...... 157 Figure 95. ∆Σ Modulator: 1st, 2nd, 3rd order comparison, all zeros at 2.4GHz...... 158 Figure 96. Complementary class D PA schematic...... 159 Figure 97. Schematic representation of class-D power amplifier with output stage ...... 162 Figure 98. Current recycling scheme: excess current from PMOS drive stage used by digital processing ...... 163 Figure 99. Class-D PA output stage NMOS layout: gate and cascode share diffusion region to reduce junction capacitance...... 163 Figure 100. Level shift and deadtime control ...... 165 Figure 101. System-level implementation of transmitter...... 166 Figure 102. Die Photo of CMOS class D PA and RF pulse-density modulator circuits ...... 166 Figure 103. Block diagram of the experimental setup...... 167 Figure 104. Time-domain waveforms at transmitter output ...... 168 Figure 105. Efficiency and output power vs supply voltage ...... 169 Figure 106. Efficiency and linearity0]%CVRRVJ1 7 ...... 169 Figure 107. Power of digital processing (pulse-density modulation, clock recovery, sampling and synchronization) with and without current recycling scheme. Measured as power drawn from Vhalf regulator ...... 170 Figure 108. Measured constellation diagrams ...... 172 Figure 109. Efficiency and output power vs supply voltage ...... 173  List of Tables i









 1 Q` :GCV

Table I. Comparison of power amplifier performance ...... 32 Table II. Average efficiency calculations for the curves in Figure 21 *constant bias current **variable bias current...... 33 :GCV///8...... 105 Table IV. COMPARISON OF FOMS OF VARIOUS AMPLIFIER CLASSES (DATA FOR CLASS E, F-1, F2,3,4,5 FROM [34])...... 161 1

Chapter 1 Introduction

Figure 1. CMOS ft and fmax (performance analog/mixed signal devices), International technology roadmap for semiconductors (ITRS) [1]. 



#` V` RVH:RV Q` %HHV`%C ]`QHV :JR VH.JQCQ$7 H:C1J$5 :H 10V VI1HQJR%H Q`

RV01HV :`V JQ1 Q]V`: 1J$ 11 . H%``VJ  :JR ]Q1V` $:1JRG:JR11R . ^`  :JR `I:6_ 1J

V6HVQ`97<`5a8.Q1J1JFigure 15 .1 `VJR1V6]VH VR QHQJ 1J%V`Q`QIV

1IV1J Q .V`% %`V5V6]:JR1J$]Q1V`V``1H1VJ Q]V`: 1QJQ`HQJ0VJ 1QJ:C:J:CQ$:JR

R1$1 :C H1`H%1 `7 Q `:R1Q ``V_%VJH1V8  /J IQRV`J R1$1 :C "; VH.JQCQ$1V5 HQ`V

C1G`:`1VQ` :JR:`RHVCCH:JQ]V`: V: CQ1R97<H:``1V```V_%VJH1V8QIG1JVR11 .

V6 `:H 1QJ Q` C:7Q%  ]:`:1 1H5  :JR:`RRHVCC RV1$JR`CQ1 :CCQ1 R1`VH  :JR `:]1R Introduction 2

7J .V1Q`HQI]% : 1QJ:CGCQH@: )2``V_%VJH1V8.VV `VJR:`VVJ:GC1J$VJ 1`VC7

JV1 :]]`Q:H.V Q )2 H1`H%1  RV1$J .:  `VC7 QJ R1$1 :C ]`QHV1J$ Q `VR%HV :J:CQ$

HQI]CV61 78

71$.V` Q]V`: 1J$ ``V_%VJH1V .:0V :JR 11CC HQJ 1J%V Q VJ:GCV JV1 VH.J1_%V 1J

H1`H%1  RV1$J `Q` GCQH@ 1J .V `:R1Q :`H.1 VH %`V8  %H. VH.J1_%V :`V 1I]Q` :J  Q

G7]:H%``VJ C1I1 : 1QJ1JGQ . `:JI1 V`:JR`VHV10V`871$.V`R1$1 :C1J V$`: 1QJ

1I]`Q0V .V`CV61G1C1 7Q`11`VCV`VHV10V`51JH`V:1J$ .VR7J:I1H`:J$V:  .V``QJ R

VJR :JR VJ:GC1J$ R1$1 :C H:C1G`: 1QJ VH.J1_%V `Q` ``QJ RVJR H1`H%1 `7 `5 a8  71$.V`

R1$1 :C 1J V$`: 1QJ 1J `:JI1 V` VJ:GCV JV1 :`H.1 VH %`V .:  H:J :H.1V0V .1$.V`

C1JV:`1 75 CQ1V` VJV`$7 HQJ%I] 1QJ5 :JR IQ`V `CV61G1C1 7 `Q` R1``V`VJ   :JR:`R :JR

H:``1V```V_%VJH1V8/J GQ .H:V5R1$1 :C1J V$`: 1QJH:J1JH`V:V]V``Q`I:JHV1.1CV

`VR%H1J$HQ :JR]%.1J$ VH.JQCQ$7 Q1:`R%J10V`:CHQJ`1$%`: 1QJ%H.:HQ$J1 10V

:JRQ` 1:`VRRV`1JVR`:R1Q`R a8

/J .1 1Q`@ 1V 11CC RVH`1GV `VV:`H. `VC: VR Q IQ`V `CV61GCV :JR VJV`$7 V``1H1VJ 

11`VCV `:JI1 V`8  V 11CC R1H% `:R1 1QJ:C :` V1:J :`H.1 VH %`V :JR .V

:R0:J :$V Q` ]QC:` :JR VJ0VCQ]VR `:H@1J$ HQJ`1$%`: 1QJ ` a8  %H. :`H.1 VH %`V %V

R7J:I1H0QC :$V`V$%C: 1QJ Q1JH`V:V:0V`:$VV``1H1VJH7Q` .V]Q1V`:I]C1`1V`^#_

:H`Q .VV6]VH VRQ]V`: 1J$]Q1V``:J$V8V11CCR1H% .VIV`1 Q`11 H.1J$:JR

C1JV:` 0QC :$V `V$%C: Q` `Q` .VV :]]C1H: 1QJ5 1JHC%R1J$ .7G`1R 11 H.1J$RC1JV:`

Q]QCQ$1V:JR1%V11 .]Q1V`%]]C7JQ1V1J `:JI1 V`:]]C1H: 1QJ821J:CC751V

11CC RVH`1GV .V 1I]CVIVJ : 1QJ Q` : `%CC7RR1$1 :C `:JI1 V` H1`H%1  1J JI R1$1 :C Introduction 3

";8  .V `:JI1 V` 1 HQJ`1$%`VR : :J )2R1$1 :CR:J:CQ$ HQJ0V` V`11 . : HC:R 

]Q1V`:I]C1`1V`Q% ]%  :$V8.V]QC:`:`H.1 VH %`V%V:JQ1VR.:]VR]%CVRVJ1 7

IQR%C: 1QJ ]`QHV Q HQJ `QC .V )2 H:``1V` :I]C1 %RV :JR :J Q``RH.1] ].:VR

IQR%C: VR)2HCQH@8

.:] V`  R1H%V .V `%JR:IVJ :C Q` `:R1Q `:JI1 V` 1JHC%R1J$ :` V1:J :JR

]QC:`:`H.1 VH %`V8Q1V`:I]C1`1V`H1`H%1 :`V`V01V1VR1J .VHQJ V6 Q`:J:0V`:$V

V``1H1VJH7IQRVCG:VRQJ .V]`QG:G1C1 7RVJ1 7`%JH 1QJQ` `:JI1 ]Q1V`8

.:] V`  R1H%V ]Q1V` I:J:$VIVJ  VH.J1_%V `Q` )2 `:JI1 V`8  11 H.1J$

:JRC1JV:`0QC :$V`V$%C: Q`:`V`V01V1VR`Q`R1``V`VJ  `:JI1 V`:`H.1 VH %`V .: 

%VR7J:I1H0QC :$V`V$%C: 1QJ8

.:] V`]`VVJ :J:J:C71Q`]Q1V`%]]C7JQ1V`V=VH 1QJ]`Q]V` 1VQ`C1JV:`)2

:I]C1`1V`8.1]`QGCVI1R1H%VR1J .VHQJ V6 Q`VJ0VCQ]VR `:H@1J$ `:JI1 V`8

#I%C 1R]Q` QC V``:RV`1V`Q`I%C: 1QJ1%VR QH:] %`V .VV``VH Q`%]]C7JQ1V

I161J$11 . .V)2H:``1V` QH`V: VJV:`RG:JR]VH `:C`V$`Q1 .8.V`V%C .1$.C1$. 

H1`H%1 RCV0VCIVH.:J1I`Q`%]]C7JQ1V%]HQJ0V`1QJ51JHC%R1J$`VC: 10VHQJ `1G% 1QJ

:H`Q``V_%VJH78

.:] V` RVH`1GVQ] 1I%IQ]V`: 1J$ `: V$1V`Q`.7G`1R11 H.1J$RC1JV:`0QC :$V

`V$%C: Q`8.VQ] 1I%IHQJ`1$%`: 1QJ:JRG1:]Q1J :`VH:CH%C: VR`Q`:J%IGV`Q`

`V]`VVJ : 10V VJ0VCQ]V 1:0V`Q`I8  .V ]`Q]QVR IV .QR5 G:VR QJ 1IVRRQI:1J

:0V`:$1J$5 1 .Q1J Q .:0V %G :J 1:C ]Q1V` :01J$ HQI]:`VR Q G1:1J$ G:VR QJ Introduction 4

HQJ0VJ 1QJ:C ``V_%VJH7 RQI:1J :J:C718  .V ]`Q]QVR 7 VI 1I]CVIVJ : 1QJ 1

.Q1JG:VRQJ:J:R:] 10VQ] 1I1<: 1QJQ`]Q1V`V``1H1VJH78

.:] V` R1H%V:R1`VH RR1$1 :CRIQR%C: 1QJ)2 `:JI1 V`:`H.1 VH %`V1.V`V .V

# Q]V`: V : : ]QC:` R1$1 :CR QR)2 HQJ0V` V`8  .V H.:] V` `V01V1 G:1H R: :

HQJ0V`1QJ]`1JH1]CV1JHC%R1J$ .VV``VH Q`:I]C1 %RV_%:J 1<: 1QJ:JRR1H`V VR 1IV

:I]C1J$8  #CQ `V01V1VR :`V $VJV`:C ]`Q]V` 1V Q` Q0V`:I]CVRR: : HQJ0V` V`5 :JR

G:JR]: R# HQJ0V` V`8  VH 1QJ 8  ]`VVJ  .V 1I]CVIVJ : 1QJ Q` : R1$1 :CR]QC:`

`:JI1 V` `Q` C%V QQ . 8U  ) Q]V`: 1J$ :  897<8  .V 7 VI IVV  .V

]V``Q`I:JHV`V_%1`VIVJ Q` .V :JR:`R11 .Q0V`Q:0V`:$VV``1H1VJH78 5

Chapter 2 Transmitter Fundamentals

1$%`V1`VCV7 VI7 `:JI1 V`5H.:JJVC5:JR`VHV10V`8

"QRV`J11`VCV VH.JQCQ$7.:Q]VJVR%]:0: `:J$VQ`]Q1G1C1 1V`Q`]Q` :GCV

HQII%J1H: 1QJ11 .0Q1HV:JRR: ::]]C1H: 1QJRQI1J: 1J$ .V]:HV8#  .V.V:` Q`

11`VCVHQII%J1H: 1QJ.:`R1:`V1 .V `:JHV10V`T .V`:R1QH1`H%1 `7 .: 1JHC%RV

GQ . `:JI1 V` :JR `VHV10V`8 `:JHV10V` VJ:GCV G1RR1`VH 1QJ:C HQII%J1H: 1QJ

GV 1VVJ]Q` :GCV:JR`16VRG:VR : 1QJRV01HV5:JR:`V:CQ .VHQ`JV` QJVQ`1J V`R

RV01HVHQII%J1H: 1QJ511`VCV1J V`JV :JRHVCC%C:`].QJV87V`V51V11CC`QH%QJ .V

11`VCV `:JI1 V`5 1JHC%R1J$ G:1H Q]V`: 1QJ5 H1`H%1  1I]CVIVJ : 1QJ5 :JR

H.:`:H V`1 1HQ`:` V1:J:JR]QC:`:`H.1 VH %`V8

#.Q1J1J21$%`V5 .V$Q:CQ` .V11`VCV `:JI1 V`1 QHQII%J1H: VR: :Q0V`

:11`VCVH.:JJVC Q:`VHV10V`: :`VIQ VCQH: 1QJ8/JJ:``Q1G:JRHQII%J1H: 1QJ

7 VI5 .1 `V_%1`V IQR%C: 1J$ : H:``1V` 1$J:C .:  1 HQJ0V` VR Q :J

VCVH `QI:$JV 1H 1:0V G7 .V :J VJJ:8  QJ0VJ 1QJ:C IQR%C: 1QJ  `: V$1V %V

Q` .Q$QJ:C 0VH Q` Q RVH`1GV : 1QRR1IVJ1QJ:C ]:HV8  .VV G:1 0VH Q` :`V

7]1H:CC7 `V`V``VR Q : 1JR].:V5 5 :JR _%:R`: %`V5 8  .V )2 1$J:C `:=VH Q`7 1 Transmitter Fundamentals 6

I:]]VR %1J$ ^ _ and Q(t) baseband signals and upconverted using quadrature local oscillators:

= + v(t) I(t)sin(wC t) Q(t)cos(wC t) 5 ^_

1.V`V I(t) 1 .V1JR].:V0VH Q`R: :5Q(t) 1 .V_%:R`: %`V0VH Q`R: :5:JR wC 1 .V

)2H:``1V```V_%VJH78

.V:IV)21$J:C `:=VH Q`7H:JGVRVHQI]QVR1J Q]QC:``Q`I%1J$ .V:I]C1 %RV

:JR ].:V Q` .V )2 H:``1V`8  1 . : ]QC:` `V]`VVJ : 1QJ5 .V IQR%C: VR )2 1$J:C

`QCCQ17

= [ + Φ ] v(t) A(t)cos wC t (t) 5 ^_

1.V`V^ _1 .V:I]C1 %RVQ` .VH:``1V`:JR Φ(t) 1 .V].:VQ` .VH:``1V`` a8Q .

]QC:` :JR :` V1:J `V]`VVJ : 1QJ Q` :I]C1 %RV ^#"_ :JR ].:V ^"_ IQR%C: 1QJ

%$$V  .V ].:Q` J: %`V Q` .V 1$J:C8  /I]Q` :J C75 HQI]CV6 `V]`VVJ : 1QJ Q` .V

H:``1V`1$J:C:CCQ1I:J71:7 QVJHQRVR1$1 :C1J`Q`I: 1QJ8

2.1.1 Complex Modulation

 1$%`V87IGQCHQJ VCC: 1QJ11 .R1``V`VJ J%IGV`Q`G1 L7IGQC8 Transmitter Fundamentals 7

Figure 4. Complex constellation diagram and trajectory for (a) constant envelope modulation and (b) π/4DQPSK, which uses amplitude modulation for the same constellation points as (a).

1$1 :CIQR%C: 1QJH.VIVVJHQRVR: :1J7IGQC1.1H.H:JGVHQJ1RV`VR0VH Q`

11 .%J1_%V:I]C1 %RV:JR].:V8:H.7IGQCH:J`V]`VVJ I%C 1]CVG1 Q`R1$1 :C

1J`Q`I: 1QJ511 .IQ`VHQI]CV6HQJ VCC: 1QJ`V]`VVJ 1J$IQ`VG1 ]V`7IGQC8/J

21$%`V^:_5G1J:`7].:V.1` @V71J$^@_1J0QC0VH.:J$1J$ .V].:VQ` .VH:``1V`

 GV 1VVJ 1Q ]Q1J     Q%  Q` ].:V8  /J @5 QJC7  G1  1 `V]`VVJ VR `Q` V:H.

7IGQC871$.V`Q`RV`IQR%C: 1QJ`Q`I: .:0VIQ`V]Q1J 1J .V7IGQCHQJ VCC: 1QJ8

21$%`V^G_.Q1_%:R`: %`V:I]C1 %RVIQR%C: 1QJ^4#"_11 .7IGQC0VH Q`8.1

:CCQ1 1Q G1  Q GV VJHQRVR `Q` V0V`7 7IGQC5 1JH`V:1J$ .V R: :`: V8  21$%`V 8H

.Q14#"11 . 1JRV]VJRVJ 7IGQC`V]`VVJ 1J$RG1 ]V`7IGQC871$.V`Q`RV`

IQR%C: 1QJH.VIV%H.: R4#":CCQ1.1$.V`R: : `:JI11QJ`: V`Q`:$10VJ

7IGQC`: V8.1`V%C 1J.1$.V`]VH `:CV``1H1VJH75Q`:.1$.V`R: :R`: V`Q`:$10VJ

:IQ%J Q`:0:1C:GCV]VH `%I` a8 Transmitter Fundamentals 8

/  1 1I]Q` :J  Q JQ V .:  .V`V :`V I:J7 ]Q1GCV `:=VH Q`1V :IQJ$ .V 7IGQC

]Q1J 1J .VHQJ VCC: 1QJ8Figure 4^:_.Q1:HQJ :J VJ0VCQ]VIQR%C: 1QJH.VIV

.: :HHVVV1$. ]Q1GCV7IGQC511 .Q% %1J$:I]C1 %RVIQR%C: 1QJ8.V:IV

7IGQCH:JGV:HHVVR%1J$:JVJ0VCQ]V `:=VH Q`7 .: .::I]C1 %RVIQR%C: 1QJ5

: RVIQJ `: VR 1J Figure 4^G_8  7V`V5 .V H:``1V` `:=VH Q`7 `QCCQ1 πL 4@

IQR%C: 1QJ5:H.VIV .: %V:I]C1 %RV:JR].:VIQR%C: 1QJ Q:H.1V0V 1QG1 

]V` 7IGQC8  /J πL 4@ :JR I:J7 Q .V` `Q`I: 5 :I]C1 %RV IQR%C: 1QJ 1 %VR Q

:H.1V0V.1$.V`7IGQC`: V`Q` .V:IV Q :C]VH `%I% 1C1<: 1QJT:H.1V01J$.1$.V`

G1 LL7<Q`:CCQH: VR]VH `%I8πL 4@1:HQIIQJIQR%C: 1QJ`Q`I: 1JHV .V

:I]C1 %RVQ` .VH:``1V`RQVJQ :]]`Q:H.

HQJ VCC: 1QJT:JR1%VR`Q` .VC%V QQ . )U8 :JR:`R` a8.V:R0:J :$VQ`

%1J$GQ .:I]C1 %RV:JR].:VIQR%C: 1QJ1 .:  .V7IGQC`: VH:JGV1JH`V:VR8

.1 1 `VC: VR Q .V `:H  .:  .V R1 :JHV GV 1VVJ 7IGQC 1 .Q` V` 1` 7Q% H% 

.`Q%$. .VHVJ V`Q` .VHQJ VCC: 1QJ8#JQ .V`1:7 Q01V1 .V:R0:J :$VQ`Figure

4^G_ Q0V` Figure 4^:_ 1 .:  `Q` : $10VJ 7IGQC `: V5 Figure 4^G_ H:J QHH%]7 CV

]VH `%IGVH:%V .V:I]C1 %RVQ` .VH:``1V`1`VR%HVRR%`1J$`:]1R].:V `:J1 1QJ

GV 1VVJ7IGQC8QJ :J VJ0VCQ]VIQR%C: 1QJH.VIV$VJV`:CC7.:0V Q%VCQ1V`

7IGQC`: V Q@VV] .VQ% ]% ]VH `%I11 .1JC1I1 ` 5a8 Transmitter Fundamentals 9

2.1.2 Digital Modulation Limitations

 1$%`V 8``Q`0VH Q`1 .VR1``V`VJHVGV 1VVJ .V:H %:C:JR1RV:C7IGQC0VH Q`8

.V `:RVQ``11 ..1$.V`Q`RV`IQR%C: 1QJH.VIV1 .: IQ`V`VQC% 1QJ1JVVRVR

Q`V]`VVJ  .V7IGQC8/J:`V:C7 VI5 .V `:JI1 VR7IGQC0VH Q`11CC%``V`

``QIJQ1V:JRR1 Q` 1QJ8FQ1V:JRR1 Q` 1QJH:%V:H %:C7IGQC0VH Q` QRV01: V

``QI1RV:C0VH Q`8.Q1J1J21$%`V 5 .VR1H`V]:JH7GV 1VVJ:H %:C:JR1RV:C7IGQC

0VH Q`1_%:J 1`1VR .`Q%$. .VV``Q`0VH Q`8#HQIIQJ`1$%`VQ`IV`1 `Q``1RVC1 7Q`

.V7IGQCHQJ VCC: 1QJ1V``Q`R0VH Q`RI:$J1 %RV^"_8"1 7]1H:CC7RV`1JVR::

`QQ RIV:JR_%:`VR_%:J 1 7:H`Q:J%IGV`Q`7IGQCIV:%`VIVJ 7

N 1 ()2 ∑ Ve N j=1 ^_ EVM = 8 Vm

/J^_5V1 .VI:$J1 %RVQ` .VV``Q`0VH Q``Q`V:H.7IGQC5I1 .VI:$J1 %RVQ`

.VRV1`VR7IGQC0VH Q`5:JR1 .VJ%IGV`Q`IV:%`VIVJ 8.V]V:@0:C%V`Q`

I:7:CQGV]VH1`1VR1J .V :JR:`R8"`V_%1`VIVJ 0:`711RVC7RV]VJR1J$

QJ .V :JR:`R511 . .V 7]1H:C`:J$V`:CC1J$QIV1.V`VGV 1VVJQ:JR Q82Q`

8:L$:  "L5 .V`I"Q0V`7IGQC^H.1]_I% GVGVCQ1 8 Q`a8 Transmitter Fundamentals 10

 1$%`V 87]1H:C `:JI1 V`R1 Q` 1QJIVH.:J1I:``VH 1J$ 8

"1%V`%C Q_%:J 1`7 .V:IQ%J Q`JQ1V:JRR1 Q` 1QJ1J: `:JI1 V`8FQ1V

11CC CV:R Q `:JRQI R1 `1G% 1QJ Q` .V V``Q` 0VH Q`5 1.1CV R1 Q` 1QJ I:7 H:%V

]: V`J 1J .V V``Q` 0VH Q` IV:%`VIVJ  HQ``VC: VR 11 . 7IGQC :I]C1 %RV :JR

].:V8  /J `:JI1 V` 1  1 HQIIQJ Q ]VH1`7 #"R#" ^:I]C1 %RVRR`10VJ :I]C1 %RV_

R1 Q` 1QJ:JR#"R"^:I]C1 %RVRR`10VJ].:V_R1 Q` 1QJ5:.Q1J1J21$%`V `a8

#"R#"R1 Q` 1QJ1H:%VRG70:`1: 1QJ1J .V `:JI1 V`$:1J: .V1$J:C:I]C1 %RV

H.:J$V8  # HQIIQJ `Q`I Q` #"R#" R1 Q` 1QJ 1 _%:J 1`1VR .`Q%$. .V RR

HQI]`V1QJ ]Q1J  1J )2 :I]C1`1V` `5 a8  QI]`V1QJ .:]]VJ 1.VJ .V Q% ]% 

:I]C1 %RV1: %`: VR:JR1JQ C1JV:`C7]`Q]Q` 1QJ:C Q .V1J]% :I]C1 %RV8.11

%%:CC7`VC: VR Q .V0QC :$VHQJ `:1J QJ .V:H 10VRV01HVT1$J:CHC1]]1J$QHH%`: 

.V 1J]%  Q` Q% ]%  V`I1J:C8  #"R" R1 Q` 1QJ `V%C  ``QI ].:V .1` 1J$ Q` .V

H:``1V` HQ``VC: VR Q .V 1$J:C :I]C1 %RV T .1 1 HQIIQJC7 `VC: VR Q JQJC1JV:`

H:]:H1 :JHV 1J .V H1`H%1 5 G%  1 QIV 1IV H:%VR G7  `:7 H:]:H1 10V HQ%]C1J$ 1J

:H 10V RV01HV `a8  .1 :JR Q .V` R1 Q` 1QJ IVH.:J1I 11CC GV R1H%VR 1J IQ`V

RV :1CC: V`1J .1H.:] V`8 Transmitter Fundamentals 11

RV:C :VG:JR^ L _ ]VH `%I ]VH `%I ]VH `:C :@ ]VH `:C V$`Q1 .

 Figure 7. Transmitter output spectrum showing spectral regrowth.

1 Q` 1QJ 11CC :CQ H:%V %JRV1`VR G`Q:RVJ1J$ Q` .V Q% ]%  ]VH `%I8  1`H%1 

HQI]QJVJ  JQJC1JV:`1 7 .:  H:J GV _%:J 1`1VR : #"R#" :JR #"R" R1 Q` 1QJ 11CC

H`V: V]%`1Q%VJV`$7JV:` .V`%JR:IVJ :C:JR.:`IQJ1HQ` .VH:``1V```V_%VJH78

.11JH`V:V1J .VQ% ]% ]VH `%I1HQIIQJC7`V`V``VR Q:]VH `:C `V$`Q1 .8#

.Q1J1JFigure 75 .1H:JH:%V]`QGCVI1` .V `:JI1 V`$VJV`: V]Q1V`Q% 1RV

.V ]VH `:C I:@ `Q` .V  :JR:`R8  ]VH `:C I:@ :`V RV1$JVR `Q` .V 11`VCV

 :JR:`R Q` G7 .V 2 Q ]`V0VJ  1J V``V`VJHV 11 . :R=:HVJ  H.:JJVC5 Q` 11 . .V

`VHV10V H.:JJVC 1J `%CCRR%]CV6 7 VI %H. :  "# `a8  ]VH `:C `V$`Q1 . 1 :

]Q VJ 1:CC7 V`1Q% ]`QGCVI :JR `V_%1`V %G :J 1:C : VJ 1QJ R%`1J$ `:JI1 V`

RV1$J8  /J QIV H:V 1  1 JVHV:`7 Q HQI]VJ: V .V JQJC1JV:`1 1V 1J .V RV01HV

%1J$:J:CQ$Q`R1$1 :C]`VR1 Q` 1QJ8`VR1 Q` 1QJ: VI]  Q1J0V`  .VJQJC1JV:`1 1V

Q` .VH1`H%1 %H. .:  .V1J]% RQ% ]% GV.:01Q`Q` .V `:JI1 V`1JQI1J:CC7C1JV:`8

#C V`J: 10VR1 Q` 1QJ HQI]VJ: 1QJ VH.J1_%V1JHC%RV]QC:` :JR :` V1:J `VVRG:H@5

:R1H%VRG7 :1QJ:JRDVV1J`a8

 Transmitter Fundamentals 12

8 :` V1:J `:JI1 V` 

Figure 8. Direct-conversion Cartesian transmitter schematic diagram.

.V :` V1:J `:JI1 V` :`H.1 VH %`V 1 11RVC7 %VR 1J 11`VCV 7 VI R%V Q

1I]C1H1 7T .VH1`H%1 I1``Q` .V:` V1:J`V]`VVJ : 1QJQ` .V1$J:C1J^_8/ 1:CQ

]Q]%C:` GVH:%V V0V`7 GCQH@ Q]V`: V QJ 1RV:CC7 C1JV:` /L4 G:1 0VH Q`5 1.1H.

1I]C1`1V .VG:VG:JR`V]`VVJ : 1QJQ` .V7IGQC `:=VH Q`78.Q1J1JFigure 81:

R1`VH  HQJ0V`1QJ :` V1:J `:JI1 V` H.VI: 1H8  .V `:JI1 V` 1J V``:HV 11 . :

R1$1 :CG:VG:JR5HQJ0V` 1J$ .VR1$1 :C`V]`VVJ : 1QJ Q:IQR%C: VR)21$J:C8.V

`1J:C :$VQ` .V `:JI1 V`1 .V]Q1V`:I]C1`1V`^#_51.1H.R`10V .VIQR%C: VR)2

1$J:C1J Q .V:J VJJ:8

2.2.1 Cartesian Transmitter: General Operation and Issues

/J : :` V1:J :`H.1 VH %`V5 .V HQI]CV6 `:=VH Q`7 1 VJHQRVR 11 .  :JR  G:1

0VH Q`8.VV0VH Q`:`VG:JRC1I1 VR11 .`:1VRHQ1JVQ``QQ R`:1VRHQ1JV`1C V`1J

.V R1$1 :C G:VG:JR Q HQJ `:1J .V Q% ]%  ]VH `%I 11 .1J .V :CCQH: VR ]VH `:C

I:@8#V Q`R1$1 :CR:J:CQ$HQJ0V` V`^ #_HQJ0V`  .V :JR0VH Q` Q:J:CQ$

1$J:C8  # _%:R`: %`V I161J$  :$V I%C 1]C1V .V /L4 :J:CQ$ `V]`VVJ : 1QJ 11 .

Q Q` .Q$QJ:C^  Q% Q`].:V_CQH:CQH1CC: Q`1$J:C8.V%]HQJ0V` VR :JR0VH Q` Transmitter Fundamentals 13

:`V %IIVR Q H`V: V .V IQR%C: VR H:``1V` :JR ]:VR Q .V 1J]%  Q` : ]Q1V`

:I]C1`1V`^#_8.V#]`Q01RV]Q1V`$:1J5R`101J$ .V)21$J:C1J Q .V:J VJJ:1.1H.

7]1H:CC7:]]V:`:: [`V1 10VCQ:R8

1JHV .V Q]V`: 1QJ Q HQJ0V`  .V  :JR  G:1 0VH Q` Q )2 1 1RV:CC7 C1JV:`5

G:VG:JR`1C V`1J$1:RV_%: V QG:JRC1I1  .VQ% ]% )2]VH `%I87Q1V0V`51`:J7Q`

.V:J:CQ$]`QHVVT #5I16V`5Q`#TRV01: V``QI]V``VH C1JV:`1 75R1 Q` 1QJ

H:JH`V: V]VH `:CHQJ VJ Q% 1RVQ` .VG:JRC1I1 VR]VH `%I`5 a8/J `:R1 1QJ:C

:`H.1 VH %`V#C1JV:`1 71]:` 1H%C:`C7H`1 1H:C1JHV .V1J]% 1$J:C1`%CC7IQR%C: VR

11 .:I]C1 %RV:JR].:V1J`Q`I: 1QJ8.:] V` 11CCR1H%#C1JV:`1 71JIQ`VRV :1C

``QI]Q1V`V`1V:JRQC V``:V`1V]V`]VH 10V8; .V``V`V`VJHV .: R1H%#

C1JV:`1 71J$`V: RV :1C1JHC%RV:IG:_:JR:JVJ5` a5%QCV015` a5:JR`1]]5`a8

Figure 9. Effects of I/Q and quadrature LO gain and phase imbalance.

; .V` 1%V 11 . :` V1:J `:JI1 V` 1JHC%RV D; CV:@:$V5 D; ]%CC1J$5 :JR

1IG:C:JHVQ` .V_%:R`: %`VD;1$J:C8.Q1J1JFigure 9^:_5D;CV:@:$V:]]V:`::

]%`1Q% QJV:  .VH:``1V```V_%VJH7 .: 1H:%VRG7:I]C1 %RVQ`].:VI1I: H.1J

.V/L4]: .Q`_%:R`: %`VD;1$J:C`a8/IG:C:JHVQ` .V_%:R`: %`VD;1$J:C11CC Transmitter Fundamentals 14

.:0V :J V``VH  1I1C:` Q I1I: H. Q` .V / :JR 4 1$J:C ]: .8  .V V``VH  H:J GV

01%:C1

CV:@:$V QHH%` 1` .V Q`1$1J Q` :0V`:$V 0:C%V Q` .V HQJ VCC: 1QJ RV01: V ``QI ^5_8

.VV V``VH  H:J GV I1J1I1

_%:R`: %`VD;7J .V1

Q``V  Q .V/Q`4G:VG:JR1$J:C8.1 VH.J1_%V1R1H%VR1J` a:JR1JQ1

HQIIQJC7%VR1J:` V1:J `:JI1 V`RV1$J8

D;]%CC1J$1:JQ .V`HQIIQJ]`QGCVI5V]VH1:CC71JR1`VH HQJ0V`1QJ:`H.1 VH %`V8

.1 H:J .:]]VJ 1` .V 0QC :$VRHQJ `QCCVR QH1CC: Q` ^;_ $VJV`: 1J$ .V D; 1$J:C

Q]V`: V:  .V:IV``V_%VJH7: .V#8.V#H:J$VJV`: V%G :J 1:CJQ1VQJ .V

]Q1V`%]]C7:JR1C1HQJ%G `: V .: H:JHQ%]CVG:H@1J Q .V;5H:%1J$1J=VH 1QJ

CQH@1J$8D;]%CC1J$1:CCV01: VRG7Q]V`: 1J$ .V;: :R1``V`VJ ``V_%VJH7``QI .V

D;:JRRV1$J1J$ .V; Q.:0VCQ10QC :$VVJ1 101 75%H. .: I:CCJQ1V1$J:C

.:0VCVV``VH QJ .VD;Q% ]% ` a8

8 QC:` `:JI1 V`

Figure 10. Kahn envelope elimination and restoration (EER) transmitter architecture [19]. Transmitter Fundamentals 15

Figure 11. General representation of the polar transmitter architecture.

QC:` `:JI1 V` R1``V` ``QI :` V1:J `:JI1 V` 1J .:  .V R: : 1 VJHQRVR 1J

V`IQ`:I]C1 %RV:JR].:V1J V:RQ`:` V1:J :JR8.V]QC:``V]`VVJ : 1QJ1

I: .VI: 1H:CC7 `:1$. `Q`1:`R QHQJ0V` ``QI .V:` V1:J`V]`VVJ : 1QJ:

A(t) = I(t) 2 + Q(t) 2 5:JR ^_

φ =  Q(t)  (t) arctan  5 ^ _  I(t) 

1.V`V^ _:JRφ(t) :`V .V]QC:`:I]C1 %RV:JR].:V 1IVRRQI:1J1$J:C8

#I:=Q`R1``V`VJHVGV 1VVJ .V]QC:`:JR:` V1:J`V]`VVJ : 1QJ1 .:  .V]QC:`

G:10VH Q`5:I]C1 %RV:JR].:V5.:0V11RVC7R1``V`1J$]VH `:C]`Q]V` 1VHQI]:`VR

Q .V/L4G:10VH Q`:JR .VIQR%C: VR)2Q% ]% 8.11HCV:`1J^_:JR^ _:

:JRφ :`VRV`10VR``QI :JR .`Q%$.JQJC1JV:`Q]V`: 1QJ8FQJC1JV:`1 1V1J^_:JR

^ _H:%V .V]QC:`G:10VH Q` QCQV .VG:JRC1I1 VR]`Q]V` 7Q` .V:` V1:J L

`V]`VVJ : 1QJ8  Q RV1$J .V 7 VI `Q`.1$. 1J V$`1 7 T CQ1" :JR .1$. ]VH `:C

`1RVC1 7T .V11RVG:JRJ: %`VQ` .V:I]C1 %RV:JR].:V]: ..: QGVHQJ1RV`VR1J Transmitter Fundamentals 16

:`H.1 VH %`V:JRH1`H%1 RCV0VCRV1$J8.11%V11CC`VH%` .`Q%$.Q%  .VR1H%1QJQ`

]QC:`7 VI8

2.3.1 Polar Implementations

.V@:.JVJ0VCQ]VVC1I1J: 1QJ:JR`V Q`: 1QJ^)_ VH.J1_%V1:JV:`C7V6:I]CVQ`

]QC:` IQR%C: 1QJ 1.V`V .V :I]C1 %RV :JR ].:V :`V V6 `:H VR R1`VH C7 ``QI .V

IQR%C: VR)21$J:C` a8/J .V@:.J VH.J1_%V5.Q1J1JFigure 105:C1I1 V`V6 `:H 

.V

1.1CV ]`VV`01J$ ].:V 1J`Q`I: 1QJ8  .V :I]C1 %RV 1J`Q`I: 1QJ 1 V6 `:H VR 11 . :J

VJ0VCQ]VRV VH Q`8.V#1J:@:.JR 7]V7 VI1RV1$JVR%H. .:  .VVJ0VCQ]VQ`

.VQ% ]% 1$J:C1R1`VH C7]`Q]Q` 1QJ:C Q .V%]]C70QC :$V8.11 .VH:V`Q`:

`:J$VQ`JQJC1JV:`HC:VQ`#51JHC%R1J$HC:R5 55:JR2` a5:11CCGVR1H%VR1J

`%` .V` H.:] V`8  .V :I]C1 %RV 1J`Q`I: 1QJ 1 :`V Q`VR; Q .V VJ0VCQ]V Q` .V

`:JI1 VR 1$J:C G7 IQR%C: 1J$ .V %]]C7 0QC :$V Q` .V #5 CV:R1J$ Q .V )

R1 1JH 1QJ8#IQ`V`VHVJ V6:I]CVQ` .1 VH.J1_%V1:]`VVJ VRG7)::G1J`a8

.V @:.J VH.J1_%V HQJ 1J%V Q GV .V G:1 Q` I:J7 Q` .V IQRV`J ]QC:`

:`H.1 VH %`V51JHC%R1J$`5R a8

Figure 11.Q1:$VJV`:C1

0:`1V 7Q`7 VI .: HQ%CR`1  .V]QC:`R1 1JH 1QJ8/JFigure 115 .V#1.Q1J::

0:`1:GCVR$:1J :I]C1`1V` ^9#_8  /J .V $VJV`:C H:V5 :J7 1$J:C 1.1H. IQR%C: V .V

:I]C1 %RVQ` .VH:``1V`H:JV``VH 10VC7GV%VR1J:]QC:`7 VI8`:R1 1QJ:C7 VI Transmitter Fundamentals 17

%V .V ]Q1V` %]]C7 Q HQJ `QC .V :I]C1 %RV Q` : JQJC1JV:` #5 : 1J ` Ra8

7Q1V0V`5 Q .V` ]Q1G1C1 1V V61 8  #J V6:I]CV Q` : ]QC:` 7 VI .:  RQV JQ  %V

%]]C7IQR%C: 1QJ11CCGVR1H%VR1J.:] V` 8

 Q   Q  φ = arctan   φ = arctan    I   I 

Figure 12. Phase-path circuit architectures: representative techniques

.V`V:`VI:J71:7 QHQJHV10VQ` .V].:V]: .1J:]QC:`7 VI8#.Q1J1J

Figure 115 .V$Q:C1 QHQJ0V` :R1$1 :C`V]`VVJ : 1QJQ` .VG:VG:JR].:V1$J:C Q

: ].:VRIQR%C: VR )2 H:``1V`8  ;JV ]Q1G1C1 7 1 Q %V HQJ0VJ 1QJ:C :` V1:J

%]HQJ0V`1QJ `QCCQ11J$ .V V6]`V1QJ 1J ^ _8  .V ]QC:` ].:V 1$J:C 1 `V]`VVJ VR

%1J$/L4G:10VH Q`:JRHQJ0V` VR Q:HQJ :J VJ0VCQ]V8.V%]HQJ0V`1QJ :$V

1Q%CR GV :J:CQ$Q% Q : `:R1 1QJ:C :` V1:J `:JI1 V` 11 . : HQJ :J  VJ0VCQ]V

1$J:C5 : 1J Figure 12^:_8  #JQ .V` ]Q1G1C1 7 1 Q V6]CQ1  RV0VCQ]IVJ  1J ].:VR

CQH@VRRCQQ] ^DD_ Q` R1$1 :C ].:VRCQH@VRRCQQ] ^ DD_ VH.J1_%V5 : 1J Figure 12^G_8

%H. VH.J1_%V ]V`I1  R1`VH  7J .V1 Q` HQJ :J  VJ0VCQ]V ].:VRIQR%C: VR )2

1$J:C5:JR:`V1VCCI: H.VR Q .V`V_%1`VIVJ Q`]QC:`:`H.1 VH %`V8.V1Q`@Q`

 :

2.3.2 Issues in Polar Systems

Transmitter Fundamentals 18

Figure 13. Time- and frequency-domain waveform comparison: Cartesian and polar systems. Baseband I/Q waveform with two-tone zero mean sinusoid.

QC:`7 VI:`VR1``1H%C  QRV1$J`Q`:J%IGV`Q``V:QJ8.V`1` 1 .V11RVG:JR

J: %`V Q` ]QC:` :I]C1 %RV :JR ].:V 1$J:C8  .Q1J 1J Figure 135 : :` V1:J

`V]`VVJ : 1QJ 11 . : 1I]CV G:JRC1I1 VR ]VH `%I I:7 .:0V 11RVG:JR ]VH `:C

HQJ VJ 11 .:JV_%10:CVJ ]QC:``V]`VVJ : 1QJ8Figure 13^:_.Q1 .V 1IVRRQI:1J

1:0V`Q`IQ`::` V1:JG:VG:JR1$J:CRV`1JVR:

= 1 π + 1 π I(t) sin(2 f Rt) sin(4 f Rt) ^ _ 2 2  = π Q(t) cos(3 f Rt) 1.V`V`18"7<8.V1:0V`Q`I1J^ _RV`1JV:G:VG:JR]VH `%I11 . .`VV QJV

1J .V]Q1 10V``V_%VJH7:618#.Q1J1JFigure 13^G_5 .V]Q1V`]VH `%I`Q` .V Transmitter Fundamentals 19

:` V1:JG:VG:JR`V]`VVJ : 1QJ1G:JRC1I1 VR QQJC7 .V QJV: "7<58 "7<5

:JR"7<8

QJ `: 1J$ 11 . .V :` V1:J 1$J:C5 .V ]QC:` 1$J:C 1J Figure 13^GR`_ .Q1

11RVG:JR ``V_%VJH7 GV.:01Q`8  .V :I]C1 %RV 1$J:C 1 `%CCR1:0V `VH 1`1VR 1JHV .V

VJ0VCQ]VH:JJV0V`GVJV$: 10V8.1CV:R Q.1$.R``V_%VJH7 `:J1 1QJ: .V1$J:C

:]]`Q:H.V

.VQ`V 1H:CC7 1J`1J1 V ``V_%VJH7 `V]QJV5 : .Q1J 1JFigure 13^R_8  .V ].:V 1$J:C

:CQ `V_%1`V JV:`C7 1J`1J1 V ``V_%VJH7 `V]QJV : .Q1J 1J Figure 13^`_8  7V`V5 .V

].:V 1J`Q`I: 1QJ 1 `V]`VVJ VR : : :` V1:J /L4 H.:JJVC 0VH Q`5 : 1J .V

:`H.1 VH %`V1JFigure 12^:_8.V.1$.G:JR11R .Q` .V].:V1$J:C1]:` C7`VC: VR Q

.V.:`]R1HQJ 1J%1 1V1J].:V1.VJ .VHQJ VCC: 1QJ `:=VH Q`7H`QV .`Q%$. .V

 Q`1$1J8.VJ .1.:]]VJ .V].:VI:7.1` G7   QH:] %`V .V]QC:`1 7.1` Q`

.V )2 H:``1V`8  /J : :` V1:J 7 VI5 .VV ].:V 1J0V`1QJ .:]]VJ 1.VJ .V

:I]C1 %RV Q` .V H:``1V` 1

].:V 1$J:C 1 JQ`I:C1

:I]C1 %RV5`V_%1`1J$.1$.CV1`: V1J .V].:VIQR%C: Q`H1`H%1 8

.V11RVG:JRJ: %`VQ` .V]QC:``V]`VVJ : 1QJR`10V .VJVVR`Q`.1$.RG:JR11R .

H1`H%1 RV1$J`Q` .V:I]C1 %RV:JR].:VIQR%C: Q`8#11CCGVVVJ1J .V`QCCQ11J$

H.:] V`5 .1 1 V]VH1:CC7 R1``1H%C  `Q` .V :I]C1 %RV ]: . 1J R7J:I1H %]]C7

:`H.1 VH %`V8  /J QIV 7 VI5 .V ]Q1V` %]]C7 I:7 JVVR `:H@1J$ G:JR11R . 1J

V6HVQ`"7< Q:0Q1RRV$`:R: 1QJQ`"GVCQ17 VI`V_%1`VIVJ ` 5 a8 Transmitter Fundamentals 20

AV Phase (rad)

VDD VDD a.) PA voltage gain vs V b.) Phase of RF carrier vs V DD DD  Figure 14. Distortion mechanisms in polar systems: gain and phase vs supply voltage

Figure 15. Common-source amplifier circuit showing mechanisms for AM-AM, AM-PM distortion 

#JQ .V`I:=Q`1%V`Q`]QC:`7 VI1R1 Q` 1QJ8/J:` V1:J `:JI1 V`5 .V#

Q]V`: V 11 . : `16VR %]]C7 0QC :$V :JR 1 QJC7 %G=VH  Q .V JQ`I:C 1J]% RQ% ]% 

JQJC1JV:`H.:`:H V`1 1H:R1H%VR1JRV :1C1J` 5 a8/J%]]C7RIQR%C: VR]QC:`

7 VI5 .V#1:CQ%G=VH  Q .VV``VH Q` .V%]]C70QC :$VQJC1JV:`1 78.Q1J1J

Figure 14^:_5 .V$:1JQ` .V#I:7H.:J$V:%]]C70QC :$V0:`1V8/JQIVH:V5

]:` 1H%C:`C711 ..Q` RH.:JJVC";RV01HV50QC :$V$:1J1: `QJ$`%JH 1QJQ` .V

:0V`:$V R`:1JRQ%`HV ]Q VJ 1:C8  Figure 15 1 : 1I]C1`1VR IQRVC Q` : HQIIQJ Q%`HV

:I]C1`1V` .Q11J$ V0V`:C 1I]Q` :J  ]:`:1 1H HQI]QJVJ 8  .V H%`0V1J Figure 14^:_ Transmitter Fundamentals 21

`V]`VVJ :";# .: I:7V6.1G1 $:1JV6]:J1QJ5`V%C 1J$1J#"R#"R1 Q` 1QJ1J

.V Q% ]%  1$J:C `a8  9:1J V6]:J1QJ 1J : "; HQIIQJRQ%`HV :I]C1`1V` I:7 GV

H:%VRG71JH`V:VRQ% ]% `V1 :JHV:JR `:JHQJR%H :JHV::`%JH 1QJQ`8

Figure 14^G_5.Q1 .VV``VH Q`%]]C70QC :$VQJ .V].:VQ` .V)2H:``1V`8":J7

:H 10V RV01HV .:0V 0QC :$VRRV]VJRVJ  H:]:H1 :JHV `V%C 1J$ ``QI VI1HQJR%H Q`

=%JH 1QJ8  .V %]]C7 0QC :$V H:J H.:J$V .V G1: HQJR1 1QJ QJ .VV ]:`:1 1H

0:`:H Q` H:%1J$ : ].:V .1`  RV]VJRVJ  QJ .V Q0V`:CC Q% ]%  1I]VR:JHV8  #  CQ1

%]]C70QC :$V5:RR1 1QJ:C#"R"R1 Q` 1QJI:7GVH:%VRG7`VVR .`Q%$.Q` .V#

1J]% 1$J:C Q .VQ% ]% 5]Q VJ 1:CC7 .`Q%$.$: VRR`:1JH:]:H1 :JHV8.11V]VH1:CC7

]`QGCVI: 1H1` .V].:VR]: .1$J:C1HQJ :J VJ0VCQ]VT1J]% ]Q1V`H:JCV:@R1`VH C7

 Q .VQ% ]% 5]%CC1J$ .V].:VG7:I%H.:  `a8.V].:V1$J:CH:J:CQCV:@

.`Q%$.R1`VH C7 Q .VQ% ]% Q` .V#5GQ . .`Q%$.]:`:1 1H"$R5:JRR1`VH C71` .V`V

1 Q``V 1J .V:I]C1 %RV]: .1$J:C` a8.11]`QGCVI: 1HGVH:%V .V11RVG:JR

]VH `%I .Q1J 1J Figure 13^`_ H:J :]]V:` :  .V # Q% ]% 5 HQ``%] 1J$ .V Q% ]% 

]VH `%I8

#JQ .V`I:=Q`1%V11 .]QC:`7 VI1JQ1V%HV] 1G1C1 75V]VH1:CC7`VC: VR Q .V

]Q1V` %]]C78  ``1H1VJ  0QC :$V `V$%C: Q` Q` VJ %V 11 H.1J$ ]`QHVV Q HQJ0V` 

0QC :$V CV0VC 11 . ]:10V VJV`$7  Q`:$V HQI]QJVJ 8  /J %]]C7RIQR%C: VR #

7 VI5 `V1R%:C 11 H.1J$ JQ1V H:J :``VH  .V ]V``Q`I:JHV Q` .V #8  ]VH1`1H:CC75

%]]C7JQ1VH:JI1611 . .V)2H:``1V`:JRGV%]HQJ0V` VR1J Q .V)2]VH `%I5JV:`

)2 H:``1V` ` 5a8 .1 H:J GV :]`QGCVI1` .VJQ1V 1 C:`$VVJQ%$. Q 01QC: V .V Transmitter Fundamentals 22

]VH `:CI:@5Q`:``VH "]V``Q`I:JHV8.:] V`RVH`1GV .1]`QGCVI1JRV :1C5

1JHC%R1J$:J:C71 VH.J1_%V:JRIV .QR Q`VR%HV%]]C7JQ1VVJ1 101 78

2.4 Power and Energy Efficiency: Polar and Cartesian Architectures 

#` V` " :JR ]VH `:C I:@ ]V``Q`I:JHV5 ]Q1V` V``1H1VJH7 1 .V IQ  1I]Q` :J 

]VH1`1H: 1QJ`Q`11`VCV `:JI1 V`8/JIQ ]Q` :GCV:]]C1H: 1QJ .V `:JI1 V`1

.V .1$.V  ]Q1V` HQJ%I1J$ GCQH@ 1J .V 7 VI GVH:%V Q` .V .1$. ]Q1V`

`V_%1`VIVJ Q` .V#81JHV]Q1V`CV0VC1J11`VCV `:JI1 V` VJR QGV.1$.C7

0:`1:GCV5 VJV`$7 V``1H1VJH7 VJR Q GV : GV V` IV `1H Q` ]V``Q`I:JHV .:J ]Q1V`

V``1H1VJH78 JV`$7 V``1H1VJH7 H:JGV H:] %`VR G7 _%:J 1`71J$ .V:0V`:$V V``1H1VJH7 Q`

.V `:JI1 V`51.1H.1GVH:CH%C: VR:

E η = load avg , ^ _ Esupply

1.V`VCQ:R1 .VVJV`$7RVC10V`VR Q .VCQ:R:JR %]]C71 .VVJV`$7R`:1J``QI .V

%]]C78VH:%V^ _1H:CH%C: VR:H`Q: 1IV]V`1QR .: `V]`VVJ JQ`I:C%VQ` .V

RV01HV51 1HCQVC7`VC: VR Q .VG: V`7C1`VQ` .V]Q` :GCV7 VI8 Transmitter Fundamentals 23

2.4.1 Typical Use Patterns: Probability Density Function (PDF) of Transmit Power 3.5

3

2.5 Urban

2 Rural

1.5 Probability(%) 1

0.5

0 -50 -40 -30 -20 -10 0 10 20 30 Output Power (dBm) Figure 16. Representative probability distribution function (PDF) for CDMA applications [31].

/J IQ  ]Q` :GCV HQII%J1H: 1QJ :]]C1H: 1QJ5 `:JI1 V` :`V `:`VC7 %VR : 

I:61I%I ]Q1V`8  /J HVCC%C:` 7 VI5 .V `:JI1 V` ]Q1V` CV0VC 1 HQJ 1J%Q%C7

:R=% VRRV]VJR1J$QJ .V]`Q61I1 7Q` .V.:JRV  Q .VG:V : 1QJ8.11RQJV`Q`

1Q `V:QJ7 Q :0V ]Q1V` 1J .V ]Q` :GCV %J1 5 :JR Q ]`V0VJ  `:JI1 V` ``QI

1J V``V`1J$11 .V:H.Q .V`1JH`Q1RVR]VH `%I8.VVHQJR`V:QJ1@JQ1J: .V

JV:`R`:`V``VH :JR1:HQIIQJ]`QGCVI1JI%C 1]CVR:HHV11`VCV7 VI`a8

Figure 16.Q1 .V]`QG:G1C1 7Q` `:JI1 1J$: :$10VJQ% ]% ]Q1V``Q`: "#

7 VI`Q`%`G:J:JR`%`:CVJ01`QJIVJ 8.VI:61I%I]Q1V`1RI5Q`QJV1: 5

G%  .V:0V`:$V]Q1V`1HCQV` Q RRIQ`:`Q%JRI8CV:`C75: `:JI1 V`

.: 1V``1H1VJ QJC7: I:61I%I]Q1V`I:7JQ GVV``VH 10V1J:`V:C1 1HVJ01`QJIVJ 8

.V:0V`:$VV``1H1VJH7Q` .V `:JI1 V`H:JGVH:CH%C: VR%1J$ .V 27 Transmitter Fundamentals 24

∞ g(P ) ⋅ P dP ∫ L L L η = −∞ avg ∞ , ^ _ g(P ) ⋅ P (P )dP ∫ L supply L L −∞

1.V`V% 1 .V]Q1V`RVC10V`VR Q .VCQ:R^6R:611JFigure 16_5 g(PL ) 1 .V]`QG:G1C1 7

RVJ1 7`%JH 1QJ5:JR Psup ply (PL ) 1 .V]Q1V`R`:1J``QI .V%]]C7::`%JH 1QJQ`% 8

# `:JI1 V`RV1$JVR`Q`.1$.:0V`:$VV``1H1VJH711CC.:0VGV V`G: V`7C1`V .:J1`

:0V`:$VV``1H1VJH71JQ  :@VJ1J Q:HHQ%J 8



8 Q1V` :I]C1`1V` Q0V`01V17 $VJV`:C Q]V`: 1QJ :JR ]Q1V` V``1H1VJH7



Figure 17. Power amplifier block diagram and schematic for a CMOS common-source PA

.V]Q1V`:I]C1`1V`^#_1 .VC:  :$V1J .V `:JI1 V`:JRR`10V .VIQR%C: VR

)21$J:C1J Q .V:J VJJ:8``1H1VJH71:H`1 1H:C]VH1`1H: 1QJ1JHV .V#I:7Q]V`: V Transmitter Fundamentals 25

:  %G :J 1:CC7 .1$.V` ]Q1V` .:J Q .V` GCQH@ 1J .V 7 VI8  ; .V` H`1 1H:C

]VH1`1H: 1QJ`Q` .V#1JHC%RVQ% ]% ]Q1V`5]Q1V` $:1J5:JRC1JV:`1 78.11Q`@1

JQ IV:J  QGV: `V: 1VQJ]Q1V`:I]C1`1V`1%V:JRRV1$J8.V`V:`VI:J7$`V: 

`V`V`VJHV QJ .V %G=VH  1JHC%R1J$ .V 1Q`@ Q` )::G5 `5 a5 `1]]5 `5 a5 @VV5

#Q@15V :C5`5a5)V7J:V` :JR V7:V` 5` a5$VJV`:C V6 1JHC%R1J$`5 a5:JR .1

:% .Q`;Q1JI: V` .V15` a8/J V:R5 .1VH 1QJ11CC]`Q01RV:G`1V`Q0V`01V1Q`

.VC1JV:`:JRJQJC1JV:`HC:VQ`#5`VC: 10VV``1H1VJH7]V``Q`I:JHV5:JR11CCIQ 10: V

%]]C7IQR%C: 1QJ1J]QC:`:`H.1 VH %`V8

2.5.1 Power Amplifier Operation

Figure 17.Q1:H.VI: 1H`V]`VVJ : 1QJQ`:$VJV`:C";]Q1V`:I]C1`1V`8V

11CC%V .VJQ : 1QJ:JR V`I1JQCQ$7`Q`1C1HQJ";RV01HV5G%  .V:H 10VRV01HV1J

Figure 17 HQ%CR : 1VCC GV 1I]CVIVJ VR 1J 1QC:` Q` 19V 1QC:`5 Q` ///R

VI1HQJR%H Q` VH.JQCQ$71JHC%R1J$9:#59:F5/J"V`V Q`7RV01HV8

.V $VJV`:C ]Q1V` :I]C1`1V` 1 HQJ`1$%`VR 11 . :J 1J]%  I: H.1J$ JV 1Q`@ :JR :J

Q% ]%  1I]VR:JHV `:J`Q`I: 1QJ JV 1Q`@8  .V 1J]%  JV 1Q`@ :1  1J 1I]VR:JHV

I: H.1J$ .V # 1J]%  Q .V ]`V01Q%  :$V5 1.1H. 1J : :` V1:J `:JI1 V` 1 .V

_%:R`: %`VRI16V` :$V8/I]VR:JHVI: H.1J$1I]`Q0V]Q1V` `:J`V`Q` .V)21$J:C

1J Q .V#5.VC]1J$ .V `:JI1 V`:H.1V0V .V`V_%1`VR]Q1V`$:1J` a8.VQ% ]% 

1I]VR:JHV I: H.1J$ JV 1Q`@ `:J`Q`I .V CQ:R 1I]VR:JHV5 $VJV`:CC7 .`Q%$. Transmitter Fundamentals 26

`VQJ:J  `%H %`V5.VC]1J$ .V#IVV  .V`V_%1`VRQ% ]% ]Q1V``Q`:`16VR%]]C7

0QC :$V`a8

/I]VR:JHV I: H.1J$ :  .V # 1J]%  1 HQJ0VJ 1QJ:C :JR 1 JQ  R1H%VR 1J $`V: 

RV :1C1J#C1 V`: %`V8/I]VR:JHV `:J`Q`I: 1QJ:  .VQ% ]% 5QJ .VQ .V`.:JR51

JQJ `101:C :JR 1:``:J  : $`V:  RV:C Q` HQJ1RV`: 1QJ8  D%I]VR 1I]VR:JHV

`:J`Q`I: 1QJ JV 1Q`@ 1JHC%RV DRI: H.1J$ JV 1Q`@ :JR :]]VR H:]:H1 Q`

`:J`Q`IV`` 5a8)VQJ:J  `:J`Q`I: 1QJJV 1Q`@:`V$VJV`:CC7C1I1 VRG7CQV

1J .V ]:10V HQI]QJVJ  :JR I:7 QJC7 GV %V`%C :  CQ1 HQJ0V`1QJ `: 1Q8  ; .V`

1Q`@%V]Q1V`HQIG1J1J$ Q%I .VQ% ]% Q`I%C 1]CV:I]C1`1V`:H.1V01J$.1$.V`

]Q1V`CV0VC11 .HQJ `:1JVR%]]C70QC :$V1J"; VH.JQCQ$1V8#Q@1V :C81J`a

]`VVJ  VI1J:C 1Q`@ QJ 1J V$`: VR `:J`Q`IV`  `%H %`V .:  %V 7IIV `7 Q

HQIG1JV .V]Q1V`Q`I%C 1]CVR1``V`VJ 1:CR";#5:H.1V01J$.1$.V``1H1VJH7:JR.1$.

1J V$`: 1QJ8D1%V :C8]`VVJ 1I1C:`I:$JV 1H `:J`Q`IV` .: :CCQ1# :$V Q %`J

Q``: CQ1V`]Q1V`CV0VC51I]`Q01J$I:61I%IQ% ]% ]Q1V`:JR:0V`:$VV``1H1VJH7` 5

 a8

2.5.2 Linear Power : Class AB

Transmitter Fundamentals 27

VDS

IDS Imax (A) DS I ; ) (V DS V

Vdsat 180o<Φ<360o Figure 18. Class-AB PA voltage and current waveforms 

.V`V:`VI:J7HC:VQ`]Q1V`:I]C1`1V`5R1 1J$%1.VRG7 .VIQRVQ`Q]V`: 1QJQ`

.V:H 10VRV01HV5 .VH%``VJ HQJR%H 1QJ:J$CV5:JR .V Q]QCQ$7Q``VQJ:J JV 1Q`@

:  .V Q% ]% 8  C:V #5 #5 5 :`V HQJ1RV`VR C1JV:` ]Q1V` :I]C1`1V`5 1JHV .V

:I]C1 %RV Q` .V Q% ]%  1$J:C 1 ]`Q]Q` 1QJ:C Q .V :I]C1 %RV Q` .V 1J]%  1$J:C8

C:V5 55:JR2:`VHQJ1RV`VRJQJC1JV:`1JHV1J]% RQ% ]% :I]C1 %RVC1JV:`1 71

JQ  1J.V`VJ 5 Q` 1  1 JQ  ]Q1GCV Q IQR%C: V .V Q% ]%  :I]C1 %RV ``QI .V 1J]% 

V`I1J:C87V`V1V11CCRVH`1GV .V$VJV`:CQ]V`: 1QJQ`HC:# Q$10V:VJVQ` .V

`:RVQ``1J.V`VJ 1J#RV1$J8

Figure 18.Q1 .V0QC :$V:JRH%``VJ 1:0V`Q`I`Q` .VHC:##8.V:H 10V

RV01HVQ]V`: V::H%``VJ Q%`HV5G% HQJR%H QJC7:``:H 1QJQ` .V`%CCH7HCVT1 1

:QJ;GV 1VVJ Q:JRQQ` .V 1IV8`:R1 1QJ:CHC:##5V]VH1:CC71J:%R1Q

:]]C1H: 1QJ5 VJR Q %V ]%.R]%CC Q%`HV `QCCQ1V` Q% ]%   :$V `a8  #  .1$.V`

``V_%VJH1V1 1IQ`VV``1H1VJ  Q%V:1J$CVRV01HV11 .:]%CCR%]1JR%H Q`5 Lchoke 1J

Figure 188.V`VQJ:J JV 1Q`@`1C V`%J1:J VRQ% ]% .:`IQJ1H%H. .:  .VR`:1J Transmitter Fundamentals 28

0QC :$V1:]]`Q61I: VC71J%Q1R:C8.VHQJR%H 1QJ:J$CV5Q`:J$%C:```:H 1QJQ` .V`%CC

 ]V`1QR .:  .VRV01HV1HQJR%H 1J$51GV 1VVJ  ^ .VC1I1 1J$H:V`Q`HC:#_:JR

    ^ .V C1I1 1J$ H:V `Q` HC: _8  .V RV01HV R11]: V ]Q1V` 1.VJ  :JR 

= ⋅ Q0V`C:]5: Ploss I DS VDS 8#HQIIQJIV `1H`Q`]Q1V`:I]C1`1V`V``1H1VJH71 .VR`:1J

V``1H1VJH77

P η = L drain , ^ _ Psup ply

1.V`V %  1 .V ]Q1V` RVC10V`VR Q .V CQ:R :JR % %]]C7 1 .V ]Q1V` R`:1J ``QI .V

%]]C78 `:1JV``1H1VJH7JV$CVH  .V]Q1V``V_%1`VR QR`10V .V1J]% Q` .V#5G% 1

:%V`%C`1$%`VQ`IV`1 `Q` .V0:`1Q%#HC:V8

.VR`:1JV``1H1VJH7Q`HC:#:I]C1`1V`1:`%JH 1QJQ` .VHQJR%H 1QJ:J$CV5 Φ 5

:JR .V0QC :$V11J$:  .VR`:1J5JQ`I:C1

vˆ η = o drain K , where VDD Φ − sin Φ ^_ K =   Φ Φ Φ  4sin − cos   2 2 2 

Φ 1.V`V 1 .VHQJR%H 1QJ:J$CV:RV`1JVR1J21$%`V 5 vˆo 1 .V1$J:C:I]C1 %RV: 

.VR`:1JQ` .V:H 10VRV01HV5:JRηR`:1J1#R`:1JV``1H1VJH7`a8

.VC1I1 1J$H:VQ`V``1H1VJH7`Q` .VHC:##:`V .V:IV:HC:#:JRHC:

Q]V`: 1QJ8.VI1J1I%IV``1H1VJH7Q` Q.:]]VJ1J .VHC:#C1I1 1J$H:V1.VJ

Φ = 0 = Φ = 0 360  :JR vˆo VDD 8  .V I:61I%I V``1H1VJH7 Q` 8 Q .:]]VJ 1.VJ 180  Transmitter Fundamentals 29

= :JR vˆo VDD 8.V`VC: 1QJ.1]1J^_:CQ.QCR`Q`HC:#8/J .VHC:H:V5:

.VHQJR%H 1QJ:J$CV5 Φ 5:]]`Q:H.V

Q% ]%  ]Q1V` :]]`Q:H.V

V``1H1VJH1V RVH`1GVR .V`V :`V G:VR QJ :`V ]%`VC7 1RV:C H1`H%I :JHV %1J$ .V

H%``VJ R0QC :$V 1:0V`Q`I 1J .V RV01HV :JR RQ JQ  1JHC%RV :J7 CQV ``QI ]:10V

HQI]QJVJ 8#CQ51J^_51 11I]Q` :J  QJQ V .: V``1H1VJH71C1JV:`11 . .V1$J:C

:I]C1 %RVT1` .V1$J:C11J$:  .VR`:1JQ` .VRV01HV1`VR%HVR5V``1H1VJH711CC:CQ

GV `VR%HVR8  V 11CC `V011  .V HQJHV]  Q` V``1H1VJH7 :  CV .:J I:61I%I Q% ]% 

]Q1V`C: V`1J .1H.:] V`8

Constrained by output network

Constrained VDS by switch (V)

time b.) General VDS waveforms

VDS

IDS (A) VGATE DS

I VDD ; a.) Switching PA schematic ) (V DS V

c.) Class E VDS - IDS waveforms time

Figure 19. Switching PA schematic and time-domain waveforms

2.5.3 Switching Power Amplifiers: Class E example  Transmitter Fundamentals 30

11 H.1J$ ]Q1V` :I]C1`1V` H:J :H.1V0V .1$.V` V``1H1VJH7 .:J C1JV:` :I]C1`1V`

GVH:%V .V:H 10VRV01HVQ]V`: V::11 H.8.V:H 10VRV01HV1%%:CC7R`10VJ.:`R

VJQ%$. .: 1 Q]V`: V::`V1 Q`1J .V:QJ; : V:JRHQJR%H JQH%``VJ 1J .V:Q``;

 : V81 .]`Q]V`C7HQJ `:1JVR0QC :$V:JRH%``VJ 1:0V`Q`I511 H.1J$:I]C1`1V`

H:J:H.1V0V.1$.Q% ]% ]Q1V`11 .Q1RV:CV``1H1VJH78J`Q` %J: VC7 .1%%:CC7

IV:J .: 11 H.1J$#`Q`V$Q .VC1JV:`1J]% RQ% ]% H.:`:H V`1 1HQ`C1JV:`#:JR

.:0V.1 Q`1H:CC7GVVJ%VRI:1JC7`Q`HQJ :J VJ0VCQ]VIQR%C: 1QJH.VIV8

Figure 19^:_.Q1:H.VI: 1H`V]`VVJ : 1QJ`Q`:";11 H.1J$#8.VRV01HV1

HQJ`1$%`VR1I1C:`C7 Q .VC1JV:`#RV01HV5V6HV]  .:  .V$: V1$J:CR`10V .VRV01HV

GV 1VVJ `1QRV:JRH% Q```V$1IV8.Q1J1JFigure 19^G_51.VJ .VRV01HV1:QJ5; .V

R`:1JRQ%`HV 0QC :$V 1HQJ `:1JVR QJV:`

Q%`HV 0QC :$V 1 HQJ `:1JVR G7 .V R7J:I1H Q` .V Q% ]%  JV 1Q`@8  .V Q% ]% 

JV 1Q`@ 1 RV1$JVR Q I1J1I1

1:0V`Q`I8/RV:CC75 .V:H 10VRV01HV %`JQJ1.VJ .VR`:1JRQ%`HV0QC :$V1

:H.1V01J$

I1J1I1<1J$ .VCQ1JH%``VR``QI11 H.1J$ .VR`:1JH:]:H1 :JHVQ` .V:H 10VRV01HV8

Transmitter Fundamentals 31

Figure 20. Class E PA schematic

C:  # :H.1V0V GQ .

H.:`:H V`1 1H8.VHC:HQJHV] .:GVVJ%VR`Q`:`:J$VQ`:]]C1H: 1QJ1JHC%R1J$

)2]Q1V`:I]C1`1V`5` 55a5:JR`VQJ:J ]Q1V`HQJ0V` V`5`5a8.Q1J1J

Figure 19^H_5 .VR`:1JRQ%`HV0QC :$V1:]]`Q61I: VC7

Figure 20.Q1:H.VI: 1H`V]`VVJ : 1QJ`Q`: 7]1H:C";HC:#5:1J`a8

:JR:`V].71H:CC%I]VR]:10VHQI]QJVJ  .: I:7GV1J V$`: VR:  .VRV01HVQ`

GQ:`RCV0VC8$VJV`:CC71JHC%RV .V]:`:1 1HR`:1JRQ%`HVH:]:H1 :JHVQ` .V:H 10V

RV01HV8

.V`V:`VI:J7IV .QR QRV1$J .VQ% ]% JV 1Q`@`Q`:HC::I]C1`1V`5QIVQ`

1.1H.:`VQ% C1JVR1J` 55a8.VJV 1Q`@1$VJV`:CC7RV1$JVR1J .V 1IVRRQI:1J

%H. .:  .V0QC :$V:JRH%``VJ 1:0V`Q`I`1  .VH.:`:H V`1 1H `:=VH Q`1V.Q1J1J

Figure 19 ^H_8  .V 1IVRRQI:1J `V]QJV Q` .V Q% ]%  JV 1Q`@ 1.VJ .V 11 H. 1

Q]VJVR.Q%CRGV%H. .:  .VR`:1J0QC :$V`V:H.V

QJV.:C`11 H.1J$H7HCV8/J .VQ`1$1J:C]:]V`G7Q@:C5`a5 .1HQJR1 1QJ`V%C 1J .V

`QCCQ11J$V6]`V1QJ`Q` .V]:10VJV 1Q`@7

π (π 2 − )4 R R L = L ≈ .1 1525 L , ^_ 16 wc wc 8 1 1 C = ≈ .0 1836 , ^_ 1 π π 2 +  ( )4 wc RL wc RL

8 V 2 V 2 P = DD ≈ .0 5768 DD , ^_ L π 2 +  4 RL RL Transmitter Fundamentals 32

1.V`V wc 1 .VH:``1V```V_%VJH7555:JR :`V:RV`1JVR1JFigure 205:JR 1 .V

]Q1V`RVC10V`VR Q .VCQ:R8

# R`:1G:H@ 11 . .V HC:  Q]QCQ$7 1 .:  .V R`:1JRQ%`HV 0QC :$V V6HVVR .V

≈ ⋅ %]]C70QC :$VG7:%G :J 1:CI:`$1J8/J .VJQI1J:CH:V5 VDS max .3 56 VDD 8.1

H:J GV ]`QGCVI: 1H 1` .V RV01HV 1 %HV] 1GCV Q .1$.R0QC :$V G`V:@RQ1J8  /J ";

VH.JQCQ$7 Q61RV G`V:@RQ1J H:J GV : I:=Q` 1%V C1I1 1J$ .V C1`V 1IV Q` .V :H 10V

RV01HV8  .V .1$. ]V:@ 0QC :$V 11J$ %`J Q%  Q GV : V`1Q% 1%V 11 . .V HC: 

RV1$J C1I1 1J$ .V I:61I%I ]Q1V` .V :I]C1`1V` H:J RVC10V` `VC: 10V Q .V %]]C7

0QC :$V8

class A class B class E

Peak Efficiency 50% 78.50% 100% Supply constrained output power (W)

(VDD=1V, RL=1Ω) 500mW 500mW 577mW Breakdown constrained output power (W) Ω (VDSmax=2V, RL=1 ) 500mW 500mW 182mW Table I. Comparison of power amplifier performance

Table I8.Q1 .V]V``Q`I:JHVQ`HC:#:JRHC:#HQI]:`VR QHC:82Q`

.V :IV %]]C7 0QC :$V5 HC:  1 GQ . IQ`V V``1H1VJ  :JR .: .1$.V` Q% ]%  ]Q1V`

.:JHC:#:JRHC:87Q1V0V`5$10VJ .VG`V:@RQ1JHQJ `:1J Q` .V:H 10VRV01HV5

HC:  I:7 Q]V`: V 11 . : CQ1V`  .:J C1JV:` Q]QCQ$1V5 1$J1`1H:J C7 `VR%H1J$

Q% ]%  ]Q1V`8  .V G`V:@RQ1J ]`QGCVI 1 QIV1.:  :CCV01: VR %JRV`

HQJR1 1QJR%V Q`VR%H 1QJQ`.Q RH:``1V`V``VH 81JHVHC::H.1V0V]V:@0QC :$V

 `V: JQI1J:CC7

]V:@1J$ R 1IV .V JQI1J:C %]]C7 0QC :$V `Q` HV` :1J "; VH.JQCQ$1V ` a8

7Q1V0V`5 .V `QG% JV Q` "; HC:R :I]C1`1V` 11 . .1$. ]V:@ 0QC :$V  `V 1

_%V 1QJ:GCV5V]VH1:CC71.VJ%G=VH VR QCQ:RR]%CCT0:`1: 1QJ1J .V1I]VR:JHVQ` .V

Q% ]% JV 1Q`@%%:CC7`VC: VR Q0:`71J$Q]V`: 1J$HQJR1 1QJQ` .V:J VJJ:8

2.5.4 Efficiency in Power Backoff

#IVJ 1QJVR1JVH 1QJ885 `:JI1 V``:`VC7Q]V`: V: I:61I%I]Q1V`5G% :`V

%G=VH  Q : 11RV R7J:I1H `:J$V Q` Q]V`: 1QJ .:  1 H.:`:H V`1

RVJ1 7`%JH 1QJ8#0V`:$VV``1H1VJH71:IQ`V:HH%`: V1JR1H: Q`Q`G: V`7C1`V:JRH:J

GV%VR Q_%:J 1`7 .V]V``Q`I:JHVQ`:$10VJ]Q1V`:I]C1`1V`8

5% 100% class E 4% 80% PDF 3% class B 60% 2% 40% Efficiency Efficiency Probability . Probability 1% 20% class A 0% 0% -60 -50 -40 -30 -20 -10 0 dB(Pout) - dB(Pmax) Figure 21. Power amplifier efficiency in power backoff overlaid with a representative PDF

PA Class: Class A Class B Class E

Average 0.78%* / 14.46% 18.21% Efficiency: 9.2%**

Table II. Average efficiency calculations for the curves in Figure 21 *constant bias current **variable bias current

Transmitter Fundamentals 34

Figure 21.Q1 .V1RV:CR`:1JV``1H1VJH7Q`HC:#5HC:5:JRHC:#:H`Q

Q% ]% ]Q1V`8.V]Q1V``:J$V1JQ`I:C1

%]]C7 0QC :$V8  .V HC:  V``1H1VJH7 H%`0V :%IV .:  .V HC:  ]Q1V` CV0VC 1

IQR%C: VRG7`V1 10VC7CQ1V`1J$ .V%]]C70QC :$V^ .`Q%$.%VQ`:C1JV:``V$%C: Q`T

.1HQJHV] 1R1H%VR1JIQ`VRV :1C1J .VJV6 H.:] V`_8#`V]`VVJ : 10V 21

Q0V`C:1R11 . .VV``1H1VJH7H%`0V8/J .1V6:I]CV5 .VIV:JQ]V`: 1J$]Q1V`1R

GVCQ1 .V]V:@]Q1V`8#  .VIV:J]Q1V`CV0VC5:CC]Q1V`:I]C1`1V`HC:V:`VCV

.:JQV``1H1VJ 8

.VV6]`V1QJ1J^ _1%VR QH:CH%C: V:0V`:$VV``1H1VJH75G:VRQJ .V 28.V

`V%C  Q` .V :0V`:$V V``1H1VJH7 H:CH%C: 1QJ `Q` .V H%`0V 1J Figure 21 :`V .Q1J 1J

Table II8#0V`:$VV``1H1VJH711$J1`1H:J C7CQ1V` .:J .V]V:@V``1H1VJH71J:CCH:V8

2Q` .VHC::JRHC::I]C1`1V`5:0V`:$VV``1H1VJH71IQ`V .:J:`:H Q`Q``10VCV

.:J]V:@V``1H1VJH782Q` .VHC:#:I]C1`1V`11 .HQJ :J G1:H%``VJ 51 1HCQV Q:

`:H Q`Q``1` 78.VH:CH%C: 1QJ1JTable II:`V`Q` .V]%`VC71RV:CH:V11 .Q% ]:`:1 1H

CQV8/`:RR1 1QJ:CCQIVH.:J1I:`V1JHC%RVR5GQ .]V:@:JR:0V`:$VV``1H1VJH7:`V

%G :J 1:CC71Q`V8



.V`QCCQ11J$H.:] V`11CC@1]G:H@ Q]`V01Q%1%V:JR.1$.C1$. IQ`VR1`VH C7 .V

VH.J1_%V 1J ]Q1V` I:J:$VIVJ  .:  I:7 GV %VR Q 1I]`Q0V :0V`:$V V``1H1VJH78

]VH1`1H:CC751V11CCR1H%%]]C7RIQR%C: VR]QC:`:`H.1 VH %`V::1:7 Q1I]`Q0V

:0V`:$V V``1H1VJH7 Q` 11`VCV `:JI1 V`8  V 11CC .Q1 .:  R7J:I1H 0QC :$V Transmitter Fundamentals 35

`V$%C: 1QJ H:J @VV] # V``1H1VJH7 JV:` .V 1RV:C C1I1 5 1I]`Q01J$ :0V`:$V V``1H1VJH7

%G :J 1:CC78  .1 11CC IQ 10: V .V C: V` 1Q`@ 1J H.:] V`  :JR  1.1H. RVH`1GV

HQJ `1G% 1QJ Q .V:`V:Q`R7J:I1H%]]C7 `:JI1 V`:`H.1 VH %`V8.:] V` 11CC

RVH`1GV :J :C V`J: 10V Q %H. :`H.1 VH %`V .:  H1`H%I0VJ  I:J7 Q` .V ]`QGCVI

:QH1: VR11 .]QC:`7 VI]`VVJ VR1J .1H.:] V`8 36

Chapter 3 Power Management for RF Transmitters and Polar Systems

Q1V` I:J:$VIVJ  1 :J 1JH`V:1J$C7 1I]Q` :J  1%V 1J .1$.C7 1J V$`: VR 11`VCV

7 VI81 .H:C1J$VI1HQJR%H Q` VH.JQCQ$75]Q1V`RVJ1 7.:GVHQIV:I:=Q`

HQJ `:1J QJ7 VI]V``Q`I:JHV`5a87V: :JR1J V`HQJJVH ]:`:1 1HI:7C1I1 

Q :CH%``VJ CV0VC1JI:J77 VI8`:JI1 V`:JR]`QHVQ`]Q1V`CV0VC:`V:CQ

HQJ `:1JVRG7G: V`7H:]:H1 71J]Q` :GCV7 VI5`V_%1`1J$1J VCC1$VJ %VQ`:0:1C:GCV

VJV`$78  71 Q`1H:CC75 ]Q1V` I:J:$VIVJ  .: GVVJ : 0:C%:GCV QQC Q `VR%HV 7 VI

H%``VJ HQJ%I] 1QJ:JR QV6]CQ1  `:RVQ``1J7 VI]Q1V`0V`%]V``Q`I:JHV1J:

`:J$V Q` VI1HQJR%H Q` :]]C1H: 1QJ ` 5  a8  .V :IV 1 `%V 11 .1J .V HQ]V Q`

11`VCV 7 VI5 V]VH1:CC7 : `VC: VR Q .V ]Q1V` :I]C1`1V` ^#_5 1.1H.H:J GVJV`1 

``QI:HH%`: V5V``1H1VJ 0QC :$V`V$%C: 1QJ `: V$1V8

1`VCV `:JI1 V` :JR V]VH1:CC7 ]Q1V` :I]C1`1V` .:0V ]VH1`1H :JR ]Q VJ 1:CC7

 `1J$VJ  ]Q1V` %]]C7 `V_%1`VIVJ 8  .1 H.:] V` 11CC RVH`1GV 1Q `:JI1 V`

:`H.1 VH %`V5G:VRQJ]QC:`7 VI51.1H.GVJV`1 $`V: C7``QIR7J:I1H`V$%C: 1QJQ`

.V # %]]C7 0QC :$V8V 11CC R1H% R1``V`VJ  Q]QCQ$1V`Q` .V 0QC :$V `V$%C: Q`5

1JHC%R1J$11 H.1J$ R HQJ0V` V`:JRC1JV:``V$%C: Q`8.V$Q:CQ` .1H.:] V`1

Q1J `QR%HV .V1%V:JR `:RVQ``Q` .VV Q]QCQ$1VQ .:  .V`QCCQ11J$H.:] V`5 Power Management for RF Transmitters and Polar Systems 37

1.1H.]`Q01RVRV :1CQJ]Q1V`%]]C7`V=VH 1QJ:JR.7G`1R0QC :$V`V$%C: Q`5:`V]% 1J

]`Q]V`HQJ V6 `Q` .VR1H%1QJ8

3.1 Motivation: Efficiency 

#Q% C1JVR1J.:] V`5]Q1V`:I]C1`1V`Q]V`: V11 .:11RV`:J$VQ`Q% ]% ]Q1V`

.:  H:J GV _%:J 1`1VR .`Q%$. .V ]`QG:G1C1 7 RVJ1 7 `%JH 1QJ8  QJ1RV`1J$ .: 

:0V`:$V]Q1V`CV0VCI:7GV%G :J 1:CC7GVCQ1]V:@]Q1V`CV0VC5:0V`:$VQ`VJV`$7

V``1H1VJH7 1 H:CH%C: VR G:VR QJ .V Q]V`: 1J$  : 1 1H 1J .V  28  1 . `:R1 1QJ:C

:`H.1 VH %`V51.V`V .V#Q]V`: V11 .:`16VR%]]C70QC :$V:JR .V]Q1V`CV0VC1

QJC7HQJ `QCCVRG7 .V1$J:C:]]C1VR Q .V$: VQ` .V:H 10VRV01HV5:0V`:$VV``1H1VJH7

I:7GV%G :J 1:CC7CV .:J]V:@V``1H1VJH78%H.:`H.1 VH %`V`V_%1`V:C1JV:`# Q

:I]C1`7 .V.1$.R7J:I1H`:J$V1J]% 1$J:C Q .VQ% ]% 8/JVH 1QJ81VRVH`1GVR

.Q1JQJC1JV:`#H:J:I]C1`7C1JV:`1$J:C%1J$]QC:`:`H.1 VH %`V:JR VH.J1_%V

%H.:@:.J)5.Q1J1JFigure 1087Q1V0V`5GQ .C1JV:`:JR11 H.1J$:I]C1`1V`

H:JGVJV`1 1$J1`1H:J C7``QIV``1H1VJ `V$%C: 1QJQ` .V%]]C70QC :$V8 Power Management for RF Transmitters and Polar Systems 38

4% 90%

ii.)

80%

70%

3%

60%

PDF

iii.) i.) 50%

2%

40%

30% Efficiency

Probability Probability

1% 20%

10%

0% 0% -60 -50 -40 -30 -20 -10 0 dB(Pmax) - dB(Pout)

Figure 22. Efficiency versus output power: i.) conventional class B PA, ii.) class B PA with dynamic supply regulation, iii.) class B PA, dynamic VDD with realistic loss mechanisms.

Figure 22 HQI]:`V .V V``1H1VJH7 Q` :J 1RV:C HC:  # 11 . :JR 11 .Q%  R7J:I1H

%]]C7`V$%C: 1QJ8.V]Q1V`H:CV^6R:61_1JQ`I:C1

#:H.1V0VI:61I%IV``1H1VJH7Q`πL5Q` 8 Q8#]Q1V`1`VR%HVR5 .VHC:

V``1H1VJH7`:CCC1JV:`C711 . .V0QC :$V:I]C1 %RVQ` .V)2H:``1V`1$J:C8%`0V18_1`Q`

.V `:R1 1QJ:CH:V1.V`V .V%]]C70QC :$V551`16VR8%`0V118_:JR1118_.1$.C1$. 

.VHVJ:`1Q1.V`V .V%]]C70QC :$V1`VR%HVR%H. .:  .V#Q]V`: V:C1:7: 

.V .`V.QCRQ`HQI]`V1QJ8/` .VH:``1V`:I]C1 %RV1 1IVR0:`71J$5:1 1Q%CRGV`Q`

 :JR:`R .: %V:I]C1 %RVIQR%C: 1QJ QI:]Q%  .V1$J:CHQJ VCC: 1QJ^V8$8 .V

πL 4@ HQJ VCC: 1QJ1JFigure 45 Q` Q .V`  :JR:`R 1JHC%R1J$ 4#"5 #@5 Q` I:J7

`Q`I Q` @_5 .VJ .V %]]C7 0QC :$V H.:J$V R7J:I1H:CC7 Q `QCCQ1 .V H:``1V`

:I]C1 %RVQ`VJ0VCQ]V8

%`0V 1118_ HQJ1RV` .V :H %:C CQ IVH.:J1I .:  QHH%` GVH:%V Q` .V %]]C7

IQR%C: Q`T .VRV :1CQ` .V%]]C7IQR%C: Q`11CCGVR1H%VR1JRV :1CC: V`1J .1 Power Management for RF Transmitters and Polar Systems 39

H.:] V`8;0V`:CC5Figure 22.Q1 .: R7J:I1H0QC :$V`V$%C: 1QJ `: V$1VI:1J :1J

.1$.V`V``1H1VJH7:H`Q .V]Q1V``:J$V5V]VH1:CC7: CQ1]Q1V`51.V`V .V#1IQ 

C1@VC7 QQ]V`: VG:VRQJ .V 282Q`H%`0V1118_5:0V`:$VV``1H1VJH71 8 QHQI]:`VR

Q8Q1JH%`0V18_8.11:J1JH`V:VQ`IQ`V .:JQ1J:0V`:$VV``1H1VJH781 .

.V]Q VJ 1:C QR`:I: 1H:CC71I]`Q0VG: V`7C1`V%H. VH.J1_%VIQ 10: VJV1H1`H%1 

:`H.1 VH %`V Q:H.1V0V.1$.V`V``1H1VJH78





3.1.1 Envelope Tracking System

I 2 + Q2

Figure 23. Envelope tracking transmitter using traditional Cartesian architecture with a dynamic supply modulator to improve average efficiency.

Power Management for RF Transmitters and Polar Systems 40

VDD

VDS

VDD VDS

PLOSS

PLOSS

time (s) time (s) a.) Fixed VDD, low amplitude class B b.) Dynamic VDD, low amplitude class B

Figure 24. Time domain waveforms for VDS RF carrier waveform and power loss: fixed VDD and dynamic VDD.

Figure 25. Time domain envelope tracking waveforms Power Management for RF Transmitters and Polar Systems 41

J0VCQ]V `:H@1J$1J0QC0V`:]1RC70:`71J$ .V%]]C70QC :$VQ`:C1JV:`#5 `:H@1J$

.V VJ0VCQ]V5 Q` 1IV 0:`71J$ H:``1V` :I]C1 %RV8  1 . .1 VH.J1_%V .V `:JI1 V`

Q]V`: V11 .: `:R1 1QJ:C:` V1:J:`H.1 VH %`V:.Q1J1JFigure 238``1H1VJH71

1I]`Q0VR1JHVJ:`1Q1.V`V .V0QC :$V11J$:  .VR`:1JQ` .V:H 10VRV01HV1CV

.:J .V%]]C70QC :$V8/` .V%]]C70QC :$V1`VR%HVR5:CCH%``VJ R`:1JG7 .V:H 10V

RV01HV:JRRVC10V`VR Q .VCQ:RHQIV``QI:CQ1V`0QC :$VT`VR%H1J$]Q1V`CQ5:

.Q1J1JFigure 248/ 1H`1 1H:C .:  .V:H 10V%]]C7IQR%C: Q`1]Q1V`V``1H1VJ 8/ 1

%%:CC7 HQJ `%H VR ``QI :IQJ$ .V HC:V Q` 11 H.1J$ 0QC :$V `V$%C: Q` Q` R 

HQJ0V` V`8/` .V%]]C70QC :$V1:R=% VR%1J$:`V1 10VQ`C1JV:`0QC :$V`V$%C: Q`5

.V`V 1 JQ ]Q1V` :01J$ 1J .V VJ0VCQ]V `:H@1J$ 7 VI8 ":61I%I]Q1V` :01J$

QHH%`1` .VV``1H1VJ 0QC :$V`V$%C: Q`:R=%  .V%]]C70QC :$V Q .VI1J1I%ICV0VC

1.V`V .V # 1  1CC C1JV:`8  /J QIV V6:I]CV .V # V0VJ Q]V`: V 1J 1V:@

HQI]`V1QJ5`%` .V`1I]`Q01J$V``1H1VJH7:  .V `:RVQ``Q`C1JV:`1 7:JR%]]C7JQ1V

%HV] 1G1C1 7 ` 5 a8  .V :I]C1 %RV 1$J:C H:J GV I:]]VR ``QI .V G:VG:JR5 Q`

IV:%`VR``QI .V%]HQJ0V` VR)21$J:C:  .V1J]% Q`Q% ]% Q` .V#`a8

Figure 25.Q1:JV6:I]CVQ` .V 1IVRQI:1J1:0V`Q`I`Q`:JVJ0VCQ]V `:H@1J$

7 VI8Figure 25^:_.Q1 .VIQR%C: VR)21$J:C:JRVJ0VCQ]V1:0V`Q`I`Q` .V

V6:I]CV 1J VH 1QJ 888  1 . : `16VR  Q` 85 .V 1$J:C 11J$ 1 CV .:J .V

I:61I%I5 V]VH1:CC7 :  8  :JR 8 -8  Figure 25 ^H_ .Q1 :J V6:I]CV R7J:I1H 

1$J:C87V`V51C1$. C7.1$.V` .:J .V)2VJ0VCQ]V%H. .: RQVJQ `V:H.

GV 1J .V `1QRV `V$1QJ8 Figure 25 ^R_ .Q1 .V `V%C 1J$ )2  1:0V`Q`I8  .V )2

1$J:C 11J$ 11HV 5 G%  .VGQ QI VR$VQ` .V VJ0VCQ]V 1`16VR:JR :GQ0V .V

I1J1I%I`Q` .VRV01HV8.V`V%C 1J$1$J:C:I]C1 %RV:JRQ% ]% ]Q1V`:`V .V

:IV:11 .`16VR5G% 11 .%G :J 1:CC7.1$.V`:0V`:$VV``1H1VJH78

6:I]CVQ`VJ0VCQ]V `:H@1J$7 VI1JHC%RV .V1Q`@Q`7:J1J$ QJV :C81J`a5

 :%R1J$V` V  :C8 1J `a5 H.C%I]` V  :C8 1J ` a :JR I:J7 Q .V` ` R a8  ; .V`

V6:I]CV Q]V`: V .V C1JV:` # 1J HQI]`V1QJ Q :H.1V0V .1$.V` V``1H1VJH78  /J ` a5

:J$V :C8]`VVJ :JVJ0VCQ]V `:H@1J$7 VI`Q`;2 "11 .:JVJ0VCQ]VG:JR11R .

Q`"7<:JR:0V`:$VV``1H1VJH7`Q` .VVJ 1`V7 VIGV 1VVJ QR Q8

3.1.2 Dynamic Supply Polar Modulation

I 2 + Q2

Figure 26. Dynamic supply polar modulation system

1$J1`1H:J  V``1H1VJH7 $:1J :`V :CQ ]Q1GCV `Q` 7 VI 11 . JQJC1JV:` ]Q1V`

:I]C1`1V`8#IVJ 1QJVR1JVH 1QJ88511 H.1J$#.:0V:`VC: 1QJ.1]GV 1VVJ

.V%]]C7:JR .VQ% ]% )21:0V`Q`I .: `QCCQ1 Power Management for RF Transmitters and Polar Systems 43

= α ⋅ ( + φ ) vO−RF VDD cos wct (t) 5 ^_

φ 1.V`VvO−RF 1 .VQ% ]% )21:0V`Q`I5 (t) 1 .V 1IVR0:`71J$].:VQ` .V)2H:``1V`5

:JR α  1 .V HQJ :J  Q` ]`Q]Q` 1QJ:C1 7 GV 1VVJ  :JR .V H:``1V` :I]C1 %RV8

:`:IV V`:α ;1$VJV`:CC7HCQV QQJV5G% H:J1JHC%RVC1JV:`CQIVH.:J1I1J .V

#5]:10VHQI]QJVJ 5:JR1J V`HQJJVH ` a8

.V%]]C7IQR%C: VR]QC:`7 VI1.Q1J1J21$%`V 8.V:I]C1 %RV:JR].:V

]: . :`V ]C1  1J .V G:VG:JR5 Q` %1J$ Q .V` IV .QR C1@V .V @:.J VH.J1_%V 1J

21$%`V8.VHQJ :J VJ0VCQ]V].:VRIQR%C: VR1$J:CHQJ `QC .V1J]% Q` .V#8

.V :I]C1 %RV 1$J:C ]:V Q .V %]]C7 0QC :$V `V$%C: Q` 1.1H. IQR%C: V .V

:I]C1 %RV Q` .V ]QC:`0VH Q` 1$J:C8  # IVJ 1QJVR 1J VH 1QJ 885 1  1 H`1 1H:C .: 

.V`V1]`Q]V` 1IV:C1$JIVJ Q` .V:I]C1 %RV:JR].:V1$J:C8/ 1:CQ1I]Q` :J 

Q HQJ1RV` .V #"R#" :JR #"R" R1 Q` 1QJ IVH.:J1I5 : .VV I:7 H:%V

]`QGCVI11 .":JR .VQ% ]% ]VH `%I8.V%]]C7IQR%C: Q`.: Q.:0V.1$.

G:JR11R .:JRCQ1JQ1V Q:0Q1R:RR1 1QJ:CRV$`:R: 1QJQ` `:JI1 V`]V``Q`I:JHV8

.1 7 VI 1 : `:H 10V ``QI :J V``1H1VJH7 ]V`]VH 10V GVH:%V JQJC1JV:` # :`V

7]1H:CC7IQ`VV``1H1VJ  .:JC1JV:`#^1JI:J7G% JQ :CCH:V_8"%H.Q` .VV:`C7

1Q`@QJ .1 VH.J1_%V1:IQ 10: VR QC1JV:`1

GV%VR`Q`JQJRHQJ :J VJ0VCQ]VIQR%C: 1QJ8.V `:1$. `Q`1:`R:]]`Q:H.1 Q%V

:C1JV:``V$%C: Q` Q:R=%  .V%]]C70QC :$V`Q` .V#`55a8.11:1I]CV

:JRHQ V``VH 10V:]]`Q:H.:C1JV:``V$%C: Q`:`V`VC: 10VC7I:CC:JR`QG% 8 Power Management for RF Transmitters and Polar Systems 44

#JQG01Q%1I]`Q0VIVJ 1 Q%V11 H.1J$0QC :$V`V$%C: Q` QIQR%C: V .V%]]C7

0QC :$V8  JC1@V C1JV:` `V$%C: Q`5 .VV 0QC :$V `V$%C: Q` :`V 1RV:CC7 Q V``1H1VJ 8

11 H.1J$ `V$%C: Q` :`H.1 VH %`V HQ%CR :H.1V0V GQ . .1$. ]V:@ V``1H1VJH7 :JR .1$.

V``1H1VJH7 1J ]Q1V` G:H@Q``5 : 11 . .V H:V `Q` H%`0V 1118_ 1J 21$%`V 8  7Q1V0V`5

11 H.1J$ `V$%C: Q` I:7 GV IQ`V R1``1H%C  Q 1I]CVIVJ  GVH:%V Q` JQ1V :JR

G:JR11R . HQJ `:1J 8  `:RVQ`` GV 1VVJ G:JR11R . :JR V``1H1VJH7 `VR%HV .V

V``VH 10VJV Q` 11 H.1J$ Q]QCQ$1V :  .1$. ``V_%VJH1V8  FQ1V ``QI .V 11 H.1J$

]`QHVH:J:``VH  .V]VH `:C]V``Q`I:JHVQ` .V#`a8:`V`%CHQJ1RV`: 1QJQ`:CC

.V 7 VI `:RVQ`` 1 JVHV:`7 `Q` : %HHV`%C 1I]CVIVJ : 1QJ8  %HHV`%C ]QC:`

1I]CVIVJ : 1QJ11 .R7J:I1H11 H.1J$0QC :$V`V$%C: Q`1JHC%RV`a:JR` a5 .V

C: V`%1J$:JVJ0VCQ]V`VHQJ `%H 1QJ#11 .:"7<11 H.1J$0QC :$V`V$%C: Q`8





8 QC :$V V$%C: Q` Q]QCQ$1V  Power Management for RF Transmitters and Polar Systems 45

88 1JV:` V$%C: Q` VDD VDD Vin Vin + - Av Av - + Vout Vout

Load Load

a.) Generic linear regulator b.) CMOS linear regulator

Figure 27. Linear regulator topologies  # IVJ 1QJVR 1J .V ]`V01Q% VH 1QJ5 C1JV:` `V$%C: Q` :`V `: 5 HQ  V``VH 10V :JR

`QG% 8.Q1J1JFigure 275C1JV:``V$%C: Q`%V:`V1 10V0QC :$VR`Q] Q$VJV`: V

0QC :$VQ% ``QI`16VR%]]C70QC :$V8/J .V";V6:I]CV1JFigure 27^G_5:

";Q% ]% RV01HV:H ::HQJ `QCCVRH%``VJ Q%`HV Q`V$%C: V .VQ% ]% 0QC :$V8

/  1 1I]Q` :J  .:  .V "; RV01HV 1 C:`$V VJQ%$. Q %]]C7 .V I:61I%I CQ:R

H%``VJ :JRI:61I%IQ% ]% 0QC :$V8.VC1JV:``V$%C: Q` Q]QCQ$7H:J:H.1V0V.1$.

G:JR11R .5CQ1 V:R7 : VV``Q`5$QQRJQ1V]V``Q`I:JHV5:JR.1$.H%``VJ V``1H1VJH7

` R a8%``VJ V``1H1VJH71IV:%`VR: .V Q :CH%``VJ RVC10V`VR Q .VCQ:RR101RVR

G7 .V Q :CH%``VJ R`:1J``QI .V%]]C7T.1$.V`G1:H%``VJ 1J .VC1JV:``V$%C: Q`

H1`H%1 RV$`:RVH%``VJ V``1H1VJH787Q1V0V`5]Q1V`V``1H1VJH7$QV11 . .V`: 1QQ`Q% 

Q5

V η = out ^ _ LR 5 VDD Power Management for RF Transmitters and Polar Systems 46

η 1.V`V LR 1 .VV``1H1VJH7Q` .VC1JV:``V$%C: Q`8.1I:@V .VC1JV:``V$%C: Q`CV

: `:H 10V `Q` `:JI1 V` :]]C1H: 1QJ 1.V`V .V %]]C7 0QC :$V 1 CV .:J  `Q` :

C:`$V]V`HVJ :$VQ` .V 1IV8

3.2.2 Switching Voltage Regulators

Figure 28. Generic voltage-mode switching regulator block diagram

Figure 29. DC-DC conversion cells: buck, boost, and inverting buck-boost

4 Li-ion

3 buckLi-ion Vout boost CELL VOLTAGE(V) 2 0 1 2 3 4 5 TIME (H)  Figure 30. Typical battery discharge curve and power converter mode of operation Power Management for RF Transmitters and Polar Systems 47

11 H.1J$`V$%C: Q`H:JGV%G :J 1:CC7IQ`V]Q1V`V``1H1VJ  .:JC1JV:``V$%C: Q`5

G%  `V_%1`V IQ`V HQI]CV6 HQJ `QC ]`QHVV Q HQJ0V`   0QC :$V ]Q VJ 1:C8  .V

$VJV`1H`V$%C: Q`.Q1J1JFigure 28%V11 H.1J$50QC :$V]Q VJ 1:C `:J`Q`I: 1QJ5

:JR`1C V`1J$ QHQJ0V` :JR`VHQ0V`: Q% ]% 0QC :$V8#HQJ `QC7 VIIV:%`V .V

V``Q`:JR:R=%  .V11 H.1J$]`QHV QHQ``VH `Q`RV01: 1QJ1JQ% ]% 0QC :$V8

.V`V :`V I:J7 ]Q1GCV :`H.1 VH %`V `Q` 11 H.1J$ 0QC :$V `V$%C: Q` .:  %V

I:$JV 1H:JRVCVH `Q : 1H0QC :$VR `:J`Q`I: 1QJHVCC8.VV6:I]CV.Q1J1JFigure

29 1JHC%RV  V] RQ1J ^G%H@_5  V] %] ^GQQ _5 :JR  V] %] Q` RQ1J ^G%H@RGQQ _

I:$JV 1HHQJ0V`1QJHVCC8; .V` Q]QCQ$1VI:7%VI:$JV 1H `:J`Q`IV`^`C7G:H@_5

Q`]%`VVCVH `Q : 1H11 H.VRH:]:H1 Q` R HQJ0V`1QJ` R a8:H..:R1``V`VJ 

`:RVQ``:JR1:]]`Q]`1: V`Q`R1``V`VJ H1`H%I :JHV8%H@Q`G%H@RGQQ HQJ0V` V`

:`V]Q]%C:``Q` `:JI1 V`:]]C1H: 1QJ .: Q]V`: V``QI:G: V`78%H@HQJ0V` V`

11CC `:J`Q`I .V  ]Q VJ 1:C RQ1J5 C1@V : C1JV:` `V$%C: Q`5 G%  :`V 1RV:CC7 Q

V``1H1VJ 8  %H@RGQQ  HQJ0V` V` H:J GQ . 1JH`V:V :JR RVH`V:V : 0QC :$V CV0VC5 :JR

I:7GV%V`%C1J]Q` :GCV:]]C1H: 1QJ11 .11RVC70:`71J$G: V`70QC :$V8.Q1J1J

Figure 3051` .VG: V`7CV0VC1:GQ0V .V`V_%1`VR%]]C70QC :$V5G%H@RIQRV11CC V]

0QC :$V RQ1J8  /` Q%  1 :GQ0V .V G: V`7 0QC :$V5 GQQ RIQRV H:J 1JH`V:V .V

]Q VJ 1:C8 Power Management for RF Transmitters and Polar Systems 48

DT

D=duty cycle

T/2 T  Figure 31. Pulse-width-modulation (PWM) waveform

1 Small Ripple Approximation 0.8 Ripple Fundamental

0.6 Second Harmonic Third Harmonic 0.4

0.2 NormalizedRipple

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Duty Cycle Figure 32. Fundamental and harmonics of pulse-width modulated waveform versus duty cycle, normalized to fundamental peak.

":=Q` R1``V`VJHV GV 1VVJ 11 H.1J$ :JR C1JV:` `V$%C: Q`5 ``QI RV1$J :JR

Q]V`: 1QJ:C]V`]VH 10V5 VI``QI .VR7J:I1HQ` .VQ% ]% `1C V`:JR .V11 H.1J$

]`QHVV8  .V .1$.V` Q`RV` Q% ]%  `1C V` 1J R  HQJ0V` V` Q]QCQ$1V H:J GV :

HQJ `:1J QJ .VQ% ]% 1I]VR:JHVQ` :G1C1 7Q` .V`V$%C: Q`8]VH1:CHQJ `QCC:1

HQI]VJ: V `Q` IQ`V HQI]CV6 R7J:I1H Q I:1J :1J CQ1 Q% ]%  1I]VR:JHV `Q` CQ:R

`:J1VJ ` 5 a5:JR Q:H.1V0V.1$. `:H@1J$G:JR11R .` a8

.V11 H.1J$]`QHV$VJV`: V]VH `:CHQJ VJ :  .V`%JR:IVJ :C:JR.:`IQJ1H

Q` .V 11 H.1J$ ``V_%VJH78  11 H.1J$ 0QC :$V `V$%C: Q` Q` VJ %V ]%CVR11R .

IQR%C: 1QJ^"_ QHQJ `QC .V 0QC :$V:  .VQ% ]% 8.Q1J1JFigure 31511 . Power Management for RF Transmitters and Polar Systems 49

"5 .V R% 7 H7HCV Q` : 11 H.1J$ 1:0V`Q`I HQJ `QC .V  HQI]QJVJ  Q` .V

1:0V`Q`I8  1 . "5 .V  HQI]QJVJ  1 C1JV:` 11 . R% 7 H7HCV8  .1 1I]C1`1V

HQJ `QC:: 1IV:0V`:$VRIQRVCQ` .V11 H.1J$HVCC1Q` VJ:RV_%: V Q:J:C7

GV.:01Q` Q` .V R  HQJ0V` V`8  7Q1V0V`5 .1$.V` .:`IQJ1H Q` .V 11 H.1J$

1:0V`Q`I H:J HQI]C1H: V .V Q% ]%  ]VH `%I Q` .V HQJ0V` V`8  .V 2Q%`1V`RV`1V

RVHQI]Q1 1QJQ`:"1:0V`Q`I::`%JH 1QJQ`R% 7H7HCV1:

 2 ∞ (− )1 n ⋅sin(nπD) ⋅ cos(nw t) V (t) = V D + ⋅ sw , in  π ∑  (16)  n=1 n   1.V`V 1J1 .VI:61I%I0QC :$VQ` .V"1$J:C5 wsw 1 .V11 H.1J$``V_%VJH75 

1 .V R% 7 H7HCV5 :JR J 1 .V .:`IQJ1H J%IGV`8  .V I:$J1 %RV Q` .V `1`  .`VV

.:`IQJ1H0V`%R% 7H7HCV:`V.Q1J1J21$%`V8

.V ]`QGCVI 11 . .V V6 `: ]VH `:C HQJ VJ  $VJV`: VR G7 .V 11 H.1J$ ]`QHV 1

.: 1 :]]V:`:JQ1VQJ .V `:JI1 V`%]]C70QC :$V8Q1V`%]]C7JQ1VH:JGV

]`QGCVI: 1H1J11`VCV7 VIGVH:%V1 H:JI1611 .)21$J:C:JR.Q1%]1J .V

Q% ]% ]VH `%I8.11:1VCC@JQ1J]`QGCVI`Q`%]]C7`V$%C: VR0QC :$VHQJ `QCCVR

QH1CC: Q`^;_5:IVJ 1QJVR1JVH 1QJ885:JRRVH`1GVR1J` a8%]]C7JQ1V1

:CQ]`QGCVI: 1H`Q` .V]Q1V`:I]C1`1V`51.1H.I:7.:0V%]]C7RRV]VJRVJ $:1J:JR

].:V `:J`V``%JH 1QJTV0VJ11 .C1JV:`# Q]QCQ$1V8.V]`QGCVIQ`%]]C7JQ1V

%]HQJ0V`1QJ:JRI161J$11CCGVRVH`1GVR1JRV :1C1JH.:] V`8

11 H.1J$ JQ1V :JR .V Q% ]%  `1C V` R7J:I1H `V%C  1J :J V``1H1VJH7 `:RVQ`` `Q`

R7J:I1H %]]C7 7 VI8  .V CQCV `1C V` HQI]QJVJ  :`V 1

R7J:I1HQ` .V`1C V`11CCJQ 1J V``V`V11 . .VI:$J1 %RVQ`].:V`V]QJVQ` .V

`V$%C: Q`89VJV`:CC75]QCV1J .V`1C V`:`V]C:HVRJV:`Q`:GQ0V .V `:H@1J$G:JR11R .

Q` .V7 VI51.1H.H:JGVQ0V`16 1IV.1$.V` .:J .VH:` V1:J/L4G:JR11R .`a8

1 . : .1$.V` `1C V` H% Q``5 .V 11 H.1J$ ``V_%VJH7 .: Q 1JH`V:V Q `VR%HV .V

I:$J1 %RVQ` .V11 H.1J$JQ1V89VJV`:CC75.1$.V`11 H.1J$``V_%VJH1V11CC`VR%HV

.V]Q1V`V``1H1VJH7Q` .V0QC :$V`V$%C: Q`8)V`V`VJHV` a:JR` aRVH`1GV.Q1

.V I1J1I%I ]Q1V` CQ 1J :J Q] 1I1

VI1HQJR%H Q`]`QHV VH.JQCQ$7_$QV11 .

≈ 2 ⋅ ⋅ Pmin 2 I rms RO EG fsw 5 ^ _

1.V`V I rms 1 .V`IH%``VJ  Q .VCQ:R:JR f sw 1 .V11 H.1J$``V_%VJH787V`V5 EG 

= 1 1 .VVJV`$7 QH.:`$V .V1J]% H:]:H1 :JHVQ` .VRV01HV]V`%J1 11R .5:JR RO  GO

1 .V `V1 :JHV Q` .V RV01HV ]V` %J1  11R .8  2Q` "; 11 H.1J$ RV01HV .VV

_%:J 1 1VI:7GV1`1 VJ:

= 1 µ − − GO Cox(VDD VT Vds−on ), (18) lmin

= 2 EG lmin CoxVDD , and (19)

I 2 ⋅ R W = rms O (20) opt ⋅ EG f sw  1.V`V lmin 1 .VI1J1I%IH.:JJVCCVJ$ .`Q` .V]`QHV5 1 .V .`V.QCR0QC :$VQ`

µ .V `:J1 Q`5 1 .VH:``1V`IQG1C1 75 Cox 1 .VH:]:H1 :JHVQ` .V$: VQ61RV5VDD 1 Power Management for RF Transmitters and Polar Systems 51

.V%]]C70QC :$V5:JRVds−on 1 .V:0V`:$VR`:1JRQ%`HV0QC :$VQ` .V11 H.8/J(20)5

Wopt 1 .VQ] 1I%I11R .Q` .VRV01HV`Q`I1J1I%I]Q1V`CQ8/` .V11 H.Q]V`: V

1J .V `1QRV `V$1IV5 CQJ$ H.:JJVC :]]`Q61I: 1QJ I:7 .QCR V0VJ `Q` .Q`  H.:JJVC

RV01HV8

Power Converter Average Efficiency Contours 5 5 5 56 4 5 6 57 5 55 5 4 8 57 7 5 5 6 59 58 8 5 3 9 5 60 5 7 0 5 6 9

5

PMOS Width (mm) Width PMOS 2

8 61 5 6 60 8 5 0 1 9 59 57 1 2 3 4 5 NMOS Width (mm)

Figure 33. Contour representation of average efficiency of the switching regulator vs gate width 

_%: 1QJ^ _:JR(20):`V0:C%:GCV QQ] 1I1

Q]V`: 1J$]Q1J 5H:] %`VR11 . I rms 8/J:`V:C1 1HHVJ:`1Q5:0V`:$VV``1H1VJH71IQ`V

1I]Q` :J  .:JV``1H1VJH7: :1J$CVQ]V`: 1J$]Q1J 8/J .1H:V5 .V 2H:JGV%VR

QQ] 1I1

Q] 1I1

Q] 1I1<: 1QJ ]`QHVR%`V :`V .Q1J 1J Figure 33 `Q` : "7< `:H@1J$ G:JR11R . :JR

8 I:61I%I Q% ]%  ]Q1V` 1J 8 %I ";8  7V`V5 :0V`:$V V``1H1VJH7 1 .Q1J

:H`Q .V$: V11R .Q`:H 10VF";:JR";11 H.1J$RV01HV8.V]`QHV%V

.V 2:JR:`V:C1 1HIQRVC`Q` .V# Q`1JR .VRV01HV1

:0V`:$VV``1H1VJH78#0V`:$VV``1H1VJH7`Q` .V11 H.1J$`V$%C: Q`1:Q0V` QV0VJ

.Q%$. :0V`:$V Q% ]%  ]Q1V` 1: R GVCQ1 ]V:@ Q% ]%  ]Q1V`8  V01HV 1

%G :J 1:CC7I:CCV`^V]VH1:CC7 .V";RV01HV_ .:J1` .V7 VI1Q] 1I1

: ]V:@]Q1V`CV0VC8.1V6:I]CVRVIQJ `: VR .VGVJV`1 Q`RV1$J1J$`Q`G: V`7

C1`V5`: .V` .:J .V]V:@V``1H1VJH7Q` .V7 VI8

3.2.3 Hybrid Voltage Regulators: Introduction

Figure 34. Hybrid voltage regulator schematic: a.) Series hybrid, b.) Parallel hybrid

# .VJ:IV%$$V 5.7G`1R0QC :$V`V$%C: Q`IV`$VHQJHV] Q`GQ .11 H.1J$:JR

C1JV:``V$%C: Q`877G`1R`V$%C: Q`H:J]`Q01RVGVJV`1 Q`GQ .11 H.1J$:JRC1JV:`

Q]QCQ$1V5J:IVC77`: R7J:I1H`V]QJV5CQ1Q% ]% JQ1V5:JR.1$.V``1H1VJH78.V Power Management for RF Transmitters and Polar Systems 53

1QI:1J Q]QCQ$1V .: :`VHQIIQJ`Q`R7J:I1H%]]C7:]]C1H: 1QJ:`VV`1VR.7G`1R

:JR]:`:CCVCR.7G`1R`V$%C: Q`5.Q1J1JFigure 348

V`1V .7G`1R `V$%C: Q` Q]V`: V 11 . : HQJ0VJ 1QJ:C CQ1RR`Q]Q%  ^D ;_ C1JV:`

`V$%C: Q`5:JR:R7J:I1H11 H.1J$0QC :$V`V$%C: Q`8.V11 H.1J$`V$%C: Q`:R=% 1 

Q% ]%  Q .V I1J1I%I CV0VC 1.V`V .V C1JV:``V$%C: Q` H:J :H.1V0V `V$%C: 1QJ T .V

C1JV:``V$%C: Q`1:C1:71J:CQ1RR`Q]Q% IQRVQ`Q]V`: 1QJ8"1J1I1<1J$ .VR`Q]Q% 

0QC :$VQJ .VC1JV:`Q% ]% RV01HV`VR%HV .V]Q1V`CQ:QH1: VR11 . .VD ;8/J

.1 H:V5 : .1$. ]Q1V`R%]]C7R`V=VH 1QJR`: 1Q ^))_ C1JV:` `V$%C: Q` 1$J1`1H:J C7

: VJ%: V11 H.1J$JQ1V8.VC1JV:``V$%C: Q`H:J:CQ%]]C7`:  `:J1VJ  Q .V

CQ:R5:CQJ$:0QC :$V `:J1VJ RQJQ `Q`HV .V:H 10VRV01HV1J Q .V `1QRV`V$1IV8

.VI:1J]`QGCVI11 . .VV`1V.7G`1R1 .: 1 :G1C1 7 Q `:H@0QC :$V `:J1VJ 1J

.V]Q1 10VR1`VH 1QJ1C1I1 VRG7 .VR`Q]Q% Q` .V:H 10VRV01HV8#RR1 1QJ:CH1`H%1 `7

I:7GVJVVRVR Q.:JRCV.1$.CV1`: V5 Q]`V0VJ HC1]]1J$ .V#%]]C70QC :$V8/`

.11JQ 1JHC%RVR5 .V#%]]C70QC :$VI:7GVC1I1 VR Q:I:CCR7J:I1H`:J$V5Q`

CQ1]V:@R QR:0V`:$V]Q1V``: 1Q^#)_IQR%C: 1QJH.VIV5:1J` a8

:`:CCVCR.7G`1R0QC :$V`V$%C: Q`Q]V`: V11 .]:`:CCVCC1JV:`:JR11 H.1J$`V$%C: Q`

 :$V8/J .V 7]1H:CV6:I]CV5 .VC1JV:``V$%C: Q`:H ::0QC :$V`QCCQ1V`5R`101J$ .V

Q% ]% 0QC :$V1$J:C Q .VCQ:R8.V11 H.1J$`V$%C: Q`Q]V`: V::H%``VJ Q%`HV5

%]]C71J$QIVJQI1J:C:IQ%J Q`H%``VJ  .`Q%$.:]:10V`1C V`5%%:CC7:J1JR%H Q`8

/J .1 H:V5 .V C1JV:` `V$%C: Q` Q% ]%  1 CQ1 1I]VR:JHV ^0QC :$V Q%`HV_ :JR .V

11 H.1J$ `V$%C: Q` Q% ]%  1 .1$. 1I]VR:JHV ^H%``VJ  Q%`HV_8  .VV  :$V .:0V Power Management for RF Transmitters and Polar Systems 54

R1``V`VJ  `V$%C: 1QJ QG=VH 10V5 Q .V7 RQ JQ  1J V``V`V 11 . V:H. Q .V`8  /J IQ 

V6:I]CV5 .V11 H.1J$`V$%C: Q`%]]C1V .V HQI]QJVJ Q`:0V`:$VH%``VJ  Q .V

CQ:R` 5 5 a8.11I]`Q0VV``1H1VJH7%G :J 1:CC7HQI]:`VR Q:C1JV:``V$%C: Q`

:CQJV8  .V 11 H.1J$ `V$%C: Q` :CQ .: .V Q]]Q` %J1 7 Q %]]C7 H%``VJ  :  .1$.V`

``V_%VJH1V^1J:RR1 1QJ Q .V HQI]QJVJ _8/JIQ V6:I]CV .V.1$.V```V_%VJH7

HQI]QJVJ I: H. .V]Q1V`]VH `%IQ` .V:I]C1 %RVR]: .1$J:C` a8/JH.:] V` 5

1V]`Q]QV:R1``V`VJ  `: V$7 .: 1G:VRQJQ] 1I1<1J$ .VV``1H1VJH7Q` .V]:`:CCVCR

.7G`1RHQIG1J: 1QJ1J .V 1IVRRQI:1J8)V%C .Q1 .: .1$.V`V``1H1VJH71]Q1GCV1`

.V R HQJ0V` V`H%``VJ `QCCQ1:JQ] 1I%I `:=VH Q`7G:VRQJ .VR7J:I1HQ`

.VVJ0VCQ]V1$J:C5 .V%]]C70QC :$V5:JR .V Q% ]% 0QC :$V` 5 a8/` .11Q`

1J V`V 5 .V `V:RV` 1 `VHQIIVJRVR Q @1] Q H.:] V`  1.V`V .1 R1H%1QJ

HQJ 1J%V8; .V`11V51V11CCV$%V Q .V Q]1HQ`]Q1V`%]]C7JQ1V:JR1 V``VH QJ

]QC:`:JRVJ0VCQ]V `:H@1J$ `:JI1 V`8 55

Chapter 4 Power Supply Noise Analysis for RF Amplifiers

) B (d P

) B (d ) P B (d P

Figure 35. Effect of supply noise on RF amplifier output spectrum

8 J `QR%H 1QJ

/J .1H.:] V`51V]`VVJ :J:J:C71Q` .V]Q1V`%]]C7`V=VH 1QJ]`Q]V` 1VQ`)2

:I]C1`1V`8.V`QH%1QJ .VIVH.:J1I`Q`%]HQJ0V`1QJQ`CQ1``V_%VJH7%]]C7

JQ1V Q .VJV:`G:JR)2]VH `%I8#IVJ 1QJVR1J .V]`V01Q%H.:] V`5CV:@:$VQ`

JQ1V 1$J:C 1 : 1VCC @JQ1J ]`QGCVI .:  :``VH  I:J7 HQI]QJVJ  1J .V 11`VCV

7 VI8  QC :$VRHQJ `QCCVR QH1CC: Q` ^;_ :`V ]:` 1H%C:`C7 VJ1 10V Q %]]C7 :JR

%G `: V JQ1V 1JHV .V7 .:0V ``V_%VJH7R %JVR HQI]QJVJ  ^0:`:H Q`_ .:  :`V

RV1$JVR QGVVJ1 10V Q0QC :$V` a811 H.1J$]Q1V`:I]C1`1V`1J]QC:`7 VI

:`V :CQRV1$JVR Q `V]QJR Q .V]Q1V` %]]C78  2`QI ^_5 ]QC:` # .:0VJV:`C7

%J1 7 `:J`V``%JH 1QJGV 1VVJ .V]Q1V`%]]C7:JR .V:I]C1 %RVQ` .V)2H:``1V`8 Power Supply Noise Analysis for RF Amplifiers 56

# %H.5 .V :J:C71 Q` .V I161J$ ]`QGCVI 11 . ; :JR ]QC:` # I:7 GV

 `:1$. `Q`1:`R 1JHV .V HQJ0V`1QJ $:1J HQIV R1`VH C7 ``QI .V 0QC :$VRVJ1 101 7

`:J`V``%JH 1QJ8

7V`V1V`QH%QJ .VIQ`VR1``1H%C ]`QGCVIQ`%]]C7`V=VH 1QJ`Q`JQI1J:CC7C1JV:`

)2H1`H%1 8D1JV:`#:`V1RV:CC71JVJ1 10V Q .V%]]C70QC :$V5:CQJ$: .V7RQ

JQ Q]V`: V1JHQI]`V1QJ87Q1V0V`5]:`:1 1HJQJC1JV:`1 1VH`V: VIVH.:J1I`Q`

.V%]]C70QC :$V Q:``VH  .V$:1J:JR].:V `:J`V``%JH 1QJQ`C1JV:`:I]C1`1V`8

"QR%C: 1QJQ`$:1JQ`].:V:CCQ1I:CC1$J:CQJ .V]Q1V`%]]C7 QI1611 . .V)2

1$J:C8.VI161J$]`QR%H H:JGVR1``1H%C  Q`1C V`:JRI:701QC: V .V]VH `:CI:@

`V_%1`VIVJ 1J `:JI1 V`:]]C1H: 1QJ821$%`V RVIQJ `: V .VHQJHV] Q`CQ1

``V_%VJH7%]]C7JQ1VI161J$11 . .V)21$J:CT .V)2]VH `:CHQJ VJ I:7:]]V:`

:1RVG:JR51RVRCQGV5Q`1I:$VQ` .VIQR%C: VR)2]VH `%I:R=:HVJ  QQ`1J1RV

.VG:JRQ`1J V`V ` a8

.1H.:] V`:JR .V1Q`@]`VVJ VR1J` a:JR`a`QH%QJ%]]C7JQ1V`V=VH 1QJ

`Q`1V:@C7JQJC1JV:`";HQIIQJRQ%`HV:I]C1`1V`5:1Q%CRGV .VH:V`Q`";

HC:#5#5:JR#8.11Q`@1 .V`V`Q`VR1`VH C7%V`%C`Q` .VRV1$JQ`VJ0VCQ]V

`:H@1J$ `:JI1 V`5V]VH1:CC71J@JQ11J$.Q1I%H.`1]]CV1:HHV] :GCVQJ .V%]]C7

0QC :$V8QC V``:V`1V:J:C711:]`:H 1H:C:JRR1`VH 1:7 Q$V 1J1$. 1J Q%]]C7

JQ1V I161J$ ].VJQIVJQJ 1J .1 H:V8  V V6 VJR .V :J:C71 Q `V:  I%C 1R]Q` 

7 VI G7 1JHC%R1J$ JQJR7IIV `1H H`Q V`I 1J : HQJ0VJ 1QJ:C ``V_%VJH7 RQI:1J

:J:C718]VH1`1H:CC75 .1:J:C711:J:R:] : 1QJQ` .VIV .QR]`Q]QVRG7.%:1J Power Supply Noise Analysis for RF Amplifiers 57

` a5H.V

:`VG:VRQJJQJC1JV:`1 1VV6 `:H VR``QI/"0IQRVC5G% `V%C 1JV6]`V1QJ

.: :`V1I]CVVJQ%$. Q%V`Q`.:JRRV1$J8VRVIQJ `: V .V]`:H 1H:C%V:JR

1J1$.  $:1JVR .`Q%$. Q%` :J:C71 11 . .V RV1$J :JR `:G`1H: 1QJ Q` : C1JV:` ";

]Q1V`:I]C1`1V`^#_8

VH 1QJ8]`VVJ  .V .VQ`7`Q`I%C 1]CVR]Q` 1$J:C1J V`IQR%C: 1QJ :` 1J$11 .

.V IVIQ`7CV :J:CQ$78  QJ0VJ 1QJ:C QC V``: V`1V :J:C71 1 `V01V1VR :JR

V6]:JRVR Q:I%C 1R]Q` `Q`I%C: 1QJ Q `V: )2:I]C1`1V`11 .IVIQ`78VH 1QJ8

RVH`1GV .V :`$V  ]`QGCVI :JR .V IV .QR `Q` H.:`:H V`1<1J$ .V JQJC1JV:`1 1V 1J

"; :I]C1`1V`8  VH 1QJ 8  ]`VVJ  QC V``: Q]V`: Q` `Q` .V %]]C7

1J V`IQR%C: 1QJ 1RVG:JR8  VH 1QJ 8  HQI]:`V .:JR :J:C71 Q 1I%C: 1QJ :JR

V6]V`1IVJ :C `V%C 8  ]VH `:C `V$`Q1 . 1 HQI]:`VR `Q` 1J$CVR QJV :JR  9

IQR%C: VR1$J:CQ]V`: 1J$1J .V `:R1 1QJ:C "7<G:JR:1VCC:: 897<8

8 Q 10: 1QJ Q` QC V``:RV`1V `Q` %]]C7 Q1V `QGCVI  /J .VHQJ V6 Q`%]]C7JQ1V%]HQJ0V`1QJ5QC V``:V`1V1:R1`VH :JR]Q1V``%C

:]]`Q:H. Q:H.1V0V:J:J:C7 1H:C%JRV` :JR1J$Q` .VH1`H%1 87:`IQJ1HG:C:JHV^7_

VH.J1_%V H:J :CQ GV :]]C1VR Q  %R7 .1 ]`QGCVI5 ]:` 1H%C:`C7 1J 1I%C: 1QJ 11 .

#$1CVJ #R0:JHVR V1$J7 VI^# _Q`:RVJHVR]VH `V]V`1QR1HR V:R7 : V^_

:J:C71` a8.1CV.:`IQJ1HG:C:JHV VH.J1_%V:`V%V`%C QRV V`I1JV0QC :$V:JR

H%``VJ 1:0V`Q`I1JI16VRC1JV:`:JRJQJC1JV:`7 VI5QC01J$ .V.:`IQJ1HG:C:JHV Power Supply Noise Analysis for RF Amplifiers 58

V_%: 1QJ`V_%1`V@JQ1CVR$VQ` .V1J]% 1$J:C81 .75 .VQ`RV`Q`HQI]% : 1QJ

1JH`V:V 11 . .V J%IGV` Q` 1J]%  .:`IQJ1H8  .1 I:@V .:`IQJ1H G:C:JHV

1I]`:H 1H:C`Q` %R71J$G`Q:RG:JR]V``Q`I:JHVIV `1H%H.:]VH `:C`V$`Q1 .:JR

:R=:HVJ  H.:JJVC ]Q1V` `: 1Q ^#)_5 V]VH1:CC7 `Q` `V:C 11`VCV 7 VI 11 . JQJR

]V`1QR1H :I]C1 %RV 1:0V`Q`I8  /J .1 `V$:`R5 QC V``: V`1V ^_ .: V0V`:C

:R0:J :$V7

•  H:J RVH`1GV .V C1JV:` :JR JQJC1JV:` R7J:I1H Q` : H1`H%1  11 .Q%  @JQ1CVR$V Q` .V 1J]% 1$J:C ^]`Q01RVR .:  .V H1`H%1  `VI:1J 1J : 1V:@C7 JQJC1JV:``V$1IV_8 • .V QC V``: @V`JVC H:J ]`Q01RV : HQI]:H  V6]`V1QJ Q` .V 1IV :JR ``V_%VJH7 RQI:1J GV.:01Q` : : `%JH 1QJ Q` ].71H:C RV01HV ]:`:IV V`5 1JRV]VJRVJ Q` .V1J]% 1:0V`Q`I8 • .VH1`H%1 1QC0VRQJC7QJHV^1JHQJ `: 11 ..:`IQJ1HG:C:JHV1.1H.I:7 JVVR Q`VR1 V`: V`Q`R1``V`VJ 1J]% 1:0V`Q`I_ • :J:C71:CCQ1`:]1RHQI]% : 1QJQ`I%C 1R QJV:JRG`Q:RG:JRGV.:01Q`5: 1J ` a5 :JR 1 QJV Q` `V1 1I%C: 1QJ VH.J1_%V .:  1 ]`:H 1H:C `Q` `:]1R HQI]% : 1QJQ`]VH `:C`V$`Q1 .].VJQIVJQJ8 Power Supply Noise Analysis for RF Amplifiers 59

noise current on/off magnetic coupling Power supply ripple Supply + Noise thermal noise Interconnect VDD RF Bandgap digital on/off chip Amplifier reference current electrostatic + noise coupling RF Output PWM wo ) B (d P

Voltage Regulator Digital Block RF Block

Figure 36. Noise sources in RF systems

QC V``:V`1V1V``VH 10V1J .VHQJ V6 Q`%]]C7JQ1VGVH:%VJQ1VQ%`HV:`V

7]1H:CC7I:CCR1$J:C`VC: 10V Q .VQ]V`: 1J$]Q1J Q` .V:I]C1`1V`8.Q1J1JFigure

365HQIIQJQ%`HVQ`%]]C7JQ1V1JHC%RVI:$JV 1HHQ%]C1J$ QGQJR11`V:JR]Q1V`

%]]C7 1J V`HQJJVH 5 VCVH `Q : 1H HQ%]C1J$ GV 1VVJ JV:`G7 `:HV5 :JR H%``VJ  JQ1V

``QI:J:CQ$Q`R1$1 :CGCQH@]:1J$ .`Q%$.]:`:1 1H1JR%H :JHV:JR`V1 :JHV1J .V

]Q1V` `:1C ` a8  %]]C7 JQ1V I:7 :CQ GV R1`VH C7 1J=VH VR 1J Q .V 7 VI G7 .V

0QC :$V`V$%C: Q``5 5 a8/J .VVH:V%]]C7JQ1V1 7]1H:CC7CV .:JQ:JR

Q` VJCV .:JQQ` .V %]]C70QC :$VCV0VC81 .I:CC%]]C7JQ1V:I]C1 %RV5

C1JV:`:I]C1`1V` 7]1H:CC7`VI:1J1J .V1V:@C7RJQJC1JV:``V$1IV8/J .1H:V5QC V``:

V`1V H:J Q` VJ ]`VR1H  ]V``Q`I:JHV Q0V` I:J7 RVH:RV Q` ]Q1V` Q` .V )2 1J]% 

1$J:C8

/ 11I]Q` :J  QJQ V .: I:J7Q` .V1I]Q` :J Q%`HVQ`%]]C7JQ1V:`VCQ1 Power Supply Noise Analysis for RF Amplifiers 60

``V_%VJH7`VC: 10V Q .V)21$J:C8%H.JQ1VQ%`HV:`VR1``1H%C  Q`1C V`GVH:%V: 

CQ1``V_%VJH75G7]:H:]:H1 Q`:`VCVV``VH 10V81 .CQ1``V_%VJH7JQ1V1$J:C5

I161J$]`QR%H  VJR QGVIQ`V]`QGCVI: 1H1JHV .V7H`V: V1JRG:JRQ`JV:`RG:JR

``V_%VJH7HQJ VJ 8/JQ%`:J:C715QC V``:V`1V:J:C71H:JGV%VR Q]`VR1H  .V

VJ1 101 7 Q` .V ]Q1V` :I]C1`1V` ^#_ Q %]]C7 `1]]CV .`Q%$. .V ]Q1V` %]]C7

`V=VH 1QJ `: 1Q ^))_8  .1 :J:C71 H:J GV %VR Q I:61I1

11 H.1J$`V$%C: Q``Q`:$10VJ:IQ%J Q`0QC :$V`1]]CV51.1CV1I%C :JVQ%C7IVV 1J$

":JR#)`V_%1`VIVJ 1J .V `:JI1 V`8

8 .VQ`7 Q` %C 1]CVRQ` %]]C7 J V`IQR%C: 1QJ

Q1V`%]]C7JQ1VH:JI1611 . .V)2H:``1V`:JRGV%]HQJ0V` VR Q .VJV:`G:JR

]VH `%I8  .1 ]`QHV .:]]VJ 1.VJ .V :I]C1`1V` .:  `:7 ]: . .:  HQ%]CV .V

%]]C70QC :$V QJQRV1J .V:I]C1`1V` .: IQR%C: V .V:I]C1 %RVQ`].:VQ` .V

`:JI1 VR1$J:C8# .1$.``V_%VJH1V1 I:7GVV:7 Q`1C V`%]]C7JQ1V11 .H.Q@V

1JR%H Q`Q`G7]:H:]:H1 Q`8/ I:7GVIQ`VR1``1H%C  Q`1C V`CQ1``V_%VJH7%]]C7

JQ1VR%V QC1I1 : 1QJQJ .V1

:CQ ]`QGCVI: 1H GVH:%V .V `1`  Q`RV` 1J V`IQR%C: 1QJ V`I I:7 GV HCQV Q .V

G:JRQ`1J V`V 8

#J:C71 Q` %]]C7RH:``1V` 1J V`IQR%C: 1QJ 1 HQI]C1H: VR G7 .V R7J:I1H :JR

JQJC1JV:`1 1V Q` .V 7 VI8  /` .V )2 :I]C1`1V` H1`H%1  RQV JQ  .:0V IVIQ`75 .V

R1 Q` 1QJ]`QR%H H:JGV:J:C7

V`1V:J:C71`5 a8.1I:7GV .VH:V1` .VV``VH Q``V:H 10VVCVIVJ :`VJQ 

1$J1`1H:J 5 Q` H:J GV V:1C7 1JHC%RVR GV 1VVJ  :$V .:  .:0V ]%`VC7 HQJR%H 10V Q`

`V1 10V JQJC1JV:`1 1V8  %H. I:7 GV .V H:V 1J : H1`H%1  11 . QJC7 R1QRV Q`

`:JHQJR%H :JHVJQJC1JV:`1 7`QCCQ1VRG7:`V:H 10V`1C V`8/J .1H:V5 .VI:CC1$J:C

$:1JQ` .V:I]C1`1V`I:7GVH.:`:H V`1

]Q1V`%]]C78.VJQJC1JV:`1 1VQ` .V Q]QCQ$7:`VH.:`:H V`1

%H. .:  .VQ% ]% 1$J:C5Q% 5H:JGV1`1 VJ::]Q1V`V`1V5

= + 2 + 3 Sout (Sin , S vdd ) a10 Sin a20 Sin a30 Sin ... + + 2 + 2 + a11Sin Svdd a21Sin Svdd a12 Sin Svdd ... 5 ^_ + + 2 + 3 + a01Svdd a02 Svdd a03 Svdd ...

. . 1.V`V:1=:`V .V$:1J V`I::`%JH 1QJQ` .V1 ]Q1V`Q` .V1J]% 1$J:C:JR .V= 

]Q1V` Q` .V # %]]C7 0QC :$V JQ1V6 1J5 Q% 5 :JR 0RR5 :`V .V 1$J:C :  .V 1J]% 5

Q% ]% :JR%]]C7 V`I1J:CHVJ V`VR:`Q%JR .VQ]V`: 1J$]Q1J 87V`V5:RVH`1GV

.V `1`  Q`RV` `Q`1:`R $:1J V`I5 : RVH`1GV .V `Q`1:`R $:1J ``QI .V %]]C7

V`I1J:C5 :JR : RVH`1GV .V `1`  Q`RV` 1J V`IQR%C: 1QJ V`I GV 1VVJ .V 1J]% 

= ω 1$J:C:JR .V%]]C7JQ1V8/` .V1J]% 1$J:C`QCCQ1 Sin vi cos( 0t) 5:JR .V%]]C7

= ω JQ1V1:1J$CV QJV .: `QCCQ1 S vdd vs cos( S t) 5 .V:I]C1 %RVQ` .V%]]C7`1]]CV

ω ± ω 1RVG:JR11CCGV:  0 S 5%H. .: 5

ω ± ω = 1 vout ( 0 S ) a11vi vS . ^_ 2

/J .1H:V5:%V`%C`1$%`VQ`IV`1 1 .VI:$J1 %RVQ` .V%]]C7`1]]CV1RVG:JR1J

RVH1GVCRGVCQ1 .VH:``1V`^RH_8#VVJ1J^_5 .1_%:J 1 71`VCV0:J GVH:%V .V Power Supply Noise Analysis for RF Amplifiers 62

I:$J1 %RVQ` .V%]]C7`1]]CV1RVG:JR1R1`VH C7]`Q]Q` 1QJ:C Q .VI:$J1 %RVQ` .V

1J]%  1$J:C `Q` HQJ :J  %]]C7 JQ1V8  /  I:7 GV ]`:H 1H:C Q `V:  .V %]]C7 JQ1V

I:$J1 %RV : HQJ :J  Q `V`CVH  1Q` RH:V :J:C715 Q` 1.VJ 0QC :$V `1]]CV ``QI :

11 H.1J$`V$%C: Q`1Q`:@JQ1J5`16VRI:$J1 %RV8.V%]]C7`1]]CV1RVG:JR1JRH1

.V`: 1QQ` .V`Q`1:`R$:1J V`I Q .V%]]C7`1]]CV1RVG:JRI:$J1 %RV5 .V_%:J 1 7

V6]`VVR1JRVH1GVC5

   2a10 1  (dBc) = dB ⋅  8 ^_  a11 vs 

6]:JR1J$QJ .1`1$%`VQ`IV`1 51` .V]Q1V`%]]C7JQ1V1`16VR:JRQ`HQJ :J 

I:$J1 %RV51 I:7GV]`:H 1H:C Q%G `:H 1 V``VH ``QI .V`VC: 1QJ.1]1J^_8/J .1

H:V .V `: 1Q GVHQIV 1$J:CR1JRV]VJRVJ  :JR 1 QJC7 : `%JH 1QJ Q` .V ].71H:C

]`Q]V` 1V Q` .V :I]C1`1V`8  VH:%V .V `: 1Q 1 :I]C1`1V` ]VH1`1H5 1  .: : JQ :GCV

1I1C:`1 7 Q .VG:VG:JR`1$%`VRQ`RIV`1 5 .V]Q1V`%]]C7`V=VH 1QJ`: 1Q^))_`a8

/J .V`V Q` .11Q`@1V11CC`V`V` Q .1`: 1Q: .V))`Q`)2:I]C1`1V`:JRRV`1JV

1 :

 2a  = 10 PSRR(dBV ) dB  8 ^_  a11 

2a .V%J1 Q` 10 :`V0QC GVH:%V .VV6]`V1QJ1J^_.:GVVJI%C 1]C1VRG7 .V a11

%]]C7 `1]]CV I:$J1 %RV8  .1 CV:0V .V %J1  Q` ^_ 1J R8  .V ].71H:C

1J V`]`V : 1QJ Q` 1J ^_ 17 .V 1RVG:JR 1J RH .: 1Q%CR QHH%` `Q` : QJVR0QC

^

IVIQ`7CV ]Q1V`RV`1V :J:C718  FV6  1V 11CC RVH`1GV :J:C71 Q` ]Q1V` %]]C7

1J V`IQR%C: 1QJ`Q`7 VI11 .R7J:I1H:JR``V_%VJH7RV]VJRVJ JQJC1JV:`1 1V8

88 1J$CVR J]% ^1QRQ` _QC V``:RV`1VJ:C71

QC V``: V`1V H:J GV %VR Q :J:C7

IVIQ`78#CQJ$: .V7 VI11V:@C7JQJC1JV:`5QJC7:`V1 V`IQ` .VV`1V:`V

JVVRVR Q ]`VR1H  1I]Q` :J  R1 Q` 1QJ ].VJQIVJQJ8  1 . : QC V``: V`1V

`V]`VVJ : 1QJ5 .V 1IV RQI:1J Q% ]%  Q` : 1IVR1J0:`1:J  JQJC1JV:` 7 VI `Q` :J

1J]% 56^ _5H:JGV1`1 VJ:

∞ = y(t) ∑ Fn (x(t)) 5 ^ _ n=0

1.V`V

∞ ∞ F (x(t)) = ... h (τ ,...,τ )x(t −τ )...x(t −τ )dτ ...dτ 8 n ∫ ∫ n 1 n 1 n 1 n ^ _ −∞ −∞

τ Lτ . /J^ _5 .V hn ( 1 , n ) :`V@JQ1J: .VJ Q`RV`QC V``:@V`JVCQ` .V7 VI8.V

!J51.1H.`V]`VVJ  .VHQJ0QC% 1QJ1J V$`:C1J^ _5:`V@JQ1J: .VQC V``:Q]V`: Q`

Q` QC V``: `:J`V` `%JH 1QJ ` a8  2`QI .V ]V`]VH 10V Q` ^ _ :JR ^ _5 QC V``:

V`1V :]]V:` : : $VJV`:C1

QC V``:@V`JVCH:JGV%VR1J .V``V_%VJH7RQI:1J:QC V``:Q]V`: Q`Q`QC V``:

`:J`V` `%JH 1QJ Q ]V``Q`I H1`H%1  H:CH%C: 1QJ ` 5 5 5 a8  /J .1 H:V .V

ω ω ω QC V``: Q]V`: Q` :`V ``V_%VJH7 RV]VJRVJ  `:J`V` `%JH 1QJ5 H n ( j 1 , j 2 ,..., j n )5 Power Supply Noise Analysis for RF Amplifiers 64

.:  H:] %`V .V ].:V :JR :I]C1 %RV `V]QJV Q` .V H1`H%1  `Q` : $10VJ V  Q`

``V_%VJH1V ` a8  ":J7 $QQR `V`V`VJHV RVH`1GV .V %V Q` QC V``:RV`1V `:J`V`

`%JH 1QJ1J .VHQJ V6 Q`I16VR 1IVR``V_%VJH7RVH`1] 1QJQ`JQJC1JV:`7 VI` 5

 5 5 5 5 R a8



88 %C 1]CVR Q` QC V``:J:C71

.V V6 VJ1QJ Q` R]Q`  QC V``: :J:C71 Q I%C 1R]Q`  7 VI H:J GV RQJV G7

V6 VJR1J$ .V HQJ0QC% 1QJ 1J V$`:C 1J ^ _ Q .1$.V` R1IVJ1QJ8  .V `V%C 1J$

`Q`I%C: 1QJ1JHC%RVGQ .R1`VH  V`IGV 1VVJV:H.1J]% :JR .VQ% ]% 5:JRH`QR

V`I .: RVH`1GV1J V`IQR%C: 1QJ:IQJ$ .V1J]% 8#1J^_5 .V`1` Q`RV`H`Q

V`I H:J GV %VR Q RVH`1GV I161J$ GV 1VVJ %]]C7 JQ1V :JR .V )2 H:``1V`8  .V

1JH`V:VRR1IVJ1QJ:C1 7Q`I%C 1R]Q` QC V``::J:C71HQI]C1H: V.:JR:J:C715G% 

.V `1`  :JR VHQJR Q`RV` V`I :`V  1CC I:J:$V:GCV5 :JR H:J ]`Q01RV HQJ1RV`:GCV

1J1$. 1J Q .V%]]C7JQ1VI161J$V``VH 8

∞ ∞ = vout (t) ∑∑ Fmn (v1 (t),v2 (t))  ^ _ m=0 n= 0

∞ ∞ F (v (t),v (t)) = L h (τ ,...,τ )v (t -τ )...v (t -τ )v (t -τ )...v (t -τ )dτ ...dτ mn 1 2 ∫ ∫ mn 1 m+n 1 1 1 m 2 m+1 2 m+n 1 m+n  ^ _ −∞ −∞

= ω o + ω ω o 2 + ω ω ω o 3 +L Sout A10 ( j a ) S1 A20 ( j a , j b ) S1 A30 ( j a , j b , j c ) S1 + ω o + ω ω o 2 + ω ω ω o 3 +L A01( j a ) S2 A02 ( j a , j b ) S2 A03( j a , j b , j c ) S2  ^ _ + ω ω o + ω ω ω o 2 + ω ω ω o 2 +L A11( j a , j b ) S1 S2 A21( j a , j b , j c ) S1 S2 A12 ( j a , j b , j c ) S1 S2

.V 1IV RQI:1J QC V``: V`1V `Q`I%C: 1QJ `Q` : 7 VI 11 .  1J]%  ]Q`  :JR : Power Supply Noise Analysis for RF Amplifiers 65

1J$CV Q% ]%  I:7 GV 1`1 VJ : 1J ^ _5 1.V`V ^ _ 1 .V I%C 1R]Q`  :J:CQ$7 Q .V

HQJ0QC% 1QJ1J V$`:C1J^ _8/J^ _5.IJ1 .VI%C 1R1IVJ1QJ:CQC V``:@V`JVC50:JR

0:`V .V 1Q1J]% 1$J:C5:JRIJ1 .VI%C 1R1IVJ1QJ:CQC V``:Q]V`: Q`1J .V

1IV RQI:1J8  /J .V ``V_%VJH7 RQI:1J .V QC V``: V`1V H:J GV 1`1 VJ : 1J ^ _8

. 7V`V .VJQ : 1QJ1=RVJQ V .VQC V``:Q]V`: Q``Q` .V1 Q`RV`Q`1J]% 5:JR .V

. = Q`RV`Q`1J]% 8.V=ωJ V`I:`VR%II7``V_%VJH70:`1:GCV .: H:J:%IV .V

`VCV0:J  ``V_%VJH7 HQJ VJ  Q` .V 1J]%  1$J:C8  .V Q]V`: Q` >◦? `V]`VVJ  .V

``V_%VJH7RQI:1JQ]V`: 1QJQ` .V `:J`V``%JH 1QJQJ .V1$J:C:  .V:]]`Q]`1: V

``V_%VJH1V:1 :JR:`R1J].:Q` `:J`V``%JH 1QJ:J:C718.VJQ : 1QJ1J^ _1

GQ``Q1VR``QI` a8/J^ _5:JR :`V .V`1` Q`RV`^C1JV:`_QC V``:Q]V`: Q`

`Q`V:H.Q` .V 1Q1J]%  V`I1J:C8.VQ]V`: Q`RVH`1GV .VVHQJRQ`RV`H`Q

V`I8   :JR  RVH`1GV .V .1`R Q`RV` H`Q V`I8  /  .Q%CR GV JQ VR .:  .V

QC V``:V`1V1J^ _.: `%H %`:C1I1C:`1 7 Q .VIVIQ`7CV:J:CQ$71J^_8.V

I:1JR1``V`VJHV1 .:  .VQ]V`: Q`1J^ _:`V:`%JH 1QJQ` .V``V_%VJH7HQJ VJ Q`

.V1J]% 1$J:C:JR`V`CVH  .V1V:@C7JQJC1JV:`R7J:I1HQ` .V7 VI8 Power Supply Noise Analysis for RF Amplifiers 66

Figure 37. Self-induced power supply noise from high supply impedance at the envelope frequency

#J:RR1 1QJ:CQ%`HVQ`%]]C7IQR%C: 1QJI:7GVH:%VRG7 .V#1 VC`8#.Q1J

1J 21$%`V  5 .1 .:]]VJ 1` .V %]]C7 V`I1J:C 1 JQ  CQ1 1I]VR:JHV Q .V )2 Q`

VJ0VCQ]V1$J:C8/J .1H:V5 .V%]]C70QC :$VI:7H.:J$V11 . .V1$J:C:I]C1 %RV8

.1H:JH:%V]`QGCVI11 .VHQJRQ`RV`R1 Q` 1QJ:1VCC:.1$.V`Q`RV`8.VV

V``VH :`VH:] %`VR1JHQJ0VJ 1QJ:CR]Q` QC V``:V`1V:J:C71:JR11CCGV`V`CVH VR

1J .V`Q`1:`RRR1`VH Q]V`: Q`7 A20 5 A30 5V H8.1CVVC`R1JR%HVR%]]C7JQ1VI:7GV

:V`1Q%]`QGCVI1JI:J71 %: 1QJ5 .VVV``VH H:JGV:CCV01: VR11 .$QQR%]]C7

G7]:1J$:JR0QC :$V`V$%C: 1QJ VH.J1_%V8/J .1H:V1 1JVHV:`7 QH`V: V:CQ1

1I]VR:JHV%]]C7: ``V_%VJH1VHQ``VC: VR11 . .VQ]V`: 1QJQ` .V#8/J .11Q`@

1V `QH% QJ %JHQ``VC: VR JQ1V :JR `V:  .V %]]C7 V`I1J:C : : V]:`: V 1J]% 8

.V`V`Q`V .V `QH% 1 QJ .V A11  Q]V`: Q`8  /  .Q%CR GV JQ VR : : ]Q1GCV

1I]C1`1H: 1QJQ` .V:J:C715 .:  .VVC`R1JR%HVRJQ1VH:JGVH.:`:H V`1

:JR `V: VR : :J 1JRV]VJRVJ  JQ1V Q%`HV QJ .V %]]C78  /J .1 H:V5 .V A11  Power Supply Noise Analysis for RF Amplifiers 67

Q]V`: Q`H:JGV%VR Q %R7GQ .1JRV]VJRVJ :JRHQ``VC: VRJQ1V``QI .V7 VI8



/J .11Q`@51VRV`1JV .VFR]Q` :I]C1`1V`::GC:H@GQ611 .^R_V]:`: V1J]% 

:JR:1J$CVQ% ]% ]Q` 8.V:I]C1`1V``V]`VVJ VR1J21$%`V 1RV`1JVR::R]Q` 

7 VI1.V`V .V1J]% :`V .VHQJ0VJ 1QJ:C1$J:C1J]% :JR .V%]]C7 V`I1J:C8.V

1$J:C ]Q`  I:7 GVV1 .V` 1J$CV VJRVR Q`R1``V`VJ 1:C5 1.V`V: .V %]]C7 V`I1J:C 1

7]1H:CC7`V`V`VJHVR Q$`Q%JR8/J .1H:V1Q%CRHQ``V]QJR Q .V`Q`1:`R$:1J: 

ω51Q%CRHQ``V]QJR Q .V`Q`1:`R%]]C7JQ1V$:1J: ω51Q%CRHQ``V]QJR

Q .V `1`  1RVG:JR :  ω ^ ω5 :JR  :JR  1Q%CR HQ``V]QJR Q .V VHQJR

1RVG:JR: ω ^ ω:JR ω ^ ω8.V))Q` .VH1`H%1 1 .V`V`Q`V1`1 VJ:

2A ( jω ) PSRR = dB 10 0 ω ω 5 ^_ A11 ( j 0 , j S )

1.V`V .V :GQC% V 0:C%V 1 :@VJ Q IV:J .V I:$J1 %RV Q` .V HQI]CV6 Q]V`: Q`

`: 1Q8  /  .Q%CR GV JQ VR .:  .V H`Q V`I :`V JQ  JVHV:`1C7 7IIV `1H5 1JHV

ω ω ≠ ω ω $VJV`:CC75 A11( j 1, j 2 ) A11( j 2, j 1)8  /J %1 10VC75 .1 1 GVH:%V .V 1$J:C I:7 `QCCQ1

R1``V`VJ  JQR:C ]: . Q .V Q% ]% 5 .V`V`Q`V .V ``V_%VJH7 HQJ VJ  Q` 1$J:C : 

R1``V`VJ  ]Q`  1 JQ  JVHV:`1C7 1J V`H.:J$V:GCV8  #7IIV `1H QC V``: `:J`V`

`%JH 1QJH:JGVI:RV]:` C77IIV `1H11 . VH.J1_%V]`VVJ VR1J` a8#1J .V

H:V11 .HQJ0VJ 1QJ:C7IIV `1HQ]V`: Q`5]:` C77IIV `1HQ]V`: Q`:`VRV1`:GCV

Q1I]`Q0VHQI]% : 1QJ 1IV:JRHQI]CV61 78 Power Supply Noise Analysis for RF Amplifiers 68

Figure 38. CMOS inductor-degenerated common source amplifier showing nonlinear elements.

Typical operating region

DC operating point

Figure 39. MOSFET drain current versus gate-source and drain-source voltage. Nonlinearities are

extracted around the dc operating point highlighted in the figure.

8 :`$V `QGCVI :JR .:`:H V`1<: 1QJ Q` QJC1JV:`1 1V

/J Q`RV` Q RVIQJ `: V I%C 1R]Q`  %]]C7 `V=VH 1QJ :J:C715 1V RV1$JVR :JR

`:G`1H: VR : "; ]Q1V` :I]C1`1V` 1J  JI VH.JQCQ$78  21$%`V   .Q1 .V G:1H

:I]C1`1V`HVCC1JHC%R1J$1JR%H :JHV:  .VQ%`HV:JRR`:1J QIQRVC .VV``VH Q` .V

GQJR11`V:JR)2H.Q@VVCVIVJ 8VH.QV .VHQIIQJRQ%`HV Q]QCQ$7GVH:%V1 

1 .V `%JR:IVJ :C $:1J  :$V `Q` I:J7 )2 %G7 VI 1JHC%R1J$ #5 :JR CQ1RJQ1V Power Supply Noise Analysis for RF Amplifiers 69

:I]C1`1V`8  21$%`V   :CQ .Q1 .V I:=Q` Q%`HV Q` JQJC1JV:`1 7 1J .V ";

:I]C1`1V`8  /J .1 V6:I]CV5 .V RQI1J:J  Q%`HV Q` JQJC1JV:`1 7 :`V .V

`:JHQJR%H :JHV ^$I_5 Q% ]%  HQJR%H :JHV ^$Q_ :JR R`:1JRG%C@ =%JH 1QJ H:]:H1 :JHV

^=R_8; .V`R1 Q` 1QJHQJ `1G% Q`1JHC%RV .VGQR7RV``VH  `:JHQJR%H :JHV:JR$: V

H:]:H1 Q`5:C .Q%$. .VV 7]1H:CC7.:0V:I:CCV``VH QJ%]]C7JQ1V%]HQJ0V`1QJ8

FQJC1JV:`1 1V`Q` .V7 VI1J21$%`V 1V`VV6 `:H VR``QI/"0IQRVC`Q`

 : 1H:JRR7J:I1HJQJC1JV:`1 1V821$%`V .Q1 .V`V%C Q`]VH `V1I%C: 1QJQ`

.V R`:1J H%``VJ  0V`% $: VRQ%`HV :JR R`:1JRQ%`HV 0QC :$V8  .V ]C:J:`

`V]`VVJ : 1QJQ`H%``VJ .Q1R1`VH RV]VJRVJHVQJ`1` :JR.1$.V`Q`RV` V`IQ`

× vgs :JR vds 8/I]Q` :J C75 .V`V1:CQH`QRV]VJRVJHVQJ V`I`VC: VR Q vgs vds 8

.VV H`Q V`I `V%C  1J I161J$ V``VH  GV 1VVJ .V 1$J:C :JR %]]C7 :JR :`V

1I]Q` :J  QH:] %`V`Q`JQ1V:J:C71821$%`V :CQ.1$.C1$.  .VRHQ]V`: 1J$]Q1J 

`VC: 10V Q .V /R ]C:JV8  .V 7]1H:C Q]V`: 1J$ `V$1QJ `QCCQ1 .V CQ:RC1JV `Q` .V

:I]C1`1V`5 G%  RV01: V ``QI :  `:1$.  C1JV 1J .V /R ]C:JV GVH:%V Q` JQJC1JV:`1 75

`V:H 10V R7J:I1H5 :JR 0QC :$V `1]]CV QJ .V %]]C78  QC :$V `1]]CV V6 VJR .V

Q]V`: 1J$`V$1QJ1J .V0V` 1H:C^0R _R1IVJ1QJG711J$1J$ .V0QC :$V:  .VR`:1JQ`

.V:H 10VRV01HV8

.VJQJC1JV:`H%``VJ :JRH.:`$V`VC: 1QJ.1]1V`VI: H.VR Q:]QC7JQI1:C`1 11 .

CV: R_%:`V`V$`V1QJ:J:C71` 5 5 a8.V]QC7JQI1:CV6]:J1QJ1`1  Q].71H:C

RV01HV ]:`:IV V` %H. : `:JHQJR%H :JHV :JR =%JH 1QJ H:]:H1 :JHV %1J$ GQ .

H%``VJ :JRH.:`$V`VC: 1QJ.1]7 Power Supply Noise Analysis for RF Amplifiers 70

= + 2 + 3 +L id gm1vgs gm2vgs gm3vgs − − 2 − 3 −L gmb1vsb gmb2vsb gmb3vsb 8 + gmo vds ⋅vgs + gmo vds ⋅vgs2 + gmo vds2vgs +L 11 12 21 ^_ + + 2 + 3 +L go1vds go2vds go3vds d C d C d + C vdb + 2 vdb2 + 3 vdb3 +L 1 dt 2 dt 3 dt

/J ^_5 $I1 `V]`VVJ  .V `Q`1:`R `:JHQJR%H :JHV5 $IG1 1 .V GQR7

`:JHQJR%H :JHV5$IQ1=1 .VQ% ]% R `:JHQJR%H :JHVH`Q V`I::`%JH 1QJQ` .V

. . 1  Q`RV` Q` 0R :JR .V =  Q`RV` Q` 0$5 $Q1 1 .V Q% ]%  HQJR%H :JHV5 :JR 1 1 .V

Q% ]%  H:]:H1 :JHV8  :`:IV V` 1 `V]`VVJ  .V `1`  :JR .1$.V` Q`RV`

]:`:IV V`1<: 1QJQ` .VQ% ]% H:]:H1 :JHV V`I^`V]`VVJ VR:Q1J21$%`V _8.V

JQJC1JV:`1 71V6 `:H VR``QI .VJQI1J:CC7C1JV:`H.:`$VR0QC :$V`VC: 1QJ.1]5:1J` 5

JR `R a5`V%C 1J$1J .V`:H Q`Q`L:JRL1J .V :JR Q`RV`]Q1V`V`1V V`I8

8 QC% 1QJ Q` QC V``: ]V`: Q`

QQC0V`Q` .VQC V``:Q]V`: Q`1J^ _5JQR:CV_%: 1QJ:`V1`1 VJ:JR .V7 VI

1QC0VRV_%VJ 1:CC7`Q`V:H.Q`RV`Q` .V]QC7JQI1:CV6]:J1QJ1J^_5GV$1JJ1J$11 .

.V`1` Q`RV` V`I8.1]`QHVR%`V11VCCRVH`1GVR1J` 5 5 a8#%J1_%VQC V``:

V`1V 1 1`1 VJ `Q` V:H. 1JRV]VJRVJ  JQRV 1J .V 7 VI5 JQ  1JHC%R1J$ .V 1J]% 

V`I1J:C1.1H.51J .1V6:I]CV51HQJ `QCCVRG7:0QC :$VQ%`HV8.VJQ : 1QJ`Q` .V

I%C 1RJQRV 7 VI H:J GV 1I]C1`1VR 11 . : %]V`H`1]  1JR1H: 1J$ `Q` 1.1H. JQRV .V

V`1V 1 1J VJRVR8  2Q` .V Q%`HVRRV$VJV`: VR :I]C1`1V` 1J 21$%`V  5 .V`V :`V 1Q

1JRV]VJRVJ JQRV7QJV:  .VQ%`HVQ` .V:H 10VVCVIVJ 5:JRQJV:  .VR`:1JQ` .V Power Supply Noise Analysis for RF Amplifiers 71

:H 10VVCVIVJ 5:%I1J$ .VGCQH@1J$H:]:H1 Q`1:.Q` :  .V``V_%VJH1VQ`1J V`V 8

1J$ .1 V`I1JQCQ$75 .VQC V``:V`1V1J^ _H:JGV1`1 VJ:

∞ ∞ = n ω ω o i j S n ∑∑ Aij ( j a ,..., j k ) S1 S 2 5 ^_ i=0 j= 0

n . . 1.V`VJQ : 1QJ Aij 1JR1H: V .VQ]V`: Q``Q` .V1 Q`RV`Q`].:Q`1J]% :JR .V= 

. Q`RV`Q`].:Q`1J]% `Q` .V .VJ 1JRV]VJRVJ JQRV1J .VH1`H%1 82Q`V:H.JQRV

J5 :CC Q` .V `1`  Q`RV` V`I :`V QC0VR 11 .Q%  1J1 1:CC7 1JHC%R1J$ .V V``VH  Q` .V

.1$.V` Q`RV` V`I8  /  .Q%CR GV JQ VR .:  .V `1`  Q`RV` V`I .Q%CR I: H.

HQJ0VJ 1QJ:C I:CC 1$J:C :J:C718  .V VHQJR Q`RV` V`I :`V QC0VR G:VR QJ .V

JQR:CHQJ `:1J Q` .VH1`H%1 5 .VVHQJRQ`RV`JQJC1JV:`H%``VJ 5:JR .V`1` Q`RV`

V`I8  .1 ]`QHV `V]V: 5 QC01J$ .V 7 VI Q` V_%: 1QJ `Q` V:H. JQRV 1J .V

H1`H%1 5%J 1C .VRV1`VRI:61I%IQ`RV`Q` .V:J:C71.:GVVJ:H.1V0VR` 5 5 a8

1 /J .V`V Q` .V:J:C715JQRVR:JR .VHQ``V]QJR1J$V Q`Q]V`: Q` Aij 11CCGV`Q`

2 .VQ% ]% JQRV51.1CVJQRVR:JR Aij 11CCGV%VR`Q` .VQ%`HVJQRVQ` .V:H 10V

RV01HV8.V`1` Q`RV` `:J`V``%JH 1QJ`Q` .V7 VI1J21$%`V 1QC0VR:

gm A1 ( jω ) = −y ( jω ) 1 10 a S a ω 51.V`V ^_ K 0 ( j a )

K ( jω ) = (gm + gmb + y ) ⋅ (y + y ) + y ⋅ (y + y + y ) 0 a 1 1 1 X L S X 1 L 8 ^_

1.V`V 7 1 .V :RI1 :JHV Q` .V Q%`HV RV$VJV`: 1QJ8  .V 1: V`I 1 : R%II7

``V_%VJH70:`1:GCV .: `V]`VVJ  .V``V_%VJH7HQJ VJ Q` .V1J]% 1$J:C` 5 a8

− ω = ( ω ) 1  2Q` 1JR%H 10V RV$VJV`: 1QJ5 y S ( j a ) j a LS 8  .V HQJ :J  !  1 .V `VH%``1J$ Power Supply Noise Analysis for RF Amplifiers 72

RVJQI1J: Q` 1J I:J7 Q` .V Q]V`: Q`5 :JR 1 V0:C%: VR :  ω:8  /J ^_

ω = + ω y1 ( j a ) go1 j a C1  1 .V `1`  Q`RV` R`:1JRQ%`HV :RI1 :JHV `V]`VVJ 1J$ GQ . `1` 

Q`RV` HQJR%H :JHV5 go1 5 :JR `1`  Q`RV` H:]:H1 :JHV5 C1  : 1J ^_8  .V R`:1JR%]]C7

ω = ω −1 :RI1 :JHV1H:] %`VR1J .V V`I y x ( j a ) ( j a LC ) 1.1H.`V]`VVJ  .V:RI1 :JHV

Q` .V H.Q@V 1JR%H :JHV5 LC 8  .V :RI1 :JHV Q` .V CQ:R 1I]VR:JHV 1 H:] %`VR

= −1 ω 1J yL (RL ) 8  /J ^_ .V JQ : 1QJ `Q` .V :RI1 :JHV ]:`:IV V` yi ( j a ) .: GVVJ

1I]C1`1VR Q yi  QHQJRVJV .VV6]`V1QJ5G% 1 .Q%CRGVJQ VR .:  .VV:`V 1CC:

`%JH 1QJQ`=ω:82Q` .V`V Q` .V`1` Q`RV` V`I1V11CCJQ V6]C1H1 C71JR1H: V .V

``V_%VJH7RV]VJRVJHV^=ω:_ Q1I]C1`7 .VV6]`V1QJ8

.V`V Q` .V`1` Q`RV`Q]V`: Q``QCCQ1:7

gm (y + y ) 1 ω = 1 X L A01 ( j a ) 5 ^ _ K 0

y (gm + y + gmb + y ) 2 ω = X 1 1 1 S A10 ( j a ) 5:JR ^ _ K 0

y y 2 ω = X L A01 ( j a ) 8 ^ _ K 0

/J^ _R^ _5 .VRVJQI1J: Q`V6]`V1QJ551 .V:IV``QI^_5:JR1V0:C%: VR: 

.V``V_%VJH7HQJ VJ Q` .V1J]% 1$J:C5ω:5::`V:CC .V:RI1 :JHV V`I82Q`^ _

:JR^ _ .VR%II7``V_%VJH70:`1:GCVω:1Q%CR:HHV]  .V``V_%VJH7Q` .V%]]C7

JQ1V5 ω5 1.1CV `Q` ^ _5 ω: :HHV]  .V ``V_%VJH7 Q` .V )2 H:``1V`5 ω8  .VV

V6]`V1QJ `%CC7 H.:`:H V`1

V:H.JQRV1J .VH1`H%1 8

.V QC V``: Q]V`: Q` .:  H.:`:H V`1

1 1 1J]% 1$J:C1RV`1JVRG7 .V A11  V`I8/J .1H:V5 A11 Q]V`: VQJGQ . .V)21J]% 

1$J:C:JR .V1$J:C`V]`VVJ 1J$JQ1VQJ .V%]]C7 V`I1J:C7

ω ±ω = 1 ω ω o[ ω ω ] vout ( o S ) A11 ( j 0 , j S ) Vi( 0 ),Vs( S ) 5 ^ _

1.V`V ω :JR ω :`V .V ``V_%VJH1V Q` .V Q` .V )2 H:``1V` :JR %]]C7 `1]]CV5

1 `V]VH 10VC78  # ]`V01Q%C7 JQ VR5 .V A11  Q]V`: Q` 1 JQ  `%CC7 7IIV `1H 1J .1

`V]`VVJ : 1QJ GVH:%V .V %]]C7 JQ1V :JR )2 1J]%  1$J:C `QCCQ1 %G :J 1:CC7

R1``V`VJ ]: . Q .VQ% ]% 8

1 .V A11 Q]V`: Q`1QC0VRG71JHC%R1J$ .VH`Q V`I1J .VQC V``:V`1V1J^ _8

1 .V`V%C 1J$Q]V`: Q`1.Q1J1J^ _87V`V5 .V A11 Q]V`: Q`1Q`$:J1

Q%  .VV``VH Q` .VRV01HV]:`:IV V`^$I15715V H_5:JR .VV``VH Q` .V`1` Q`RV`

= + ω + ω Q]V`: Q`1.1H.:`VC%I]VR1J Q]:`:IV V`R8/J^ _5 y 2 go 2 j( a b )C 2 1

= ω + ω −1 .V VHQJR Q`RV` R`:1JRQ%`HV :RI1 :JHV5 y S ( j( a b )LS )  1 .V Q%`HV

:RI1 :JHV5:JRHQJ :J 1J .VRVJQI1J: Q`1V0:C%: VR: =^ω:UωG_8.V555

5 V`I :`V ``V_%VJH7 RV]VJRVJ  `:J`V` `%JH 1QJ .:  :`V : `%JH 1QJ Q` .V `1` 

Q`RV` Q]V`: Q`8  .VV :`V .Q1J 1J ^_R^_8  7V`V5 .V ``V_%VJH7 Q` .V 1J]%  )2

1$J:C1`V]`VVJ VRG7ω::JR .V``V_%VJH7Q`%]]7JQ1V1`V]`VVJ VRG7ωG8

gmo K + 2y K + 2gm K − 2gmb K 1 ω ω = 11 1 2 2 2 3 2 4 A11 ( j a , j b ) yS 5 ^ _ K 0 Power Supply Noise Analysis for RF Amplifiers 74

1.V`V 

K ( jω , jω ) = A2 ( jω [1) + A1 ( jω ) − 2A2 ( jω )]− A1 ( jω [1) − A2 ( jω )] 1 a b 01 b 10 a 10 a 01 b 10 a 5 ^_

K ( jω , jω ) = A2 ( jω )[A1 ( jω ) − A2 ( jω )]+ A1 ( jω )[A2 ( jω ) − A1 ( jω )] 2 a b 01 b 10 a 10 a 01 b 10 a 10 a 5 ^_

K ( jω , jω ) = A2 ( jω [1) − A1 ( jω )] 3 a b 01 b 10 a 5:JR ^_

K ( jω , jω ) = A2 ( jω )A2 ( jω ) 4 a b 10 a 01 b 8 ^_

#VVJ1J^ _5%]HQJ0V`1QJQ`%]]C7`1]]CV`V%C ``QIVHQJRQ`RV`JQJC1JV:`1 7

1J V0V`:C Q` .V RV01HV ]:`:IV V`8  ":=Q` HQJ `1G% 1QJ Q %]HQJ0V`1QJ .:]]VJ

.`Q%$. VHQJR Q`RV` JQJC1JV:`1 7 Q` Q% ]%  HQJR%H :JHV ^$Q_5 R`:1J =%JH 1QJ

H:]:H1 :JHV ^_5 :JR RV]VJRVJHV Q` .V `Q`1:`R `:JHQJR%H :JHV QJ 0R  ^$IQ_8

Q%`HV 1JR%H :JHV ]`Q01RV RV$VJV`: 1QJ :JR `VR%HV .V %]]C7 JQ1V I161J$8

7Q1V0V`5C:`$V0:C%VQ`Q%`HVRV$VJV`: 1QJ1JH`V:V .VHQJ `1G% 1QJQ`VHQJRQ`RV`

`:JHQJR%H :JHV ]:`:IV V` ^$I :JR $IG_8  Q%`HV RV$VJV`: 1QJ 1JH`V:V .V

V``VH Q`$I:JR$IGGVH:%V1 ]`Q01RV:]: .`Q`%]]C7JQ1V QIQR%C: V .V

H%``VJ 1J .VRV01HV .`Q%$. .VQ%`HV V`I1J:C81 .Q% Q%`HVRV$VJV`: 1QJ5 .V`V

1JQ]: .``QI .V%]]C7 .: H:J:``VH  .V$: VRQ%`HV]Q VJ 1:CQ` .VRV01HV8



2A1 = 10 2QCCQ11J$ .VRV`10: 1QJQ`^_:JR^_5 .V H:JGV1`1 VJ: PSRR dB 1 5 A11

1J1.1H.H:VI:J7Q` .V V`I1J^_:JR^ _:`VH:JHVCCVR8.V`V%C 1J$V6]`V1QJ Power Supply Noise Analysis for RF Amplifiers 75

`Q` .V";:I]C1`1V``QCCQ1:7

gm PSRR = dB 1 + + − 8 ^_ gmo11 K1 2y 2 K 2 2gm2 K 3 2gmb2 K 4



1 1 /J^_5 .VRVJQI1J: Q`1J .VV6]`V1QJ`Q` A10 :JR A11 :`VH:JHVCCVR8#CQ5 .V`V

1 JQ RV]VJRVJHV QJ .V 1$J:C :I]C1 %RV8  .1 CV:0V  `:1$. `Q`1:`R RV]VJRVJH7

QJC7 QJ H1`H%1  0:`1:GCV5 RV01HV ]:`:IV V`5 :JR ``V_%VJH78  QJV_%VJ C75 .V ))

H:JGV .Q%$. Q`::1$J:C1JRV]VJRVJ H1`H%1 ]:`:IV V`:JRH:JGV%VR Q]`VR1H 

%]]C7`V=VH 1QJ`Q`I:J71J]% 1$J:C:JRJQ1VCV0VC8

.V )) 1J ^_ 1JR1H: V 1.1H. ]:`:IV V` I:@V .V H1`H%1  %HV] 1GCV Q %]]C7

JQ1V8.1I:@V1 %V`%C`Q`:I]C1`1V`HQJ`1$%`: 1QJ:JRRV1$J871$.]Q1V`%]]C7

`V=VH 1QJ 1 :H.1V0VR G7 C1I1 1J$ .V V``VH  Q` V0V`:C H1`H%1  0:`1:GCV5 1.1CV

1I%C :JVQ%C7 1JH`V:1J$ .V `Q`1:`R `:JHQJR%H :JHV8  ]VH1`1H:CC75 Q I:61I1

))51 1GV  Q.:0V:.1$.`: 1QQ`$I Q:CCQ%`HVQ`VHQJRQ`RV`JQJC1JV:`1 7: 

.VR`:1J V`I1J:C8Q1I]`Q0V))5 .VRV1$JV`I:7 :@V .V`QCCQ11J$:H 1QJ7

• /JH`V:V$I Q:H.1V0V.1$.V``Q`1:`R$:1J

• )VR%HV VHQJR Q`RV` HQJR%H 10V JQJC1JV:`1 7 ^$Q_ :  .V R`:1J V`I1J:C5

]Q VJ 1:CC711 .:CQJ$V`H.:JJVCRCVJ$ .RV01HV8

• )VR%HV .VV``VH Q`JQJC1JV:`=%JH 1QJH:]:H1 :JHV^_

• )VR%HV .V `:JHQJR%H :JHVH`Q V`I^$IQ_G7.1VCR1J$ .VR`:1J V`I1J:C

``QI%]]C7JQ1V Power Supply Noise Analysis for RF Amplifiers 76

/JI:J7H:V:H:HQRV `:J1 Q`I:7GV.1$.C7V``VH 10V: 1I]`Q01J$))1JHV1 

I:7 .1VCR .V R`:1J Q` .V :H 10V `:JHQJR%H Q` ``QI %]]C7 0:`1: 1QJ8  .V

1I]`Q0VIVJ I:7GVC1I1 VR QCQ1``V_%VJH1V5.Q1V0V`51JHV .VH:HQRV11CC 1CC

.:0VJQJC1JV:`=%JH 1QJH:]:H1 :JHV5=R5:``VH 1J$ .VQ% ]%  V`I1J:C8

8 QI]:`1 QJ Q V: %`VIVJ

#HQIIQJRQ%`HVHC:R#L#]Q1V`:I]C1`1V`1:RV1$JVR:JR`:G`1H: VR1J JI

"; Q0V`1`7 .VR1 Q` 1QJIQRVC:JR .V]VH `:C`V$`Q1 .H:%VRG7]Q1V`%]]C7

JQ1V8.V:I]C1`1V`H1`H%1 HQJ1 VRQ` .1JQ61RV:H 10VF";RV01HV11 .Q``H.1]

I: H.1J$ Q:CCQ1 .V``V_%VJH7G:JR QGV:R=% VR1J .VC:GQ`: Q`78.V:I]C1`1V`

1:1

0QC :$V $:1J Q` .V ]:H@:$VR :I]C1`1V` 1: RV1$JVR Q GV :]]`Q61I: VC7 R : 

897<11 . .V1J]% I: H.VR Q [:JR]7Q`1JR%H 10VQ%`HVRV$VJV`: 1QJR%V

QGQJR11`V:JRGQ:`R1J V`HQJJVH 8#H%``VJ RI1``Q`G1:JV 1Q`@1:1JHC%RVRQJR

H.1] QV  .V_%1VHVJ ]Q1J `Q` .V:I]C1`1V`8 Power Supply Noise Analysis for RF Amplifiers 77

 Figure 40. QIIQJRQ%`HV:I]C1`1V`IQRVC  Vdd Supply + Vdd Vripple Noise Source Lx

Rin Vin Matching Amp Vo Pin RF 50 Source Spectrum Analyzer  Figure 41. :GQ`: Q`7 V V %] 

21$%`V  .Q1 .V :I]C1`1V` Q]QCQ$7 :JR G1: JV 1Q`@8  :`:1 1H 1JR%H Q` :`V

.Q1J Q `V]`VVJ  .V V``VH  Q` .V GQJR11`V :JR ]`1J VRRH1`H%1 RGQ:`R `:HV

1JR%H :JHV8FQ .Q1J:`V .VGCQH@1J$:JRG7]:H:]:H1 Q` .: :`V]C:HVR:  .V

GQ:`RCV0VC821$%`V.Q1 .VC:GQ`: Q`7 V V %]8.V V V %]1JHC%RVR0QC :$V

Q%`HV`Q`G1:1J$ .V:I]C1`1V`5:0:`1:GCV)21$J:C$VJV`: Q`5:J:`G1 `:`71:0V`Q`I

$VJV`: Q` Q1J=VH JQ1VQJ .V]Q1V`%]]C75:JR:]VH `%I:J:C7

Q% ]% .:`IQJ1H8QI1J1I1

GQ:`R8  # ].Q Q Q` .V V  / GQJRVR Q .V GQ:`R 1 .Q1J 1J 21$%`V 8  V0V`:C

RQ1JGQJR Q .V $`Q%JR ]C:JV 1V`V %VR Q I1J1I1

]:`:1 1HGQJR11`V1JR%H :JHV1:RVRVIGVRRVR11 .:JV 1Q`@:J:C7

:  .V1J]% RQ% ]%  V`I1J:C1:IV:%`VR1J .V`:J$VQ`RJ78/JR%H :JHVGV 1VVJ

.VQ%`HV V`I1J:C:JR$`Q%JR1:RVRVIGVRRVR11 .R]:`:IV V`IV:%`VIVJ :JR

1:HQJ`1`IVR QGVCV .:J]7R%V QI%C 1]CVRQ1JGQJR Q .V$`Q%JR]C:JV8

RF-in ground downbonds

Bias Vdd RF-out



Figure 42. .Q Q$`:].Q` .VR1VGQJRVRQJ .V$QCRR]C: VR V GQ:`R81V:`V:18II8II8

8 8 1RVG:JR :JR  V:%`VIVJ

.V1J]% )2]Q1V`1:1V] GV 1VVJRRI:JRRI: :H:``1V```V_%VJH7Q`

897<8%]]C7`1]]CV1:1J=VH VR: :``V_%VJH7Q`"7<11 .:I]C1 %RVQ` I Q

`V]`VVJ  .V `1`  .:`IQJ1H Q` .V 11 H.1J$ JQ1V Q` : R  HQJ0V` V`8  21$%`V 

HQI]:`V IV:%`VR `V%C  Q .:JR :J:C718  # ]`VR1H VR G7 .V QC V``: V`1V

:J:C715 .VVHQJRQ`RV`%]]C7`1]]CV1RVG:JR0:`1VC1JV:`C711 .1J]% ]Q1V`8#  Power Supply Noise Analysis for RF Amplifiers 79

CQ1 Q% ]%  ]Q1V`5 .V `%JR:IVJ :C :JR 1RVG:JR .:`IQJ1H I: H. .:JR :J:C71

11 .1J R R8   #  .1$. Q% ]%  ]Q1V` .V :I]C1`1V` V6]V`1VJHV IQRV`: V Q  `QJ$

JQJC1JV:`1 7: .VR`:1J0QC :$V :`  QHC1]8.V))1`VR%HV1J .1H:VGVH:%V

Q` `QJ$HQJR%H 10VJQJC1JV:`1 1V1J .V";RV01HV1.VJ1 VJ V`HQI]`V1QJ8/J

.1H:V5.1$.V`Q`RV` V`I:`VJVVRVR QI:1J :1J .V:HH%`:H7Q` .VQC V``:V`1V

:J:C718

20 10 0 Vo @ 2.4GHz -10 -20 -30 -40 Vo @ 2.4GHz + 1MHz Pout (dBm) Pout -50 -60 Measured -70 Volterra -80 -30 -20 -10 0 10 Pin (dBm)  Figure 43. QI]:`1QJQ`IV:%`VR:JRH:CH%C: VR`%JR:IVJ :C:JR`1]]CV1RVG:JR]Q1V` Power Supply Noise Analysis for RF Amplifiers 80

30.0

28.0

26.0

24.0

22.0 PSRR (meas) (Volterra)

PSRR(dB) PSRR (calc) 20.0 PSRR (Spectre-BSIM) 18.0

16.0 -30 -20 -10 0 10 Pin (dBm)  Figure 44. QI]:`1QJQ`IV:%`VR:JRH:CH%C: VR`1]]CV1RVG:JR1JRVH1GCVRGVCQ1H:``1V`8 

21$%`V  .Q1 .V )) Q` .V :I]C1`1V` 0V`% 1J]%  ]Q1V`8  2`QI ^_5 )) 1

`VC: VR Q .V1RVG:JR^RH_IV:%`VIVJ :

PSRR(dBV ) = Sideband(dBc) + SupplyNoise(dBV )  ^ _

/ 1JQ VR .:  .1`: 1Q.Q%CRGVHQJ :J :JR1JRV]VJRVJ Q` .V1J]% 1$J:CCV0VC

`Q`HQJ :J %]]C7JQ1VCV0VC8#RVH`1GVR1JVH 1QJ885 .11:%V`%C`1$%`VQ`

IV`1 `Q`HQJ :J Q`1Q` H:V%]]C7JQ1V:J:C71:JR`V]`VVJ  .V1RVG:JR^1J

RVH1GVCGVCQ1H:``1V`RRH_ .: 1Q%CRQHH%``Q`:QJVR0QC ^

I:$J1 %RV8/J21$%`V5 .11:CQHQI]:`VR Q .V]`VR1H 1QJ1J^_%1J$QC V``:

:J:C71:1VCC:1I%C: 1QJ1J]VH `V11 ./"0IQRVC81RVG:JR]Q1V`1VVJ

QI: H..:JR:J:C7111 .1JRR`Q`1J]% ]Q1V`CV .:JRI81I1C:` Q21$%`V

5 .VR1H`V]:JH7GV 1VVJIV:%`VR:JRH:CH%C: VRR: :1JH`V:V: .V:I]C1`1V`

VJ V` : %`: 1QJ8  .V )) RVH`V:V 1J .1 H:V GVH:%V .V :I]C1`1V` 1 IQ`V Power Supply Noise Analysis for RF Amplifiers 81

%HV] 1GCV Q]Q1V`%]]C7JQ1V81I%C: VRR: :I: H.V1VCC11 ..:JR:J:C71: 

CQ1]Q1V`5G% RV01: V: .V:I]C1`1V`VJ V`: %`: 1QJ81I%C: VRR: ::CQI: H.V

IV:%`VRR: :11 .1JRRV6HV] : .1$.]Q1V`8.VRV01: 1QJ1]:` C7V6]C:1JVRG7

0:`1: 1QJ 1J RVRVIGVRRVR 0:C%V `Q` H1`H%1  ]:`:1 1H 1JHC%R1J$ 1JR%H 10V Q%`HV

RV$VJV`: 1QJ8  /J 21$%`V  :JR 21$%`V 5 .V QC V``: V`1V :J:C71 1 VVJ Q GV

:HH%`: V Q0V` : R `:J$V Q` Q% ]%  ]Q1V`8  /  1 V6]VH VR .:  .1 `VJR 1Q%CR

HQJ 1J%V QGV:HH%`: V`Q`1J]% ]Q1V`CV .:JRRIGVH:%V .V:I]C1`1V`1Q%CR

`VI:1J1J .V1V:@C7JQJC1JV:``V$1IV8

8 8 ]VH `:C V$`Q1 . V:%`VIVJ 

:VG:JR / :JR 4 1$J:C 1V`V $VJV`: VR `Q` R@  9 11 . : 7IGQC `: V Q`

 @7<8.VG:VG:JR1$J:C1V`VQ0V`:I]CVR: :I]CV]V`7IGQC:JR:0VR1J

 R7IGQCRCQJ$R: : `V:I81J$ .V VH.J1_%VRVH`1GVR1J` a5 .VG:VG:JR

1$J:C1V`V%]HQJ0V` VR:JR:]]C1VR Q .VQC V``:IQRVC1J .V``V_%VJH7RQI:1J Q

$VJV`: V .V ]`VR1H VR Q% ]%  ]VH `%I8  Q  %R7 .V $VJV`: 1QJ Q` %]]C7 `1]]CV

1RVCQGV5 QJC7 .V `1` Q`RV` R1`VH  :JR VHQJR Q`RV` H`Q V`I 1V`V %VR `Q` .V

H:CH%C: 1QJ8]VH `:C`V$`Q1 .R%V Q .1`RQ`RV`JQJC1JV:`1 71:JQ 1JHC%RVRGVH:%V

1 11VCC `V: VR1J` 5 a:JR1JQ RQI1J:J 1J%]]C7`1]]CVI161J$8

.V / :JR 4 1$J:C 1V`V %]HQJ0V` VR :JR %]]C1VR Q .V "; :I]C1`1V` 1J .V

C:GQ`: Q`7%1J$ .VF: 1QJ:C/J `%IVJ /R L )2 V 7 VI8Q0V`1`7 .V

IQRVC: R1``V`VJ H:``1V```V_%VJH1V5 9IQR%C: 1QJ1::]]C1VR1J .V `:R1 1QJ:C Power Supply Noise Analysis for RF Amplifiers 82

"7< H:``1V` `:J$V5 :JR :CQ :  897<8  .V Q% ]%  ]VH `%I 1: IV:%`VR :JR

HQI]:`VR Q .V]`VR1H 1QJQ` .VQC V``::J:C718



 Figure 45. Mea%`VR0V`%H:CH%C: VR]Q1V`]VH `:CRVJ1 7:  "#<  Power Supply Noise Analysis for RF Amplifiers 83

 Figure 46. "V:%`VR0V`%H:CH%C: VR]Q1V`]VH `:CRVJ1 7: 8&#< 

21$%`V .Q1 .VIV:%`VRQ% ]% ]VH `%IQ0V`C:1R11 . .V]VH `%I$VJV`: VR

11 . I%C 1R]Q`  QC V``:RV`1V :J:C718  .V `:R1 1QJ:C  9 ]VH `%I 1 .Q1J

HVJ V`VR:  "7<8 %V Q%]]C7`1]]CV1J=VH VR: "7<51RVCQGV:]]V:`HVJ V`VR

:  "7<:JR "7<8.V1RVCQGV:`V1I:$VQ` .V 9]VH `%I:JR.:0V:

]V:@ :  :`Q%JR R GVCQ1 .V I:1J CQGV8  .V H:CH%C: VR ]VH `%I I: H.V .V

IV:%`VR ]VH `%I 11 .1J RR :H`Q .V ``V_%VJH7 `:J$V5 RVIQJ `: 1J$ .V

:HH%`:H7Q` .VI%C 1R]Q` QC V``:IQRVC:  "7<821$%`V .Q11I1C:`]VH `:C

`V$`Q1 .HVJ V`VR: 897<^"7<8/J .VQC V``:V`1VH:CH%C: 1QJH:V5 .V`1]]CV

1RVCQGV:`VHCV:`1JHV .VJQ1V`CQQ`1:`G1 `:`1C7I:CC8.VIV:%`VRR: :.Q1: Power Supply Noise Analysis for RF Amplifiers 84

JQ1V `CQQ` Q` R RI ^`Q` .V V 1J$ %VR `Q` .V J: 1QJ:C 1J `%IVJ  /

RQ1JHQJ0V` V`_5 G%  .V 1RVCQGV :`V  1CC HCV:` :JR I: H. .V ]`VR1H VR ]VH `%I

11 .1JRR8

8 8 Q1V` %]]C7 V=VH 1QJ : 1Q7 !QI]QJVJ R#V0VC %J:C71

/I]Q` :J C75 .V QC V``: :J:C71 ]`Q01RV : QQC Q  %R7 .V RV01HVRCV0VC

IVH.:J1I `Q` :I]C1`1V` JQJC1JV:`1 78  .V HQJ `1G% 1QJ Q` .V H1`H%1 RCV0VC

JQJC1JV:`1 1VH:JGVG`Q@VJRQ1J5:.Q1J1J21$%`V 87V`V5 .V))1.Q1J`Q`

.V .`VVRQI1J:J Q%`HVQ`%]]C7`1]]CV%]HQJ0V`1QJ7IQR%C: 1QJQ` .V`Q`1:`R

`:JHQJR%H :JHVG7RR^$IQ_5VHQJRQ`RV`Q% ]% HQJR%H :JHV^$Q_5:JRVHQJR

Q`RV`R`:1J=%JH 1QJH:]:H1 :JHV^_8/J21$%`V 51V:`VV``VH 10VC7]CQ 1J$ .V 

: 1V :RR 1J .V V``VH  Q` RQI1J:J  HQJ `1G% Q` Q %]]C7 JQ1V %]HQJ0V`1QJ8  / 

.Q%CRGVJQ VR .: 1.VJ .V`V1JQQ%`HVQ`%]]C7JQ1V%]HQJ0V`1QJ5 .V))1

.VQ`V 1H:CC71J`1J1 V8.VJ .VV``VH Q`$IQ1:RRVR5))1`VR%HVR``QI1J`1J1 7

Q .VVR$VQ` .V.:RVR`V$1QJ1J21$%`V 8

 Power Supply Noise Analysis for RF Amplifiers 85

70 gmo11 60 gmo11+go2 50 gmo11+go2+C2 gmo11*

40 C2* 30 go2* PSRR(dBV) 20

10 Total PSRR value

0 1.E+06 4.E+06 1.E+07 5.E+07 2.E+08 7.E+08 3.E+09 1.E+10 Frequency (Hz)  Figure 47. '((0H:``1V```V_%VJH75``QIQC V``:RV`1V:J:C715.Q11J$HQJ `1G% 1QJQ`RQI1J:J  H1`H%1 RCV0VCJQJC1JV:`1 1V8

* Change in PSRR when effect of parameter is included (i.e. gmo11 is shown to reduce PSRR from infinite to the edge of the shaded region indicated in the legend). 

#  CQ1 ``V_%VJH1V .V V``VH  Q` `V:H 10V VCVIVJ  1 I1J1I:C 1JHV .V7 CQQ@ C1@V

.Q`  ^1JR%H Q`_ Q` Q]VJ ^H:]:H1 Q`_8  .V`V`Q`V5 .V RQI1J:J  1I]:H  Q` %]]C7

JQ1V 1 .:  1  IQR%C: V .V `Q`1:`R `:JHQJR%H :JHV G7 H.:J$1J$ .V R  Q` .V

`:J1 Q`^18V8 .V$IQ V`I``QI^_RQI1J: V_8.11.Q1JG7`1` J%CC1J$ .V

V``VH Q` .VVHQJRQ`RV`R`:1JRQ%`HV:RI1 :JHV]:`:IV V`5$Q:JR8.VJ .V

V``VH  Q` $Q :JR  :`V 1JHC%RVR5 .V )) R`Q] :  IQRV`: V Q .1$. H:``1V`

``V_%VJH1V8.VVHQJRQ`RV`R`:1JRQ%`HVHQJR%H :JHV^$Q V`I_GVHQIV1I]Q` :J 

:  ``V_%VJH1V 1.V`V .V Q% ]%  `V1 :JHV Q` .V :H 10VRV01HV 1 HQI]:`:GCV Q .V

1I]VR:JHVQ` .VH.Q@V1JR%H Q`8.VJQJC1JV:`1 7Q` .VR`:1J=%JH 1QJH:]:H1 :JHV^ Power Supply Noise Analysis for RF Amplifiers 86

V`I_11I]Q` :J : .1$.``V_%VJH71.VJ .VR`:1JH:]:H1 :JHVRQI1J: V .VQ% ]% 

1I]VR:JHVQ` .VRV01HV8.V]V:@1J .V))H%`0V:`V`VC: VR Q`VQJ:JHVQ` .V

H.Q@V :JR Q%`HV 1JR%H :JHV8  #  .1$. ``V_%VJH75 .V )) 1JH`V:V GVH:%V Q` .V

1JH`V:1J$ 1I]VR:JHV Q` .V 1JR%H 10V RV$VJV`: 1QJ8  7Q1V0V`5 .1 V``VH  1 ]:` 1:CC7

`VR%HVRG7 .VJQJC1JV:`1 7Q` .VQ% ]% =%JH 1QJH:]:H1 :JHV58# CQ1``V_%VJH75

)) `:CC Q`` 11 . .V 1I]VR:JHV Q` .V H.Q@V 1JR%H Q` GVH:%V .V`Q`1:`R $:1J 1

`VR%HVR8.VV``VH Q`$I:JR$IG:`VQJC7:]]`VH1:GCV11 ..1$.0:C%VQ`Q%`HV

RV$VJV`: 1QJ8.VV V`I:`VRQI1J: VRG7$IQ55:JR$Q1J .1V6:I]CV1JHV

.V`V1QJC7]7Q`1JR%H 10VRV$VJV`: 1QJ8#J:RR1 1QJ:C]Q VJ 1:CQ%`HVQ`%]]C7R

H:``1V` 1J V`IQR%C: 1QJ 1 .1$. 1I]VR:JHV 1J .V 1J]%  1$J:C ]: .8  .1 H:%V .V

%]]C70QC :$V QHQ%]CV .`Q%$. .V$RR1`VH C7IQR%C: 1J$ .V$: V V`I1J:C82Q`CQ1

``V_%VJH7%]]C7JQ1V5 .VV``VH Q`$RHQ%]C1J$1I:CCGVH:%V .V=1$ :RI1 :JHV

1JV$C1$1GCV8.1V``VH 1JQ 1JHC%RVR1J^ _R^_`Q`1I]C1H1 75G% H:JGVH:] %`VRG7

1JHC%R1J$ .V$: V V`I1J:C::J:RR1 1QJ:CJQRV1J .VQC V``::J:C718

# VVJ 1J 21$%`V  5 QC V``: V`1V :J:C71 ]`Q01RV : 1:7 Q V6:I1JV .V

]V``Q`I:JHVQ` .VH1`H%1 :JRRV1$J`Q``QG% JV:$:1J ]Q1V`%]]C7JQ1V8/J .V

HQIIQJRQ%`HV V6:I]CV5 : H:HQRV H:J 1JH`V:V )) %G :J 1:CC78  .V H:HQRV

Q]QCQ$7 1JH`V:V .V `Q`1:`R $:1J5 :JR .1VCR .V R`:1J Q` .V :H 10V

`:JHQJR%H :JHVVCVIVJ ``QI0:`1: 1QJ1JRR8.1`VR%HV%]HQJ0V`1QJQ`%]]C7

JQ1V .`Q%$. .V$IQ5$Q5:JR$R V`I8;0V`:CC5 .1:J:C71RVIQJ `: VI:J7

GVJV`1 1J]`Q01R1J$1J1$. 1J Q .VH1`H%1 RV1$J]`QHVR%`V8 Power Supply Noise Analysis for RF Amplifiers 87

8 QJHC% 1QJ

#IV .QRQ`]`VR1H 1J$ .V1J V`:H 1QJQ`]Q1V`%]]C7JQ1V11 . .V)2H:``1V`1:

]`VVJ VR :JR HQI]:`VR Q IV:%`VR R: :8  QJ0VJ 1QJ:C R1 Q` 1QJ :J:C71 1:

V6 VJRVR Q:I%C 1R]Q` `Q`I%C: 1QJ Q]`VR1H %]]C7`1]]CV1J V`IQR%C: 1QJ11 . .V

)21$J:C8)VC: 10VIV:%`VIVJ Q``1]]CV1RVG:JR]Q1V`.Q1VR:$`VVIVJ 11 .1JR

RH Q` ]`VR1H 1QJ8  ]VH `:C `V$`Q1 . Q` .V  9 ]VH `%I R%V Q %]]C7 `1]]CV

%]HQJ0V`1QJ :  "7< :JR 897< 1: .Q1J Q I: H. 11 .1J RR8  "%C 1R]Q` 

QC V``::J:C711:HQJ`1`IVR QGV:0:C%:GCV QQC Q]`VR1H %]HQJ0V`1QJQ`%]]C7

JQ1VQ0V`:`:J$VQ```V_%VJH7:JR1$J:C1J]% ]Q1V`8.V:J:C71H:JR`:I: 1H:CC7

`VR%HV 1I%C: 1QJ 1IV5 : :CQ R1H%VR 1J ` a5 G7 HQJ0V` 1J$ CVJ$ .7 1IVRRQI:1J

1I%C: 1QJ Q J:``Q1G:JR ``V_%VJH7 RQI:1J Q` I16VR 1IVR``V_%VJH7 RQI:1J

HQI]% : 1QJ8  .1 H:J ]`Q01RV 1J1$.  1J Q .V RV1$J Q` )2 :I]C1`1V` Q ]`Q01RV

1I]`Q0VR ]Q1V` %]]C7 `V=VH 1QJ5 IQ`V `QG%  Q]QCQ$1V `Q` 7 VIRQJRH.1] ^;_

QC% 1QJ5:JR1I]`Q0VRV``1H1VJH7:JR]V``Q`I:JHVQ`]QC:`:JRVJ0VCQ]V `:H@1J$^_

]Q1V`:I]C1`1V`8 88

Chapter 5 Optimum Operating Strategies for Hybrid Voltage Regulators 

 1$%`V 8,`:R1 1QJ:C]:`:CCVCC1JV:`R11 H.1J$.7G`1R`V$%C: Q` Q]QCQ$7

Figure 49. Model for parallel hybrid switching-linear regulator

8 J `QR%H 1QJ

#R1H%VR1J.:] V`5V``1H1VJ `V$%C: 1QJQ` .V%]]C70QC :$VH:J1I]`Q0V .V

:0V`:$VV``1H1VJH7Q`]Q1V`:I]C1`1V`1J]QC:`:JRVJ0VCQ]V `:H@1J$:`H.1 VH %`V8.1

H:J1I]`Q0VG: V`7C1`V1J]Q` :GCVHQII%J1H: 1QJ7 VI5V]VH1:CC71.VJ .V]Q1V` Optimum Operating Strategies for Hybrid Voltage Regulators 89

:I]C1`1V`^#_ VJR QQ]V`: V: CV .:JI:61I%I]Q1V`877G`1R0QC :$V`V$%C: Q`5

%H. : .V QJV .Q1J 1J 21$%`V  5 :`V ]:` 1H%C:`C7 : `:H 10V `Q` R7J:I1H %]]C7

`:JI1 V` :]]C1H: 1QJ8  .VV `V$%C: Q` V6]CQ1  `:0Q`:GCV ]`Q]V` 1V Q` GQ . C1JV:`

:JR11 H.1J$`V$%C: Q` Q:H.1V0V.1$.V``1H1VJH7:JR`: R7J:I1H`V]QJV8

21$%`V .Q1 .V]:`:CCVC.7G`1R0QC :$V`V$%C: Q`1J `QR%HVR1JVH 1QJ888.V

C1JV:``V$%C: Q`:H ::0QC :$V`QCCQ1V`5R7J:I1H:CC7`V$%C: 1J$ .V#%]]C70QC :$V8

.V11 H.1J$`V$%C: Q`:H ::H%``VJ Q%`HV5:]]V:`1J$.1$.1I]VR:JHV Q .VC1JV:`

`V$%C: Q`5:JR%]]C71J$QIVJQI1J:C:IQ%J Q` .VH%``VJ RVC10V`VR Q .VCQ:R8#

1I]C1`1VRIQRVCQ` .V]:`:CCVC`V$%C: Q`1.Q1J1JFigure 498/J7 VI]%GC1.VR1J

.V C1 V`: %`V5 .V 11 H.1J$ `V$%C: Q` %]]C1V .V  Q` :0V`:$V H%``VJ  Q .V CQ:R

` R a8

.V ]:`:CCVC .7G`1R Q]QCQ$7 .: :R0:J :$V Q0V` .V V`1V .7G`1R HQJ`1$%`: 1QJ 1J

.:  .VC1JV:``V$%C: Q`1JQ HQJ `:1JVRG7 .VR`Q]Q% 0QC :$VQJ .V:H 10VRV01HV8

/JV`1V.7G`1R`V$%C: Q`5 .V R HQJ0V` V`H`V: V:CQ1V`%]]C70QC :$V`Q` .V

]: `:J1 Q`8.1`VR%HVCQV1J .VC1JV:``V$%C: Q`G7@VV]1J$ .V:H 10VRV01HV

1J : CQ1 R`Q]Q%  HQJR1 1QJ :  :CC 1IV8  7Q1V0V`5 1.VJ `:  `:J1VJ QHH%`1J .V

]Q1 10VR1`VH 1QJ51 I:7GVR1``1H%C `Q` .VV`1V Q]QCQ$7 QI:1J :1J`V$%C: 1QJ8.V

:H 10V RV01HV H:J CQV $:1J 1.VJ .V 0QC :$V .V:R`QQI 1 CV .:J .V I1J1I%I

R`Q]Q% 0QC :$V^";RV01HVVJ V` .V `1QRV`V$1QJ_8.VQC% 1QJ1 Q1JH`V:V .V

G:JR11R . :JRLQ` CV1 `: V Q` .V R  HQJ0V` V`5 G%  .1 I:7 `V_%1`V 1JH`V:VR

11 H.1J$``V_%VJH1V:IQJ$Q .V`HQI]`QI1V5:JR%C 1I: VC7CQ1V`V``1H1VJH78#J Optimum Operating Strategies for Hybrid Voltage Regulators 90

:RR1 1QJ:CQC% 1QJ1 Q]C:HV:.%J  `:J1 Q` QHQJJVH  .VC1JV:``V$%C: Q`%]]C7 Q

.V G: V`7 1J .1 1 %: 1QJ5 G%  .:  I:7 :CQ `V%C  1J :RR1 1QJ:C ]Q1V` CQ8  .V

]:`:CCVC.7G`1RQC% 1QJH:J QCV`: V.1$.CV1HQJR1 1QJ1JGQ .]Q1 10V:JRJV$: 10V

R1`VH 1QJ5 :JR : 1V 11CC .Q15 H:J GV V``1H1VJ  `Q` : 11RV `:J$V Q` Q]V`: 1J$

HQJR1 1QJ8

/J ]:`:CCVC .7G`1R `V$%C: Q`5 .1$. $:1JRG:JR11R . C1JV:` `V$%C: Q` H:J ]`Q01RV `: 

0QC :$V `V$%C: 1QJ 11 . : .1$. R7J:I1H `:J$V `5 5 a5 1.1CV ]`Q]V`C7 RV1$JVR

11 H.1J$`V$%C: Q`H:J:H.1V0V.1$.V``1H1VJH7`Q`:C:`$V`:J$VQ`HQJ0V`1QJ`: 1Q

:JRCQ:RHQJR1 1QJ` 5 a8VH:%VQ` .VGVJV`1 Q` .VHQIG1JVRQC% 1QJ5.7G`1R

`V$%C: Q` Q]QCQ$1V.:0VGVVJ]`Q]QVR`Q`GQ . `:JI1 V`:]]C1H: 1QJ` 5 5 a5

:JR .1$.RV``1H1VJH7 :%R1Q :I]C1`1V` ` 5 a8  /J :%R1Q :]]C1H: 1QJ5 CQ1 1$J:C

G:JR11R . I:@V .V .7G`1R Q]QCQ$1V CV : `:H 10V HQI]:`VR Q ]%`V 11 H.1J$

`V$%C: Q` ^HC:R _ Q]QCQ$1V5 1.1H. .:0V GVVJ .Q1J Q :H.1V0V .1$. V``1H1VJH7 :JR

V6HVCCVJ  `1RVC1 7 ` R a8  7Q1V0V`5 1J `:JI1 V` :]]C1H: 1QJ5 .1$. VJ0VCQ]V

G:JR11R . I:@V HC:R  QC% 1QJ CV : `:H 10V R%V Q CQV :QH1: VR 11 . .1$.

11 H.1J$ ``V_%VJH1V ` 5  5  5 a8  /J .1 H:V5 .7G`1R Q]QCQ$1V :`V ]`:H 1H:C

GVH:%V .V7 H:J VC1I1J: V .V `:RVQ`` :IQJ$ V``1H1VJH75 G:JR11R .5 :JR ]VH `:C

`1RVC1 7` 5 a8

2Q` .V Q]QCQ$7 .Q1J 1J 21$%`V  5 V0V`:C HQJ `QC IV .QRQCQ$1V .:0V GVVJ

]`Q]QVR Q HQIG1JV .V Q% ]%  Q` .V 1Q R1``V`VJ  `V$%C: Q` GCQH@8  .V C1JV:`

`V$%C: Q` 1 7]1H:CC7 %VR : : `QCCQ1V`  :$V .:  %]]C1V : G%``V`VR 0V`1QJ Q` .V Optimum Operating Strategies for Hybrid Voltage Regulators 91

`V`V`VJHV 0QC :$V Q .V `V$%C: Q` Q% ]% 8  DQH:C `VVRG:H@ :`Q%JR .V C1JV:`  :$V 1

%VR Q`VR%HVQ% ]% 1I]VR:JHV:JR1I]`Q0V:HH%`:H78.VG:JR11R .Q` .V7 VI

1RV V`I1JVRG7 .V$:1JRG:JR11R .]`QR%H Q` .VC1JV:``V$%C: Q`1.1H.H:JGVQJ

.V Q`RV` Q` I:J7 VJ Q` "7< 1J IQRV`J VI1HQJR%H Q` ]`QHVV ` 5 a8  /` .V

C1JV:``V$%C: Q`1RV1$JVR11 ..1$.HCQVRCQQ]G:JR11R .51 H:JGV%VR Q: VJ%: V

11 H.1J$ .:`IQJ1H ``QI .V R  HQJ0V` V`  :$V ` 5 a5 :JR H:J :CQ %]]C7 :

]Q` 1QJ Q` .V R7J:I1H ]Q1V` Q` .V VJ0VCQ]V 1$J:C8  `:R1 1QJ:CC75 Q :H.1V0V .V

RV1`VRHQJ `QC5 .VQ% ]% H%``VJ Q` .VC1JV:``V$%C: Q`1VJVR:JR1%VR::J

V``Q`1$J:C`Q` .V11 H.1J$`V$%C: Q`8/J1Q`@`V]Q` VR1J .VC1 V`: %`V5 .V11 H.1J$

`V$%C: Q` `Q`HV .V :0V`:$V Q`  C1JV:` `V$%C: Q` H%``VJ  Q

^]`Q]Q` 1QJ:CR1J V$`:C_HQJ `QC5` a5Q`.7 V`V 1HHQJ `QC5` a8.V11 H.1J$`V$%C: Q`

H:J:CQ.:0V:JQJR

Q RV V`I1JV .V Q] 1I%I G:JR11R . Q` .V 11 H.1J$  :$V .`Q%$. 1I%C: 1QJ 1

]`Q]QVR1J` a8

8 Overview

.1.:] V`R1H%V .V]:`:CCVC.7G`1R Q]QCQ$71J .VHQJ V6 Q`R7J:I1H0QC :$V

`V$%C: 1QJ `Q` )2 ]Q1V` :I]C1`1V`8 V V6]:JR QJ .V 1Q`@ 1J ` 5 5 R a 11 .

]:` 1H%C:`VI].:1QJ .VQ] 1I%IG1:HQJR1 1QJ8/JQ%`:]]`Q:H.1V:%IV .: 

.V 11 H.1J$ `V$%C: Q` Q]V`: V : : _%:1R : 1H H%``VJ  Q%`HV8  .1 :%I] 1QJ 1

0:C1R%JRV` .V]`:H 1H:CHQJR1 1QJ .:  .VVJ0VCQ]V``V_%VJH71I%H..1$.V` .:J .V Optimum Operating Strategies for Hybrid Voltage Regulators 92

G:JR11R .Q` .V11 H.1J$`V$%C: Q`8.11Q`@RQVJQ HQJ1RV`R1`VH C7 .V Q]1HQ`

.V 11 H.1J$ `V$%C: Q` ]`Q01R1J$ ]:`  Q` .V " H%``VJ  Q .V CQ:R8  /J V:R 1V

$VJV`:C1

H:V5G7H.:J$1J$ .V 1IV11JRQ1Q` .V_%:1R : 1H:J:C715 .V11 H.1J$`V$%C: Q`

H%``VJ H:JGVQ] 1I1

15 PAPR=10.1 dB 20 10 0 5 -20

SignalA(V) 0 0 1 2 3 -40 15 PAPR=5.2 dB -60 10

5 -80 PowerSpectrum (dB/Hz)

SignalB(V) 0 -100 0 1 2 3 0 5 10 15 20 25 time (s) frequency (Hz) Figure 50. Two different time-domain envelope signals that share the same power spectrum: one with peak-average power ratio (PAPR) of 10.1dB, and another with PAPR or 5.2dB.

.1 :J:C71 1 G:VR 1J .V 1IV RQI:1J : Q]]QVR Q .V ``V_%VJH7 RQI:1J

:]]`Q:H.1J` a82`V_%VJH7RRQI:1J:J:C711R1``1H%C 1J .1H:VGVH:%VI:J7 1IV

RQI:1J 1$J:C H:J .:0V .V :IV ]Q1V` ]VH `%I8  #J V6:I]CV Q` .1 1 .Q1J 1J

Figure 5087V`V5 1QR1``V`VJ VJ0VCQ]V1$J:C:`V.Q1J .: .:0V .V:IV]Q1V`

]VH `%I8.VR1``V`VJHV1 .: QJV.::]V:@R:0V`:$V]Q1V``: 1Q^#)_Q`8R5

1.1CV .VQ .V`.:#)Q` 8R8/ 1HCV:` .: :QC% 1QJ .: 1Q] 1I1

`1` HVJ:`1QI:7JQ GV1RV:C`Q` .VVHQJR8.1I:7CV:R Q%GRQ] 1I:CV``1H1VJH71` Optimum Operating Strategies for Hybrid Voltage Regulators 93

.V11 H.1J$`V$%C: Q`1Q] 1I1

1IVRRQI:1JQ]V`: 1J$HQJR1 1QJ8

/JQ%`:J:C7151VRV`10VV6]`V1QJ`Q` .VQ] 1I%I11 H.1J$`V$%C: Q`H%``VJ :

: `%JH 1QJ Q` .V %]]C7 0QC :$V5 .V :0V`:$V Q% ]%  0QC :$V5 :JR R7J:I1H

H.:`:H V`1 1H Q` .V VJ0VCQ]V 1$J:C8  .V Q] 1I1<: 1QJ 1 G:VR QJ .V HQJR%H 1QJ

:J$CV Q` .V C1JV:` `V$%C: Q` Q% ]%   :$V8  /  1 .Q1J .:  .V`V 1 :J Q] 1I%I

V``1H1VJH7 `Q` %H. : HQJ`1$%`: 1QJ5 :JR .:  .V Q] 1I%I 11 H.1J$ `V$%C: Q` H%``VJ 

0:`1V11 . .V]Q1V`Q` .V1$J:C8V0V`1`7QIVQ` .VHQJHC%1QJQ`` 5 5 a5

G% .Q1 .: :.1$.V`V``1H1VJH7IV .QRQCQ$71]Q1GCV .: 1J0QC0VH.VR%C1J$ .V

H%``VJ ]`Q01RVRG7 .V11 H.1J$`V$%C: Q`8/I]Q` :J C751V.Q1 .: `Q`I:61I%I

V``1H1VJH75 .VQ] 1I%I_%:1R : 1H11 H.1J$`V$%C: Q`H%``VJ I:7GVIQ`V .:J .V

H%``VJ  Q .VCQ:R8V0V`1`7Q%`]`VR1H 1QJ11 .IV:%`VRR: ::JRRVIQJ `: V

.VGVJV`1 Q`Q] 1I%I_%:1R : 1HG1:1J$`Q``V]`VVJ : 10V11`VCVHQII%J1H: 1QJ

 :JR:`R1JHC%R1J$/R  "#:JR/ 8:L$8



8 ] 1I%I 1: Q1J 7 QRVC :JR :CH%C: 1QJ

Q `VR%HV 0QC :$V `1]]CV5 11 H.1J$ `V$%C: Q` I%  `:RVQ`` `:J1VJ  `V]QJV

:JRLQ` V``1H1VJH7 G7 1JH`V:1J$ .V 1

11 H.1J$``V_%VJH7` 5 a8D1JV:``V$%C: Q`5QJ .VQ .V`.:JR5I:7]`Q01RV]VH `:C

]%`1 7 :JR .1$. $:1JRG:JR11R . ]`QR%H 5 G%  .:0V CQ1 ]Q1V` V``1H1VJH75 V]VH1:CC7 : 

CQ1 HQJ0V`1QJ `: 1Q8  .V .7G`1R Q]QCQ$7 H:J RVHQ%]CV V``1H1VJH7 ``QI `:J1VJ  Optimum Operating Strategies for Hybrid Voltage Regulators 94

`V]QJV :JR 0QC :$V `1]]CV5 :CCQ11J$ .V ]V``Q`I:JHV Q` : C1JV:` `V$%C: Q` 11 . CV

]Q1V`HQJ%I] 1QJ8

 1$%`V 8`Q]QVR.7G`1R11 H.1J$`V$%C: Q`IQRVC

7V`V .V11 H.1J$`V$%C: Q`1IQRVCVR::_%:1R : 1HH%``VJ Q%`HV11 .:0V`:$V

HQJ0V`1QJ`: 1Q5R5GV 1VVJ .VCQ:RH%``VJ :JR .VH%``VJ R`:1J``QI .V%]]C78

#.Q1J1J21$%`V 51 1:%IVR .:  .V11 H.1J$`V$%C: Q`Q]V`: V::J1RV:C

`:J`Q`IV` :JR .:

0QC :$V:H`Q .V1JR%H Q`I% GV

.V:0V`:$VQ% ]% 0QC :$V Q%]]C70QC :$V7

Vout d = 5 ^ _ Vdd ≤ ≤ 1.V`V Vout  1 .V :0V`:$V Q% ]%  0QC :$V Q0V` QIV 1IV 11JRQ1 a t b 5 :JR

1 b f (t) = f (t)dt − ∫ 82Q`]V`1QR1H`^ _11 .]V`1QR#5::JRGI:7GV :@VJ:J#:JR b a a

^JU_#`Q`1J V$V`J Q`V`CVH 1J V$`: 1QJQ0V`QJV`%CC]V`1QRQ` .VVJ0VCQ]V1$J:C8

.VC1JV:``V$%C: Q`1IQRVCVR::J1RV:CHC: Q]QCQ$7511 .:]%.R]%CC`:1CR QR`:1C

Q% ]%  :$V8/ H:JGV0V`1`1VR .:  .11 7]1H:CC7 .VIQ V``1H1VJ Q% ]%  :$V`Q` Optimum Operating Strategies for Hybrid Voltage Regulators 95

1$J:CQ`1J V`V `a81 .:]%.R]%CCQ% ]%  :$V5:CCH%``VJ Q%`HVR Q .VCQ:R

HQIV``QI .V%]]C75:CCH%``VJ R`:1J``QI .VCQ:R1J@ Q$`Q%JR82Q`]V`1QR1H

IQR%C: 1QJ1:0V`Q`I5 .VHQJR%H 1QJ:J$CVQ` .VC1JV:``V$%C: Q`11CCGVRV`1JVR:

.V `:R1:C :J$CV 1J RV$`VV .:  .V `V$%C: Q` R`:1 H%``VJ  ``QI .V %]]C78  .V

HQJR%H 1QJ:J$CVH:JH.:J$VGVH:%V .VH%``VJ Q` .V 1Q`V$%C: Q`GCQH@1%IIVR

:  .VQ% ]% 8.V11 H.1J$`V$%C: Q`H:JQ%`HV:J7]Q` 1QJQ` .V:0V`:$VH%``VJ 8

.1 :CCQ1 .V C1JV:` `V$%C: Q` Q Q]V`: V 11 . :J7 HQJR%H 1QJ :J$CVGV 1VVJ R 

RV$`VV8.VQ] 1I%IG1:]Q1J :JRHQJR%H 1QJ:J$CV:`VRV`10VRG:VRQJ:0V`:$V

V``1H1VJH75

PL η = 5 ^ _ PS

1.V`V PL 1 .V:0V`:$V]Q1V` Q .VCQ:R:JR PS 1 .V:0V`:$V]Q1V```QI .V

%]]C78#%I1J$:J1RV:C1 %: 1QJ:1J21$%`V 5 .V:0V`:$V]Q1V```QI .V%]]C7

`QCCQ1``QI7

= ⋅[ + ⋅ ] PS VDD iLR iSR d 5 ^ _

1.V`ViLR 5:JRiSR :`V .VC1JV:`:JR11 H.1J$`V$%C: Q`H%``VJ RVC10V`VR Q .VCQ:R5

R 1 .V R% 7 H7HCV5 :JR VDD  1 .V %]]C7 Q` G: V`7 0QC :$V8  Q H:CH%C: V :0V`:$V

V``1H1VJH71 1JVHV:`7 QRV`10VQ`IV:%`V:0V`:$VH%``VJ 5 iLR :JR iSR 8 2Q`

1I]CVVJ0VCQ]V1:0V`Q`I5%H.:1J%Q1R:C#":JR 1QR QJV)21$J:C5V6]`V1QJ

`Q` ^ _ :JR ^ _ H:J GV RV`10VR V6]C1H1 C7 G:VR QJ H.:`:H V`1 1H Q` .V `V$%C: VR

0QC :$V 1$J:C :JR .V %]]C7 Q` G: V`7 0QC :$V8  /  .Q%CR GV JQ VR .:  1.1CV .V Optimum Operating Strategies for Hybrid Voltage Regulators 96

H:CH%C: 1QJ 1J ^ _ 1 ]`Q]QVR `Q` .V 1RV:C 1 %: 1QJ5 .V HQJHV]  V6 VJR Q `V:C

11 H.1J$:JRC1JV:``V$%C: Q`HQI]QJVJ  .: 1JHC%RV`V:C1 1HCQIVH.:J1I8#CQ5

`Q` .V H:CH%C: 1QJ ]`VVJ VR 1J VH 1QJ 85 .V CQ:R 1 :%IVR Q GV C1JV:` :JR

`V1 10V8  )V:C ]Q1V` :I]C1`1V` CQ:R I:7 GV JQJC1JV:` :JR `V:H 10V8  .1 H:J

HQI]C1H: V .VH:CH%C: 1QJQ`:0V`:$VV``1H1VJH75G% RQVJQ `VR%HV .V% 1C1 7Q` .V

Q] 1I1<: 1QJ ]`QHVR%`V8  .VV6]C1H1  H:CH%C: 1QJ `Q` .V 1J%Q1R:CR#" :JR 1QR QJV

H:V :`V ]`VVJ VR : :J V6:I]CV Q .1$.C1$.  .V GVJV`1  Q` Q] 1I%I _%:1R : 1H

G1:1J$8  2Q` HVCC%C:` :JR 11`VCV 1J V`JV   :JR:`R5 %H. :  "#5 " :JR .V

8 :JR:`R5.:JRH:CH%C: 1QJ:`VR1``1H%C R%V Q .VJQJR]V`1QR1HJ: %`VQ` .V

VJ0VCQ]V 1:0V`Q`I8  7Q1V0V`5 :%I1J$ iLR  :JR iSR  H:J GV IV:%`VR5 .V

Q] 1I%I G1: ]Q1J  H:J  1CC GV RV V`I1JVR5 : 11CC GV ]`VVJ VR 1J VH 1QJ 8 8

.V`V`Q`V5 `V$:`RCV Q` .V HQI]CV61 7 Q` .V VJ0VCQ]V 1:0V`Q`I :JR CQV 1J .V

11 H.1J$:JRC1JV:``V$%C: Q`HQI]QJVJ 5 .V`V11$J1`1H:J 0:C%V1JQ] 1I1<1J$ .V

`VC: 10VH%``VJ HQJ `1G% 1QJQ` .V`V$%C: Q` :$V8



8 ``1H1VJH7 ] 1I1<: 1QJ7 1J%Q1R:C :JR 1QRQJV :``1V` QR%C: 1QJ

J0VCQ]V 1$J:C .:  `V%C  ``QI V6]C1H1  IQR%C: 1QJ Q` .V )2 H:``1V` I:7 :CCQ1

R1`VH  QC% 1QJ Q` Q] 1I%I G1:1J$ V6]`V1QJ8  2Q` .V H:V Q` 1J%Q1R:C :I]C1 %RV

IQR%C: 1QJ Q` .V )2 H:``1V`5 .V VJ0VCQ]V 0QC :$V :JR H%``VJ  1:0V`Q`I I:7 GV

1`1 VJ: Optimum Operating Strategies for Hybrid Voltage Regulators 97

= + ⋅ vo (t) vDC va cos(wt) 5:JR ^ _ = + ⋅ io (t) iDC ia cos(wt) 8 7V`V50Q:JR1Q:`V .VQ% ]% 0QC :$V:JRH%``VJ `V]VH 10VC750::JR1::`V .V0QC :$V

:JRH%``VJ :I]C1 %RV5:JR0:JR1:`V .V 0:C%V8/J^ _5:JR1J .V`V Q` .1

1Q`@5 .V CQ:R 1 :%IVR Q GV C1JV:` :JR `V1 10V :C .Q%$. `V:H 10V :JR JQJC1JV:`

CQ:RH:JGV `V: VR1J:1I1C:`I:JJV`8

Sinusoidal AM Two-Tone 1

0.8

0.6

0.4

(normalized) 0.2 Envelope voltage voltage Envelope 0 0 2 4 6 8 angle (radians)  1$%`V 8J0VCQ]V:0V`Q`I71J%Q1R:C:JRR QJVIQR%C: 1QJ

 21$%`V  .Q1 JQ`I:C1

1QR QJV IQR%C: 1QJ Q` .V H:``1V`8  /J .V 1J%Q1R:CR#" H:V .V :I]C1 %RV

= IQR%C: 1QJ 1 %H. .:  va vDC 8  .V :0V`:$V ]Q1V` RVC10V`VR Q .V CQ:R 15

.V`V`Q`V5

1 T v ⋅i P = v (t) ⋅i (t)dt = v ⋅i + a a . L ∫ o o DC DC  ^ _ T 0 2 QRV`10V:JV6]`V1QJ`Q` .V:0V`:$V]Q1V`R`:1J``QI .V%]]C75:1J^ _5 .V

0:C%V `Q` iLR  1 QC0VR G7 :%I1J$ .:  iSR  1 HQJ :J  R%`1J$ .V ]V`1QR Q` .V Optimum Operating Strategies for Hybrid Voltage Regulators 98

VJ0VCQ]V 1$J:C5 :JR `1JR1J$ .V HQ``V]QJR1J$ HQJR%H 1QJ :J$CV5 X5 .:  .V C1JV:`

`V$%C: Q`HQJR%H H%``VJ ``QI .V%]]C78

1 iSR 0.8 iLoad 0.6 iDC

0.4 Φ

current current (A) 2 0.2

0 Φ Φ - +  1$%`V 8QJR%H 1QJ:J$CVRV`10: 1QJ71J%Q1R:CIQR%C: 1QJ5JQ`I:C1

 21$%`V .Q1:R1:$`:IQ` .VH%``VJ 1:0V`Q`I1J .V.7G`1R`V$%C: Q`8/` .V

11 H.1J$`V$%C: Q`%]]C1V .V H%``VJ 5 .VHQJR%H 1QJ:J$CVQ` .VC1JV:``V$%C: Q`

Q 1 V6:H C7   8  .1 1Q%CR IV:J .:  1J .V ]%.R]%CC Q% ]%   :$V5 .V RV01HV .: 

HQ%]CV .VQ% ]%  Q .V%]]C7HQJR%H .:C`Q` .V 1IV87Q1V0V`51J .VV6:I]CV

.Q1J1J21$%`V 5 .V11 H.1J$`V$%C: Q`%]]C1VIQ`V .:J .V H%``VJ %H. .: 

Q X\  8.VJV V``VH 1 .:  .V:0V`:$VC1JV:``V$%C: Q`H%``VJ 1`VR%HVRG7 .V

11 H.1J$`V$%C: Q`H%``VJ 82Q` .V1:0V`Q`I1J^ _5 Φ H:JGVQC0VR`Q`:

 i − i  Φ = −1 SR DC cos   8 ^ _  ia  :VRQJ^ _5 .V:0V`:$VC1JV:``V$%C: Q`%]]C7H%``VJ H:JGV1`1 VJ1J V`IQ`

HQJR%H 1QJ:J$CV: Optimum Operating Strategies for Hybrid Voltage Regulators 99

Φ 1 i = ()i + i ⋅ cos(φ) − i dφ LR π ∫ DC a SR 2 −Φ  ^ _ i = a []sin Φ − Φ cosΦ . π 7V`V5 .V:0V`:$VC1JV:``V$%C: Q`H%``VJ 1QJC7:`%JH 1QJQ` .V:I]C1 %RVQ` .VCQ:R

H%``VJ 11J$:JR .VHQJR%H 1QJ:J$CV8.V:0V`:$VV``1H1VJH7`Q` .V1RV:C7 VI5:

1J21$%`V 5H:JGV1`1 VJ1J V`IQ` .V]`Q]V` 1VQ` .VVJ0VCQ]V1:0V`Q`I%1J$

^ _5 ^ _5 :JR ^ _5 ]VH1`1H:CC7 JQ 1J$ .:  .V H%``VJ  .V 11 H.1J$ `V$%C: Q` R`:1

``QI .V%]]C71`VR%HVRG7HQJ0V`1QJ`: 1Q5R8/ .Q%CRGVJQ VR .: ^ _:%IV

:J 1RV:C 11 H.1J$ `V$%C: Q` 11 . JQ CQ8  #0V`:$V V``1H1VJH7 `Q` .V 1J%Q1R:C #"

VJ0VCQ]V`QCCQ1:

v ⋅i v ⋅i + a a DC DC 2 η = 8 i ^ _ i ⋅ v +V a []sin Φ − Φ cos Φ SR DC dd π /J ^ _5 :0V`:$V V``1H1VJH7 1 1`1 VJ ]%`VC7 1J V`I Q` ]`Q]V` 1V Q` .V VJ0VCQ]V

1:0V`Q`I5 .V %]]C7 0QC :$V5 :JR .V HQJR%H 1QJ :J$CV5 X5 Q` .V C1JV:` `V$%C: Q`8

%G 1 % 1J$^ _1J Q^ _5:0V`:$VV``1H1VJH71V6]`VVR::`%JH 1QJQ` .VH%``VJ 

%]]C1VRG7 .V11 H.1J$`V$%C: Q`5iSR 81J$ .1`V%C 5:J:C$VG`:1HI1J1I1<: 1QJH:J

GV RQJV Q `1JR .V 11 H.1J$ `V$%C: Q` H%``VJ  .:  ]`Q01RV I:61I%I :0V`:$V

d η V``1H1VJH78.11 .VQC% 1QJ Q = 0 5:JRH:JGV`Q%JR: diSR

 v  * = + ⋅ π DC iSR iDC ia cos  5 ^ _  Vdd  Optimum Operating Strategies for Hybrid Voltage Regulators 100

* 1.V`V iSR  1 .V Q] 1I%I _%:1R : 1H 11 H.1J$ `V$%C: Q` H%``VJ 8  .V I:61I%I

η * * :0V`:$VV``1H1VJH75 5`Q` .10:C%VQ`iSR 1V6]`VVR:

v ⋅i ⋅ + a a vDC iDC * 2 η = 5 i ^ _ v ⋅i +V a sin()Φ* DC DC dd π 1.V`V Φ* 1 .VQ] 1I%IHQJR%H 1QJ:J$CV`Q` .VC1JV:``V$%C: Q`5:JRH:JGV1`1 VJ

:

* vDC Φ = π 8 ^ _ Vdd # VVJ 1J ^ _5 .V Q] 1I%I H%``VJ  %]]C1VR G7 .V 11 H.1J$ `V$%C: Q` 1 JQ 

JVHV:`1C7V_%:C Q .V H%``VJ %]]C1VR Q .VCQ:R5G% 11J`:H :`%JH 1QJQ` .V

:JRR7J:I1HH.:`:H V`1 1HQ` .VVJ0VCQ]V1$J:C:1VCC: .V%]]C70QC :$V8.1

1 : RV]:` %`V ``QI .V HQJ `QC H.VIV ]`VVJ VR 1J ` 5 a5 1.V`V .V IV:J

11 H.1J$`V$%C: Q`H%``VJ 1 .V CQ:RH%``VJ 8

 .V H:CH%C: 1QJ 1 1I1C:` `Q` 1QR QJV 1$J:C5 V6HV]  R1``V`VJ  V6]`V1QJ :`V

QG :1JVR`Q` .VHQJR%H 1QJ:J$CV:JRQ] 1I%IG1:1J$HQJR1 1QJ82Q` .VH:V .: 

.V )2 H:``1V` HQJ1  Q` 1Q QJV :  R1``V`VJ  ``V_%VJH1V5 w2  :JR w1 5 G%  V_%:C

I:$J1 %RV5 0:5 .V VJ0VCQ]V 1 : `%CCR1:0V `VH 1`1VR 1J%Q1R 11 . : ]V:@ 0:C%V Q`

2× va 5:1J` a5

w − w = ⋅  2 1  venv 2 va cos t  8 ^ _  2  /J .1H:V5 .VHQJR%H 1QJ:J$CV::`%JH 1QJQ` .V11 H.1J$`V$%C: Q`H%``VJ 1 Optimum Operating Strategies for Hybrid Voltage Regulators 101

 i  Φ = −1 SR cos   5 ^ _  2ia  v = a 1.V`V ia 1 .V:I]C1 %RVQ` .VH%``VJ 11J$Q`QJVQ` .V 1Q QJV1$J:C8 Rload

2QCCQ11J$ : 1I1C:` ]`QHVR%`V Q .V 1J%Q1R:C VJ0VCQ]V 1$J:C5 .V Q] 1I%I _%:1R

 : 1H11 H.1J$`V$%C: Q`H%``VJ HQJ `1G% 1QJ`Q` .V 1QR QJVH:V1

 v  * = ⋅ ⋅  a  iSR 2 ia cos2  5 ^ _  Vdd 

1.V`V Vdd  1 .V %]]C7 Q`G: V`7 0QC :$V8 .V I:61I%I :0V`:$V V``1H1VJH7`Q` .V

1QR QJVVJ0VCQ]V1$J:C1QC0VR`Q`:

* π v ⋅i η = a a ⋅ + ⋅ ⋅[]Φ − Φ Φ 8 ^ _ 2 va iSR Vdd ia sin( ) cos( ) 2Q` .V 1QR QJVH:V51RV:CQ% ]% V``1H1VJH71GQ%JRVRGV 1VVJ 8Q`Q``:1CR`:1C

π → IQR%C: 1QJ5:JR 8 Q^ L_: va 0 8/J .VQ`71` .V11 H.1J$`V$%C: Q`%]]C1VR

.V H%``VJ 5V``1H1VJH71Q%CRGVGQ%JRVRG7 8 Q QQ8.1`:J$V`1 11 . .V

V``1H1VJH7Q` Q`Q`: 1QR QJVVJ0VCQ]V:`V]Q` VR1J` a8

8 .VQ`V 1H:C ]`VR1H 1QJ :JR 1H%1QJ

Optimum Operating Strategies for Hybrid Voltage Regulators 102

1 0.9 0.8 0.7 0.6 0.5 0.4 Sin-AM isr=isr* Efficiency 0.3 Sin-AM isr=idc 0.2 2-tone isr=isr* 0.1 2-tone isr=idc 0 0 0.1 0.2 0.3 0.4 0.5 Modulation Amplitude, Normalized (V)  1$%`V 8.VQ`V 1H:C V``1H1VJH7 0 0QC :$V :I]C1 %RV7 1JR :JR 1Q QJV H:V5 `QCCQ11J$ ^ _ :JR ^ _

1 0.9 0.8 0.7 0.6 0.5 0.4 Efficiency 0.3 isr = idc 0.2 0.1 isr = isr* 0 0.0 5.0 10.0 15.0 20.0 25.0 Average Output Power (dBm)  1$%`V 8!``1H1VJH7 0 JQ`I:C1

 21$%`V  .Q1 .V .VQ`V 1H:C :0V`:$VV``1H1VJH7 `Q` .V 1J%Q1R:CR#" :JR 1QR

QJVIQR%C: VRH:``1V`: .VIQR%C: 1QJ:I]C1 %RV1`VR%HVR8.V%]]C70QC :$V1

JQ`I:C1

JV:`C7

= .:  va vDC 8.V 1QR QJVH:V:%IV 1Q1$J:C: R1``V`VJ ``V_%VJH1V11 . .V

:IV :I]C1 %RV5 0:5 : 1J ^ _8  /` .V 11 H.1J$ `V$%C: Q` HQJ `1G% V .V  CQ:R Optimum Operating Strategies for Hybrid Voltage Regulators 103

H%``VJ 5 :0V`:$V V``1H1VJH7 `:CC Q`` Q Q : .V IQR%C: 1QJ :I]C1 %RV 1 `VR%HVR8

* 7Q1V0V`51` .V11 H.1J$`V$%C: Q`%]]C1V .VQ] 1I%IH%``VJ 5iSR 5:RV`10VR1J^ _

:JR^ _5 .V:0V`:$VV``1H1VJH7H:JGV@V] .1$.V`:H`Q .VVJ 1`V`:J$VQ`Q]V`: 1QJ5

:`QCCQ1``QI^ _:JR^ _8.V`V`Q`V5 .V]`V`V``VR:]]`Q:H.1 Q`V$%C: V .V 

11 H.1J$`V$%C: Q`H%``VJ  Q .VQ] 1I%I0:C%V`: .V` .:J .V 0:C%V8/J %1 10VC75

.1H:JGVV6]C:1JVRG:VRQJ .VQ]V`: 1QJQ` .VC1JV:``V$%C: Q`7

• # .1$.Q% ]% 11J$CV0VC5 .V11 H.1J$`V$%C: Q`%]]C1V .V H%``VJ 8/J

.1H:V .VC1JV:``V$%C: Q`Q]V`: 1QJ:]]`Q:H.VHC:5Q`1800 HQJR%H 1QJ

:J$CV`Q`V:H.]%.R]%CCQ% ]% RV01HV8.1H:%V .VH%`0V1J21$%`V  Q

HQJ0V`$V`Q`.1$.:I]C1 %RV8

• # CQ1Q% ]% 11J$ .V11 H.1J$`V$%C: Q`Q%`HVIQ`V .:J .V H%``VJ 5 = + limiSR iDC ia %H. .: 5`Q` .V1J%Q1R:CR#"H:V5 ia→0 8/JQ .V`1Q`R5 .V

.1$.1RV]: `:J1 Q`Q]V`: V1JHC:R11 . .V `:J1 Q`HQJR%H 1J$`Q`

CV .:J1800 8#C V`J: 10VC75 .VCQ11RV]: `:J1 Q`:]]`Q:H.VHC:R#

Q]V`: 1QJ5R`:11J$H%``VJ QJC7``QI .V11 H.1J$`V$%C: Q`Q% ]% 8



.V `VJR .Q1J 1J 21$%`V  1 :CQ QGV`0VR `Q` `V:C 11`VCV HQII%J1H: 1QJ

 :JR:`R8  21$%`V  .Q1 V``1H1VJH7 0V`% Q% ]%  ]Q1V` `Q` VJ0VCQ]V 1:0V`Q`I

.:  HQ``V]QJR Q /R  HQRVRR1011QJ I%C 1]CVR:HHV ^ "#_8  /J .1 H:V .V

VJ0VCQ]V1:0V`Q`I`QCCQ1:G:JRC1I1 VR]V%RQ`:JRQI `:=VH Q`7:JR1R1``1H%C  Q

_%:J 1`7 `Q` .:JR :J:C718  .V`V`Q`V5 1J 21$%`V 5 .V H%`0V :`V 1I%C: VR 11 . Optimum Operating Strategies for Hybrid Voltage Regulators 104

* GV.:01Q`:CIQRVC`Q` .V1RV:CH:V8;] 1I%I iSR 0:C%V:`VRV V`I1JVRVI]1`1H:CC7

.`Q%$. 1I%C: 1QJ8  .V V``1H1VJH7 `:J$V `Q` .V  "# 1:0V`Q`I 1 1I1C:` Q .V

H%`0V1J21$%`V 8.11GVH:%V .V1J%Q1R:CR#"5 1QR QJV:JR "#1:0V`Q`I

.:0V1I1C:`]V:@R QR:0V`:$V]Q1V``: 1Q^#)_8#)1:IV:%`VQ` .V:IQ%J Q`

:I]C1 %RV IQR%C: 1QJ 1J .V 1$J:C :JR H:J _%:J 1`7 .V R1``V`VJHV GV 1VVJ .V

V6 `VIV 1J .V VJ0VCQ]V 0QC :$V :JR .V :0V`:$V VJ0VCQ]V 0QC :$V `5 5 a8

9VJV`:CC75.1$.V`#)0:C%V11CCCV:R QCQ1V`V``1H1VJH78.11GVH:%V .VR7J:I1H

Q% ]%  0QC :$V I:7 RV01: V `%` .V` ``QI .V :0V`:$V Q% ]%  0QC :$V `VR%H1J$ .V

V``1H1VJH7Q` .VC1JV:``V$%C: Q`8

= * .VR1``V`VJHV1J:0V`:$VV``1H1VJH7GV 1VVJ .VQ] 1I%IH:V1.V`V iSR iSR 5:JR

= .V `:R1 1QJ:CH:V1.V`V iSR iDC GVHQIVIQ`V]`QJQ%JHVR11 .1JH`V:1J$]Q1V`

= G:H@Q``8/J .VH:V1.V`ViSR iDC 5:0V`:$VV``1H1VJH7:]]`Q:H.V

]Q1V` CV0VC 1 `VR%HVR8  7Q1V0V`5 1J .V Q] 1I%I H:V5 .V V``1H1VJH7 Q` .V.7G`1R η `V$%C: Q``:CC:7I] Q 1H:CC7 Q1:`RQIVI1J1I%IV``1H1VJH7CV0VC5 min 82Q` .V

η H:V ]`VVJ VR 1J 21$%`V 5 min  1 GV 1VVJ R Q8  0VJ 1J .V  "# H:V5

η min Y Q8.V`V`Q`V51J1 %: 1QJ11 .V6 `VIV]Q1V`G:H@Q``5Q`1.VJ .VG: V`7

0QC :$V 1 I%H. .1$.V` .:J .V 0QC :$V `V_%1`VR G7 .V #5 Q] 1I%I G1:1J$ H:J GV

.1$.C7 :R0:J :$VQ%8  FV6  $VJV`: 1QJ 11`VCV  :JR:`R 11CC .:0V ]Q1V` G:H@Q``

`:J$VQ`%] Q R` a8/J:RR1 1QJ5H:C1J$ `VJR1JIQRV`J1C1HQJRG:VR]Q1V`

:I]C1`1V` 11CC R1H : V %]]C7 0QC :$V 1VCC GVCQ1 H%``VJ  C1 .1%IR1QJ G: V`7 HVCC Optimum Operating Strategies for Hybrid Voltage Regulators 105

0QC :$V `a8  Q . `VJR 11CC `V%C  1J 1$J1`1H:J  ]Q1V` :01J$ 11 . .V ]`Q]QVR

G1:1J$IV .QR8



:GCV ###8 !               R 8:L$  1J%Q1R:C 1QR QJV   ! *  + ⋅ (Φ* ) ⋅ ⋅ (Φ* ) R R iSR iDC ia cos 2 ia cos v v Φ*  π DC  2 a  R R Vdd Vdd v ⋅i v ⋅i + a a DC DC π v η *  2  a  R R i 2 V sin()Φ* v ⋅i +V a sin()Φ* dd DC DC dd π 3π π η  = 91 7. %  = 93 3. %  Q Q max 2π + 4 4 ⋅sin( )1 3 π η  = 75%  = 78 5. %  Q Q min 4 4 %IV`%CCIQR%C: 1QJ7 =  %IV 1Q QJV11 .:IV:I]C1 %RV50: va vDC ``1H1VJH7GQ%JR:`1V`Q%JR11 .1I%C: 1QJ   :GCV  HQJ QC1R: V  .V Q] 1I%I G1:  ]Q1J  V6]`V 1QJ  :JR 0:C%V  `Q` :0V`:$V

V``1H1VJH7`Q` .V 1J% Q1R:CR:JR 1QR QJVH: V 8.V:0V`:$VV``1H1VJH7GQ%JR:`1V 

`Q`   :JR 8: VJ0VCQ]V 1:0V`Q`I  :`V :C Q .Q1J8  $Q` .V HVCC%C:` :JR

11`VCV  1J V`JV  :JR:`R 5 V``1H1VJH7 GQ%JR:`1V  :JR Q] 1I%I 11 H.1J$ `V$%C: Q`

* H%``VJ  HQJ `1G% 1QJ5 iSR 5 :`V `Q%JR .`Q%$. GV.:01Q`:C 1I%C: 1QJ8  &1I1C:` Q .V

`V %C  .Q1J1J$1$%`V 5 1$J1`1H:J ]Q1V` :01J$ :`V:H.1V0VRG7% 1J$ .VQ] 1I%I

H%``VJ 5`: .V` .:J .V H%``VJ 8 Optimum Operating Strategies for Hybrid Voltage Regulators 106

8 6]V`1IVJ :CV%C :JRQI]:`1QJ Q.VQ`7    ]`Q Q 7]V 1:  H`V: VR Q 0V`1`7 .V G1: 1J$ IQRVC :JR HQI]:`V ]`VR1H 1QJ  Q

V6]V`1IVJ :C`V %C 8`1`  V Q`V6]V`1IVJ 1: ]V``Q`IVR QHQJ`1`I .VQ] 1I%I

* 11 H.1J$`V$%C: Q`H%``VJ HQJ `1G% 1QJ5 iSR 5: 1J^ _8.1 1: RQJVG7 1VV]1J$ .V

11 H.1J$`V$%C: Q`H%``VJ :JRRV V`I1J1J$ .VI:61I%IV``1H1VJH78 VHQJR V Q`

= * V6]V`1IVJ HQI]:`VR .VI:61I%IV``1H1VJH7`Q` .VH: V1.V`V iSR iSR  Q .VH: V

= 1.V`V .V 11 H.1J$`V$%C: Q` %]]C1VR .V H%``VJ 5 iSR iDC 8J .V VHQJR V Q`

V6]V`1IVJ 5 IV: %`VIVJ  1V`V :@VJ `Q` : `:J$V Q` Q% ]%  1$J:C :I]C1 %RV  Q

0V`1`7 .V]`VR1H 1QJ Q`^ _:JR^ _8.1 1: RQJV`Q` .V 1J% Q1R:CR:JR 1QR

QJVIQR%C: 1QJH: V : 1VCC: `Q``V:CHQII%J1H: 1QJ :JR:`R 51.1H.1JHC%RVR&R

 :JR... 8:11`VCV 1J V`JV  :JR:`R 8

 Optimum Operating Strategies for Hybrid Voltage Regulators 107

1$%`V 86]V`1IVJ :CV %]

 .V]`Q Q 7]V1: 1I]CVIVJ VR:  .VGQ:`RCV0VC11 .R1 H`V VHQI]QJVJ 8`: 

Q]V`: 1QJ:C :I]C1`1V` ^/  _ R`101J$ : HC: R1 HQIIQJRHQCCVH Q` G%``V` :$V

^&&  L _1: % VR`Q` .VC1JV:``V$%C: Q`8.V 11 H.1J$`V$%C: Q`1: Q]V`: VR

:  : 0QC :$VRHQJ `QCCVR H%``VJ  Q%`HV % 1J$ : C:`$V5 CQ1RCQ  1JR%H Q`8 J .1  V  Q`

V6]V`1IVJ 5 .V 11 H.1J$`V$%C: Q`H%``VJ 1: `V$%C: VRI:J%:CC7: CQ1``V_%VJH7

Q HQJ `QC .V  H%``VJ  ``QI .V 1Q `V$%C: Q` 8    .Q%CR GV JQ VR .:  : IQ`V

:R0:JHVR1I]CVIVJ : 1QJHQ%CR% VHQJ0VJ 1QJ:CH%``VJ RIQRVHQJ `QC Q`V$%C: V .V

11 H.1J$ `V$%C: Q` H%``VJ  :  .1$.V` G:JR11R . 8  &%H. HQJ `QC IV .QR  :`V 1VCC

RV0VCQ]VR1J` 5 5 a: 1VCC: I:J7Q .V``V`V`VJHV :JRHQIIV`H1:C]`QR%H 8

.VV6]V`1IVJ :CV``1H1VJH75 QGVHQI]:`VR Q^ _:JR^ _51: H:CH%C: VR:  .V

%IQ` .V:0V`:$VC1JV:``V$%C: Q`H%``VJ ``QI .V %]]C7:JR .V1V1$. VRQ% ]% 

H%``VJ  Q` .V 11 H.1J$ `V$%C: Q`8  Q 0V`1`7 .V 1RV:C V6]`V 1QJ  1J :GCV 5 .V

11 H.1J$`V$%C: Q`H%``VJ 1: 1V1$. VRG7 .V`:H Q`5R5: 1J^ _5 Q`V`CVH CQ CV 

R  0QC :$V HQJ0V` 1QJ8  /Q CV  HQJ0V` 1QJ 1:  : %IVR Q 0V`1`7 .V 1RV:C

I:61I%IV``1H1VJH7H: V8Q`%` .V``V`CVH  .V1RV:CH: V5 .VG1: H%``VJ Q` IQ`

.VC1JV:``V$%C: Q`1: JQ 1JHC%RVR1J .VH:CH%C: 1QJ8

  .Q1J1J$1$%`V 5 .V1J]%  1$J:C`V]`V VJ 1J$ .VR7J:I1HVJ0VCQ]V `:=VH Q`7

1:  RVC10V`VR G7 : 7: 1QJ:C J `%IVJ  L HQJ0V` V` `%JJ1J$ :  &L 8  .V

/:G01V1 Q` 1:`V1J V``:HV1: % VR Q$VJV`: V:JR %]]C7VJ0VCQ]V1:0V`Q`I 1$J:C 

11 .%] Q:8<G:JR11R .51JHC%R1J$&R  :JR 8:/71:0V`QI 8 Optimum Operating Strategies for Hybrid Voltage Regulators 108

.V 11 H.1J$`V$%C: Q`H%``VJ HQII:JR1: :R=% VRI:J%:CC7 Q:H.1V0V .V.1$.V 

:0V`:$V V``1H1VJH7 `Q` : $10VJ 1J]%  1$J:C8  Q 1I]C1`7 .V V6]V`1IVJ :C V %]5 :

`V 1 10VCQ:R1: % VR`: .V` .:J:J:H %:C;8J .1 H: V:10Ω `V 1 Q`1: % VR

`Q` .VCQ:R8.V:0V`:$VH%``VJ ``QI .V]:`:CCVC 11 H.1J$:JRC1JV:`GCQH@ 1V`V

IV: %`VR11 .R1$1 :CRI%C 1IV V` 8

0.9 Vdd=3V; Vo=1+1*sin(wt) 0.8 Vo=0.5+0.5*sin(wt)

0.7

0.6 measured theory

Efficiency 0.5 measured 0.4 theory

0.3 0 50 100 150 200 switching regulator current (ma)  1$%`V 80V`:$VV``1H1VJH7011 H.1J$`V$%C: Q`H%``VJ HQJ `1G% 1QJ71JR IQR%C: 1QJ 

Supply Voltage= 2V; Signal=va+vaSin(wt) 1 0.9 isr=isr* 0.8 0.7 0.6 0.5 theory 0.4 theory Efficiency 0.3 isr=idc measured 0.2 measured 0.1 0 0 0.2 0.4 0.6 0.8 1 Normalized Voltage Amplitude (V)  1$%`V 80V`:$VV``1H1VJH70VJ0VCQ]VIQR%C: 1QJ:I]C1 %RV71J%Q1R:C IQR%C: 1QJ8

 Optimum Operating Strategies for Hybrid Voltage Regulators 109

$1$%`V  .Q1 :0V`:$VV``1H1VJH70V` %  .VH%``VJ HQJ `1G% 1QJQ` .V 11 H.1J$

`V$%C: Q``Q`:I]C1 %RV Q` .V 1J% Q1R:CR1:0V`Q`I8.V`V %C :`VHQI]:`VR Q

.V]`VR1H VRH%`0V``QI^ _`Q`: %]]C70QC :$VQ`8QHQI]:`V .VV``1H1VJH7`Q`

.V1RV:C 1 %: 1QJ5 .V I G1: H%``VJ Q` .VC1JV:``V$%C: Q`^/  _1: JQ 

1JHC%RVR1J .VH:CH%C: 1QJ8.V:0V`:$V0QC :$VRVC10V`VR Q .VCQ:R`Q` .V 1QH%`0V 

1:  I :JR 5 HQ``V ]QJR1J$ Q ]Q1V` CV0VC  R1 :JR R1 GVCQ1 I:61I%I

]Q1V`8.``1H1VJH70V` %  11 H.1J$`V$%C: Q`H%``VJ 1  VVJ QGV1J$QQR:$`VVIVJ 

11 . .VQ`78  $Q` .V 1J% Q1R:CR 1:0V`Q`I  .Q1J5 .V ]V:@ V``1H1VJH7 1  :`Q%JR

Q51.1H.1 QGVCQ1 .V1RV:CV``1H1VJH7: ]`VR1H VR1J^ _8

. &1I1C:`H%`0V 1V`VI:]]VRQ% `Q`:I]C1 %RV 0:`71J$GV 1VVJL  .V %]]C7

0QC :$V:JR`:1CR QR`:1C 11J$8.V`V %C HQ``V ]QJR1J$ QQ] 1I%IG1: 1J$:`V .Q1J

1J $1$%`V  `Q` .V 1J% Q1R:CR H: V8  .V IV: %`VR R: : :`V Q0V`C:1R 11 . .V

.VQ`V 1H:C]`VR1H 1QJ ``QI:GCV8C Q .Q1J1J$1$%`V 1 :HQI]:`1 QJQ` .V

= * = Q] 1I%I H: V 1.V`V iSR iSR 5 :JR .V `:R1 1QJ:C H: V 1.V`V iSR iDC 8  $Q` .1$.

:I]C1 %RV 5 .V :$`VVIVJ  GV 1VVJ .VQ`7 :JR IV: %`VIVJ  1  $QQR8    CQ1V`

:I]C1 %RV 5IV: %`VRV``1H1VJH71 CV  .:J]`VR1H VRR%V QV6 `:G1: ]Q1V`1J .V

HC: R1Q% ]%  :$V:JR QCV`:JHV1J V 1J$ .VG1: H%``VJ Q` .V 11 H.1J$`V$%C: Q`8

.VV``1H1VJH71.VJ .V 11 H.1J$`V$%C: Q` %]]C1V  .V ]Q1V`I: H.V  .VQ`711 .

$QQR:$`VVIVJ :H`Q  .V`:J$VQ`Q]V`: 1QJ8 Optimum Operating Strategies for Hybrid Voltage Regulators 110

Supply Voltage= 2V; Signal=2*va*abs(Sin(wt/2)) 1 0.9 isr=isr* 0.8 0.7 0.6 0.5 isr=isr* 0.4 isr=idc

Efficiency isr=idc 0.3 isr=isr* 0.2 isr=idc 0.1 0 0 0.2 0.4 0.6 0.8 1 Normalized Voltage Amplitude (V)  1$%`V 8!1QR QJVIQR%C: 1QJ7HQI]:`1QJQ` .VQ`7 QIV:%`VIVJ 

0.9 0.8 0.7 0.6

0.5 isr=isr*

Efficiency CDMA 0.4 isr=idc isr=isr* 0.3 802.11a isr=idc 0.2 -5 0 5 10 15 20 25 Average Output Power (dBm)  1$%`V 8"R %& 5 8:,-IV:%`VRV``1H1VJH7

 $1$%`V  .Q1  IV: %`VR .VQ`V 1H:C R: : `Q` .V 1QR QJV IQR%C: VR 1$J:C : 

:J:C7

:$`VVIVJ 11 . .VQ`75:JRI: H.11 . 1I1C:`:HH%`:H7:  .V 1J% Q1R:CRH: V8.V

I:61I%IV``1H1VJH7`Q``%CCR H:CVIQR%C: 1QJ1  VVJ QGV 8 QHQI]:`VR Q 8Q: 

]`VR1H VR1J:GCV8 Optimum Operating Strategies for Hybrid Voltage Regulators 111

 $1$%`V  .Q1 IV: %`VR`V %C `Q` :JR... 8: %]]C7IQR%C: 1QJ

1:0V`Q`I 8.V V1:0V`Q`I :`V$VJV`: VR11 . .V$1CVJ R0:JHVR V 1$J 7 VI 

^ &_ Q` 1:`V:JRHQJ0V` VR Q:`Q`I:  %1 :GCV`Q`R: :HQJ0V` 1QJ8.V1:0V`Q`I 

1V`VRVC10V`VR Q .V.7G`1R`V$%C: Q`11 ./:G01V1:JR .V7  5:  .Q1J1J

$1$%`V 8.V6R:61  .Q1 :0V`:$V]Q1V`RVC10V`VR Q .VΩCQ:R8J .1  V Q`

V6]V`1IVJ  .VI:61I%I:0V`:$V]Q1V`RVC10V`VR1J .V 1:0V`Q`I 1: =% 

Q0V`R1I8.V 8:1:0V`Q`I 1V`V V  Q`V`CVH :R: :`: VQ` 1L 5 %H.

.: I:61I%I:0V`:$V]Q1V`1:  R1I8.V.1$.V`]V:@R:0V`:$V]Q1V``: 1Q^;;?_

Q` .V 8: :JR:`R^;;?Y8 R1_1  .V]`1JH1]:C`V: QJ .: :0V`:$VV``1H1VJH71 

CQ1V` .:J .V Q .V` 1:0V`Q`I 8  .V .1$.V` ;;? Q` 8: 1JR1H: V  .:  .V

R7J:I1HQ% ]% 0QC :$VRV01: V  %G :J 1:CC7``QI .V:0V`:$V0QC :$V8.1 `VR%HV 

.V :0V`:$V V``1H1VJH7 Q` .V C1JV:` `V$%C: Q`8  J .V   H: V5 $1$%`V  H:J GV

HQI]:`VR Q .V 1I%C: VR`V %C  .Q1J1J$1$%`V 8.V6R:61 ]Q1V` H:CV1  C1$. C7

R1``V`VJ 1J .V 1Q]CQ GVH:% V .V 1I%C: 1QJ1: `%J11 .:8 %]]C70QC :$V:JR

:I:6Q% ]% ]Q1V`Q`8 Optimum Operating Strategies for Hybrid Voltage Regulators 112

2.5

2

1.5

isr*/idc 1 CDMA 0.5 WLAN SinAM 0 -5.00 0.00 5.00 10.00 15.00 20.00 25.00 Average Output Power (dBm)  1$%`V 8.] 1I%I11 H.1J$`V$%C: Q`H%``VJ ^JQ`I:C1

* Q% ]%  ]Q1V` G7 ]CQ 1J$ .V `: 1Q Q` iSR / iDC  `Q` V0V`:C VJ0VCQ]V 1$J:C 8    .1$.

Q% ]% ]Q1V` .V&1J% Q1R:CR:JR Q] 1I%IH%``VJ 1 JV:`C7 .V :IV:  .V

 H%``VJ 8  .V /7 Q] 1I%I H%``VJ  1  .1$.V` :  I:61I%I ]Q1V` GVH:% V .V

1$J:C .:  .1$.V`;;?8 J :CC H: V 5 .VQ] 1I%I H%``VJ 1JH`V: V  : Q% ]%  ]Q1V`

* ⋅ RVH`V: V 8J .V 1JRH: V iSR :]]`Q:H.V  2 iDC : CQ1Q% ]% ]Q1V`5: 1J^ _8

* &QIVR1 H`V]:JH71 QG V`0VRR%V Q QCV`:JHV 1JIV: %`1J$:JR V 1J$ .V iSR :JR

* iDC  CV0VC 8  .1  1  VVJ 1J .:  .V   iSR / iDC  `: 1Q `:CC  C1$. C7 GVCQ1 %J1 7 : 

I:61I%I]Q1V`8?V:C1 1H:CC75 .1 1 H:% VRG7IV: %`VIVJ V``Q`:JRGVH:% V51J .V

* iSR Q] 1I1<: 1QJ]`QHV 5V``1H1VJH70V` %  iSR 1 `VC: 10VC7`C: : 1 ]V:@8.1 I:@V 1 

R1``1H%C  Q V  .V V6:H  ]V:@ V``1H1VJH7 G7 .:JR5 :JR CV:R  Q C1$.  RV01: 1QJ 1J Optimum Operating Strategies for Hybrid Voltage Regulators 113

* Q] 1I%I iSR 0:C%V ``QI .VQ`V 1H:C]`VR1H 1QJ 8$Q` %J: VC75GVH:% VQ` .V .:CCQ1

I1J1I%I1J]Q1V`R1 1]: 1QJ5 .1 1 11 .Q% I:=Q`HQJ V_%VJHV Q:0V`:$VV``1H1VJH78

I]Q` :J C75 $1$%`V  R  .Q1 .:  1$J1`1H:J  ]Q1V` :01J$  :`V ]Q 1GCV 1` .V

* 11 H.1J$`V$%C: Q` %]]C1V  .VQ] 1I%IH%``VJ 5iSR 5`: .V` .:J .V H%``VJ  Q .V

CQ:R8  .V ]Q1V` :01J$  :`V IQ  R`:I: 1H :  CQ1 Q% ]%  ]Q1V` CV0VC 5 1.VJ .V

:0V`:$VQ% ]% 0QC :$V1  1$J1`1H:J C7CV  .:J .V %]]C70QC :$V8 CQ1]Q1V`5 .V

11 H.1J$ `V$%C: Q` %]]C1V  IQ`V .:J .V H%``VJ 8  .1  `VR%HV  .V JV  H%``VJ 

.:  .VC1JV:``V$%C: Q`R`:1 ``QI .V %]]C78J .V 1I]CVH: V Q` 1J% Q1R:CR

* :JR 1QR QJV IQR%C: 1QJ5 iSR  H:J GV `Q%JR G7 .:JR H:CH%C: 1QJ 11 . `V: QJ:GCV

* :HH%`:H78  8Q1V0V`5 .V GV V` QC% 1QJ I:7 GV Q :R:] 10VC7 VV@ iSR  11 . :J

V6 `VI%IR VV@1J$:R:] 10VHQJ `QC:`H.1 VH %`V5 %H.: 1 ]`V VJ VR1J` a`Q`RV:RR

1IVQ] 1I1<: 1QJ8 RVIQJ `: VR1J$1$%`V  R 5 .1 IV .QR]`QI1 V  1$J1`1H:J 

]Q1V` :01J$ `Q` .V.7G`1R`V$%C: Q`:`H.1 VH %`V`Q`R7J:I1H %]]C7:]]C1H: 1QJ 8

8 :CH%C: 1QJ JHC%R1J$ Q:R 7J:I1H

Figure 62. Hybrid regulator model including output capacitance Optimum Operating Strategies for Hybrid Voltage Regulators 114



` .VCQ:R1I]VR:JHV1JHC%RV  %G :J 1:C`V:H 10VR7J:I1H 5 .VQ] 1I%IQ]V`: 1J$

HQJR1 1QJ H.:J$V C1$. C78Figure 62 .Q1 :IQRVC`Q`:.7G`1R0QC :$V`V$%C: Q` .: 

1JHC%RV Q% ]% H:]:H1 :JHV1J]:`:CCVC11 . .V`V 1 10VCQ:R8J .1 H: V5 QIVH%``VJ 

1  %]]C1VR Q .V `V:H 10V ]:`  Q` .V CQ:R 1I]VR:JHV 1.VJ .V Q% ]%  0QC :$V 1 

 R7J:I1H:CC7 :R=% VR8    1  V6]VH VR .:  :RR1 1QJ:C ]Q1V` CQ  11CC QHH%` R%V Q 

VJV`$7CQ 1J .VH:]:H1 Q`8  %`J Q% `Q` .1 V6:I]CV5 .:  .V]Q1V`CQ 1 `VC: VR

Q .V 1IVHQJ :J 5τ = RC 5Q` .VQ% ]% JV 1Q`@`VC: 10V Q .V``V_%VJH7HQJ VJ 

Q` .V0QC :$V 1$J:C8

.V GV.:01Q` H:J GV QC0VR V6]C1H1 C7 `Q` .V 1J% Q1R:C :I]C1 %RVRIQR%C: 1QJ H: V5

:JR Q1J .1  VH 1QJ1V11CC% V .1 H: V Q.1$.C1$.  .V$VJV`:CGV.:01Q`Q` .V.7G`1R

`V$%C: Q`11 .CQ:RR7J:I1H 8 %I1J$ .:  .VQ% ]% 0QC :$V `:=VH Q`7`QCCQ1 

v (t) = v + v ⋅ cos(w t) 5 o DC a a ^ _

1.V`V vDC 1  .V Q% ]% 0QC :$V5 va 1  .V:I]C1 %RVQ` .VIQR%C: 1QJ 1$J:C5:JR

wa 1  .V``V_%VJH7Q` .V:I]C1 %RVIQR%C: 1QJ QJV8.VJ .VCQ:RH%``VJ 1JHC%R1J$

.V`V:H 10VR7J:I1H `QCCQ1 

= []+ ⋅ ⋅  + 1  io (t) vDC va cos(wat)  jwaC  5  R ^ _

1 1.V`V jw C + is the admittance of the load network at the frequency of the AM tone. a R Optimum Operating Strategies for Hybrid Voltage Regulators 115

The current supplied to the load by the linear regulator, following the development of section 5.4 follows as

= []+ ⋅ ⋅  + 1  − iLR (t) vDC va cos(wat)  jwaC  iSR (t) 5  R ^ _

%H. .:  .VHQJR%H 1QJ:J$CVQ` .VC1JV:``V$%C: Q`1 

 i − i  Φ = cos −1 SR DC  + ⋅  8 ia jwaC Va  ^ _

  VVJ1J^ _5 .VHQJR%H 1QJ:J$CV1 HQI]CV65G% :0V`:$V_%:J 1 1V H:J 1CCGV

`Q%JR% 1J$ .VI:$J1 %RVQ` .1 _%:J 1 75

− i − i 1  Φ = cos 1 SR DC  +  8  ia 1 jwa RC  ^ _

.V:0V`:$VC1JV:``V$%C: Q`H%``VJ  .VJ`QCCQ1 : 

Φ 1 i = ()i − i +V cos(φ) ⋅ jw C + /1 R dφ LR π ∫ DC SR a a 8 2 − Φ ^ _

^ _1  .VJ QC0VR:JR 1I]C1`1VR Q ~ i i = a []sin Φ − Φ cos Φ . LR π 51.V`V ^ _ ~ = + ia ia 1 jwa RC 8

.1 `V %C 1JJV:`C7 .V :IV`Q`I`Q` .V]`V01Q%  1J% Q1R:CH: V5V6HV]  .: 

^ _ 1JHC%RV  .V `1`  Q`RV` R7J:I1H 8   1J$ .V :IV Q] 1I1<: 1QJ ]`QHVR%`V :  1J Optimum Operating Strategies for Hybrid Voltage Regulators 116

]`V01Q% V6:I]CV 5 .V 7 VI1  QC0VR`Q` .VI1J1I%I]Q1V`CQ HQJR1 1QJ 5 %H.

d η .:  = 0 8.V`V %C 1J$Q] 1I%IHQJR1 1QJ `QCCQ1:  diSR

πV Φ* = DC 5 VDD ^ _

~ i* = i + i cos Φ* SR DC a 5:JR ^ _

V i + a a VDC iDC ^ _ * 2 η = ~ 8 i V i +V a sin Φ* DC DC DD π

8V`V5 .V`Q`IQ`^ _R^ _1  1I1C:` Q^ _R^ _5G% 1JHC%RV  .V`V:H 10VR7J:I1H Q`

.VQ% ]% H:]:H1 :JHV8.V VV6]`V 1QJ HQJ0V`$V Q .VJQI1J:C`V 1 10VV_%: 1QJ 

1.VJ .V ``V_%VJH7 Q` .V :I]C1 %RV IQR%C: 1QJ 1  1VCC GVCQ1 .V ``V_%VJH7 Q` .V

]QCV:  .VQ% ]% 88Q1V0V`51` .V``V_%VJH7Q`:I]C1 %RVIQR%C: 1QJ:]]`Q:H.V Q`

V6HVVR  .VQ% ]% ]QCV5 %G :J 1:CCQ V I:7QHH%`GVH:% VQ` .VCQ:RH:]:H1 Q`8

1 0.9 0.8 0.7 0.6 0.5 0.4 Vo=0.5+0.5Cos(wt) --Calc Efficiency Efficiency 0.3 Vo=0.5+0.5Cos(wt) --Sim 0.2 Vo=0.25+0.25Cos(wt) --Calc 0.1 Vo=0.25+0.25Cos(wt) --Sim 0 0 0.1 0.2 0.3 0.4 0.5 Normalized time constant (wRC) Optimum Operating Strategies for Hybrid Voltage Regulators 117

Figure 63. Hybrid regulator with load capacitance: efficiency versus normalized time constant (simulation vs theory)

Figure 63 .Q1  .VV``1H1VJH7Q` .V.7G`1R0QC :$V`V$%C: Q`R`101J$:`1` RQ`RV`?

CQ:R5: 1JIQRVCVR1JFigure 628.V6R:61 1 JQ`I:C1

.V ``V_%VJH7 Q` .V :I]C1 %RV IQR%C: 1QJ 1$J:C 1  : ]V`HVJ :$V Q` .V Q% ]%  ]QCV

``V_%VJH78  .V I:61I%I V``1H1VJH7 `QCCQ11J$ ^ _ 1  ]CQ VR % 1J$ .V QC1R C1JV 8

&1I%C: 1QJ `V %C  :`V .Q1J 11 . R1 H`V V ]Q1J 8  8V`V5 1I%C: 1QJ I: H.V  .V

V6]`V 1QJ RV`10VR1J^ _R^ _11 .V6HVCCVJ :$`VVIVJ 8

Figure 63 .Q1  .: 1` .V``V_%VJH7HQJ VJ Q` .V:I]C1 %RVIQR%C: 1QJ 1$J:C1 

. CV  .:J:`Q%JRL  .VQ% ]% ]QCV5I1J1I:CCQ V :`V: QH1: VR11 . .V`V:H 10V

HQI]QJVJ 8 8Q1V0V`5:  .V ``V_%VJH7 HQJ VJ  Q` .VQ% ]%  1$J:C :]]`Q:H.V  .V

Q% ]% ]QCV``V_%VJH75V``1H1VJH7`:CC Q```:]1RC78` .V 1$J:C``V_%VJH7:]]`Q:H.V B

.VQ% ]% ]QCV``V_%VJH75V``1H1VJH71 JV:`C7H% 1J.:C`8

.V1I]C1H: 1QJ`Q`.7G`1R`V$%C: Q`RV 1$J1  .:  .VQ% ]% ]QCV .Q%CRGV]C:HVR

%G :J 1:CC7:GQ0V .V 1$J:C``V_%VJH78.1 IV:J  .: G7]: H:]:H1 Q` `Q` .VCQ:R

H1`H%1 `7 .Q%CRGVRV 1$JVR:  I:CC: ]Q 1GCV Q:0Q1R`V:H 10VCQ V 8$Q` .VC1JV:`

`V$%C: Q`1J .V.7G`1R Q]QCQ$7 .1 IV:J  .: 1 1 CV RV 1`:GCV Q.:0V:RQI1J:J 

]QCV:  .VQ% ]% Q` .V`V$%C: Q`8$Q` :G1C1 751 I:7GVGV V` Q]C:HV .VRQI1J:J 

]QCV5Q` .V]QCVC1I1 1J$ .V``V_%VJH7`V ]QJ VQ` .VC1JV:``V$%C: Q`51J 1RV .VC1JV:`

`V$%C: Q`8.1 1 QJC7 `%V1` .V`V1  %G :J 1:C]Q1V`1J .V:I]C1 %RVIQR%C: 1QJ

1$J:CJV:` .VC1JV:``V$%C: Q`RQI1J:J ]QCV8 Optimum Operating Strategies for Hybrid Voltage Regulators 118



8 %II:`7

Parallel hybrid voltage regulators are highly practical for dynamic supply transmitter applications. These topologies can provide fast dynamic regulation with low noise and high efficiency. If the operating conditions are carefully considered, power efficiency can be comparable to a pure switching regulator solution. The key is to consider the time-domain operation of the switching and linear regulator portions as many waveforms can have the same power spectrum. In many cases, the switching regulator should supply more than the average load current, with the linear regulator sinking more current to ground in a push-pull output stage. There are many conceivable circuit architectures that could optimize the bias conditions of the hybrid regulator through online sensing and slow adaptive feedback. A final practical consideration includes the dynamics of the load network. From an efficiency perspective, it is best to have any poles at the output be substantially higher frequency than the modulation signal to avoid reactive losses. This implies that the linear regulator may be best optimized with internal compensation rather than using a dominant pole at the output. 119

Chapter 6 Direct Digital Modulation: A New Approach to Polar Systems

Figure 64. Conventional cellular phone block diagram: digital application processor, DSP, Audio, Power management; Radio is still largely analog

Figure 65. Proposed digital polar architecture

QRV`J 11`VCV  HQII%J1H: 1QJ `VC1V  .V:01C7 QJ R1$1 :C ]`QHV 1J$ Q 1I]CVIVJ 

HQI]CV6C:7V` Q` .VHQII%J1H: 1QJ]`Q QHQC8&.Q1J1JFigure 645 .VHQ`VQ`CQ1R

]Q1V` ]Q` :GCV HQII%J1H: 1QJ 1JHC%RV  : R1$1 :C I1H`QR]`QHV Q`5 &;5 IVIQ`75 :JR

Q` VJR1$1 :C:%R1Q:JR]Q1V`I:J:$VIVJ 1J V$`: VRH1`H%1 88Q1V0V`5V0VJ11 .CQ1

HQ 5`V:R1C7:0:1C:GCV]`QHV 1J$]Q1V`5 .V`:R1QH1`H%1 `7`VI:1J C:`$VC7:J:CQ$:JR

G: VRQJ:`H.1 VH %`V  .: :`VIQ`V .:J 7V:` QCR`a8 Direct Digital Modulation: A New Approach to Polar Systems 120

J .1  H.:] V` 1V 11CC RV H`1GV :J V``Q`  Q V6 VJR .V HQ]V Q` IQRV`J CQ1 HQ 

R1$1 :C C& Q .V `:R1Q :`H.1 VH %`V8  V 11CC `V01 1  .V `%JR:IVJ :C $Q:C  Q` .V

`:J I1 V`:JR .V:R0:J :$V Q`]QC:`IQR%C: 1QJ8$1J:CC71V11CCR1 H% : V Q` V 

H.1] 1J :JR:`R JIC& .: 1I]CVIVJ :R1$1 :CR]QC:` `:J I1 V``Q`1C%V QQ .

8U. ? : %] Q 1L  R: :`: V 8 .V ]`Q]Q VR Q]RCV0VC H.VI: 1H`Q` .V R1$1 :CR

]QC:` :`H.1 VH %`V 1  .Q1J 1J .Q1J 1J Figure 658  QJ `: 1J$ 11 . HQJ0VJ 1QJ:C

%]]C7RIQR%C: VR ]QC:` :`H.1 VH %`V 5 1J .1  1Q`@ .V :I]C1 %RV Q` .V ?$ H:``1V` 1 

HQJ `QCCVRR1`VH C711 .:R1$1 :C1J]% ``QI .VG: VG:JR8J .V$VJV`:CH: V5:J7`Q`I

Q` R1 H`V V :I]C1 %RV HQJ `QC 1  ]Q 1GCV :  CQJ$ :  .V R1$1 :CR?$ HQJ0V` 1QJ ]`QHV 

`VI:1J C1JV:`8J .VH: V]`V VJ VR.V`V5:I]C1 %RV_%:J 1<: 1QJ1 :H.1V0VR11 .R

G1 ]%C VRRVJ 1 7IQR%C: 1QJQ` .V?$H:``1V`8

.VHQJHV] Q`:R1`VH RR1$1 :C `:J I1 V`.: 1 Q`1$1J 1J.1$.R``V_%VJH7G:JR]: 

R: : HQJ0V` 1QJ % 1J$ Σ∆ IQR%C: 1QJ ` a8 .:`C7 :]]C1H: 1QJ  Q` G:JR]:  Σ∆ Q ?$

`:J I1 V` :`VRV H`1GVRG7E:7:`:I:JV 8:C81J` a:JR:J$1J` a8Q`V`VHVJ 

1Q`@ G7 EV`J$ V 8 :C8 1  ]`V VJ VR 1J ` a :JR 1V`C:JR V 8 :C8 1J ` a8  C .V` `VCV0:J 

`V`V`VJHV 1JHC%RV` R a8

.1  1Q`@ ]`V VJ  : JV1 :]]`Q:H. Q .V R1$1 :C `:J I1 V` G: VR QJ .V ]QC:`

:`H.1 VH %`V .Q1J 1JFigure 658  ?: .V` .:J% 1J$ G:JR]:  HQJ0V` 1QJ 11 . :.1$.

Q0V` :I]C1J$ `: 1Q5 .V ]QC:` :`H.1 VH %`V :CCQ1  %  Q % V CQ1]:  Σ∆ IQR%C: 1QJ

HQIG1JVR 11 . R1$1 :C %]HQJ0V` 1QJ Q :H.1V0V CQ1V` R1$1 :C ]Q1V` HQJ %I] 1QJ8  17

H:`V`%CC7 V$IVJ 1J$ .V R: : HQJ0V` 1QJ]`QHV 5 1V :`V :GCV Q :H.1V0V `:J I1 V` Direct Digital Modulation: A New Approach to Polar Systems 121

C1JV:`1 70: C7V6HVVR1J$ .V`V_%1`VIVJ Q` .V :JR:`R11 . Q :C]`QHV 1J$]Q1V`

QJ .VQ`RV`Q` I8JQ .V`I:=Q`HQJ `1G% 1QJ1J .1 1Q`@1  .V1JHC% 1QJQ` .V;

:  ]:`  Q` .V R1$1 :C `:J I1 V`8  .1  JQ  QJC7 1I]`Q0V  .V V``1H1VJH7 Q` .V

`:J I1 V`5 G%  .VC]  Q $%:`:J VV .V C1JV:`1 7 Q` .V Q% ]%  :$V :CCQ11J$ %  Q

:H.1V0V.0:C%V CV  .:JQ8`Q`.1$.]V:@R QR:0V`:$V`: 1QIQR%C: 1QJ`Q`I: 8

6.1 Transmitter concepts revisited

Figure 66. Traditional Cartesian transmitter architecture: lowpass data conversion followed by upconversion mixers

Figure 67. π/4DQPSK and 8PSK constellation diagrams

 R1 H% VR1J.:] V`5 .V$Q:CQ` .V `:J I1 V`1  QR`10V:IQR%C: VR?$ 1$J:C

1J Q .V:J VJJ:8C0V`:CC5 .V `:J I1 V`HQJ0V` R1$1 :CG: VG:JR0VH Q` 1J Q:J?$ Direct Digital Modulation: A New Approach to Polar Systems 122

0VH Q` 1$J:C .:  ]: V  .`Q%$. HQJ VCC: 1QJ ]Q1J 8  17 .1  RV H`1] 1QJ5 .V

`:J I1 V`5 :@VJ :  :GC:H@RGQ6 `%JH 1QJ5 Q]V`: V  :  : R1$1 :CR QR?$ R: : HQJ0V` V`8

.V 1J V$`1 7 Q` .V ?$ 0VH Q` `:=VH Q`7 1  _%:J 1`1VR .`Q%$. .V V``Q`R0VH Q`R

I:$J1 %RV^._`1$%`VQ`IV`1 5RV H`1GVR1J VH 1QJ888&]VH `:C]%`1 71 0V`1`1VR

.`Q%$. HQJ`Q`I:JHV Q : ]VH `:C I: @ :JR :R=:HVJ RH.:JJVCR]Q1V` `: 1Q ^;?_

IV: %`VIVJ 8 .V HQJ VCC: 1QJ `:=VH Q`1V  `Q` πL F;&G :JR ;&G ^JQJRHQJ :J 

:I]C1 %RV_ IQR%C: 1QJ `Q`I:  :`V .Q1J 1J Figure 678  .V V 11CC `VH%` 1J .V

R1 H% 1QJ:  .V V:`V .VIQR%C: 1QJ`Q`I: `Q` .V1C%V QQ .8U. ? :JR:`R`Q`

1L  :JR 1L  R: :`: V  ` a8  .V V HQJ VCC: 1QJ  RVIQJ `: V .V % V Q` GQ .

:I]C1 %RV:JR].: VIQR%C: 1QJ Q `:J I1 C:`$V:IQ%J Q`1J`Q`I: 1QJ11 .1J .V

:0:1C:GCV ]VH `%I8

.V `:J I1 V` JVVR  Q .:0V QCV`:GCV CV0VC  Q` JQ1 V :JR R1 Q` 1QJ Q ]`V0VJ 

]VH `:C`V$`Q1 .:JRIVV `V_%1`VIVJ 8`:R1 1QJ:C:`H.1 VH %`V `VC7QJ.1$.C7

C1JV:` HQI]QJVJ  Q :H.1V0V .V V ]`Q]V` 1V 8 .V :` V 1:J :`H.1 VH %`V5 .Q1J 1J

Figure 665% V G: VG:JRR1$1 :CR:J:CQ$HQJ0V` 1QJ`QCCQ1VRG7?$%]HQJ0V` 1QJ QI:]

Q%  .V ?$ 1$J:C `:=VH Q`78  8V`V5 .V R: : HQJ0V` 1QJ ]`QHV  .:]]VJ  :  CQ1

``V_%VJH7T:J:CQ$I16V` :`V`V_%1`VR QHQJ0V`  .V0VH Q` 1$J:C Q?$:JR .V;

R`10V  .VIQR%C: VR 1$J:C Q .V:J VJJ:81VH:% V .VI16V` :JR;`QCCQ1 .VR: :

HQJ0V` V` 5C1JV:`1 71 .1$.C71I]Q` :J 8.V`V:`VI:J7IVH.:J1 I  .: `VR%HV 1$J:C

1J V$`1 71JHC%R1J$/CI1 I: H.5$:1JR].: VV``Q` 5:JRHQI]QJVJ JQJC1JV:`1 78 Direct Digital Modulation: A New Approach to Polar Systems 123

.VJV6  VH 1QJ11CCRV H`1GVG: 1H]`1JH1]CV Q`G: VG:JRR: :HQJ0V` 1QJ %H. .: 

.V V HQJHV]  H:J GV V6 VJRVR Q ?$ G:JR]:  R1$1 :CR:J:CQ$ HQJ0V` 1QJ8  V 11CC

`V01V1 .V `%JR:IVJ :C $Q:C  Q` R: : HQJ0V` V`  1JHC%R1J$ R1 H`V VR 1IV :I]C1J$5

`VHQJ `%H 1QJ5:JR_%:J 1<: 1QJJQ1 V8

6.2 Data conversion principles

1.00 VFS

0.875

0.750

Vout 0.625

VFS 0.500 0.375 V = ∆ 0.250 LSB

0.125

0 000 001 010 011 100 101 110 111 1000 Binary Input

Figure 68. Input-output transfer characteristics for a 3-bit D-A converter

: :HQJ0V` V`  `:J `V`R: ::H`Q R1$1 :C:JR:J:CQ$1J V``:HV 8`:R1 1QJ:CCQ1]: 

R :JR R  HQJ0V` V`  V6.1G1  : 0QC :$V `:J `V` H.:`:H V`1 1H 1.V`V V:H. G1J:`7

J%IGV` HQ``V ]QJR  Q : %J1_%V :J:CQ$ CV0VC8  Figure 68 .Q1  .V 0QC :$V `:J `V`

H%`0V`Q`:RG1  RHQJ0V` V`88V`V5 .VHQRVHQ``V ]QJR  Q

V 1JH`VIVJ 1JH`V: V  .V0QC :$VCV0VCG7 FS 51.V`VV 1  .V`%CCR H:CV0QC :$V1J]%  N FS

:JR1  .VJ%IGV`Q`G1 8.1 _%:J 1 71 :C Q`V`V``VR Q:  .VCV: R 1$J1`1H:J RG1  Direct Digital Modulation: A New Approach to Polar Systems 124

− ^/&1_8.VI:61I%I0QC :$VCV0VC`V]`V VJ VR1J .VR1$1 :CRRQI:1J1 VFS VLSB 8$`QI

` a5 .V`VC: 1QJ .1]GV 1VVJQ% 5VFS 5:JR .VG1J:`71J]% G`QCCQ1 : 

= ( −1 + −2 +L + − N ) Vout VFS b1 2 b2 2 bN 2 8 ^ _

._%: 1QJ^ _.1$.C1$.  .V`:H  .: R: :HQJ0V` 1QJ]`QHV V :`V 7]1H:CC7G: VRQJ

G1J:`71V1$. VR_%:J 1<: 1QJ1J V`0:C 8.1  1I]C1`1V HQJ0V` 1J$GV 1VVJ:J:CQ$:JR

G1J:`7RR1$1 :C `V]`V VJ : 1QJ 8  .V `1J:C R1$1 :C `V]`V VJ : 1QJ 1  R1 H`V V 1J GQ .

:I]C1 %RV :JR 1IV5 `V %C 1J$ 1J %J1_%V ]`Q]V` 1V  Q` .V R1$1 :C 1$J:C8  1 H`V V

:I]C1 %RV CV0VC  `V %C  1J _%:J 1<: 1QJ V``Q` Q` JQ1 V8  1 H`V V 1IV :I]CV  VJ`Q`HV

]VH1:CHQJ 1RV`: 1QJ `Q` :I]C1J$]`QHV  .: :`V`VC: VR Q .V``V_%VJH7HQJ VJ Q`

.V 1$J:C8

6.2.1 Quantization Noise

1.00

0.875 +½ 0.750 Analog Input

0.625 Vout 0.500 VFS 0.375 Quantization 0.250 Error -½ 0.125

0 000 001 010 011 100 101 110 111 1000

Figure 69. Comparison of continuous and quantized signal levels showing error between ±½ LSB

Direct Digital Modulation: A New Approach to Polar Systems 125

1 .:`1J1 VJ%IGV`Q`:I]C1 %RV_%:J 1<: 1QJCV0VC 5 .V`V1 1JV01 :GC7 QIVV``Q`

GV 1VVJ .V :J:CQ$ :JR R1$1 :C `V]`V VJ : 1QJ  Q` : 1$J:C8  Figure 69 HQI]:`V  .V

_%:J 1

1J :J :JVQ% _%:J 1<: 1QJV``Q`8.1 V``Q`H:JGVH.:`:H V`1

:JR .Q1  %J1_%V ]VH `:C ]`Q]V` 1V 8  $Q` I:J7 1J]%  1$J:C 5 _%:J 1<: 1QJ JQ1 V 1 

± 1 ∆ ∆ `V: VR: %J1`Q`IC7R1 `1G% VRGV 1VVJ 2 51.V`V 1  .V_%:J 1<: 1QJ V] 1

Q`QJV/&181 . .1 : %I] 1QJ5 .V:0V`:$VJQ1 V]Q1V`1 H:CH%C: VR: 

∆ + 2 2 ∆2 2 e e = ∫ de = 8 ^ _ ∆ ∆ 12 − 2

._%: 1QJ^ _: %IV  .:  .V :I]CVRV``Q`V`Ja1 :%J1`Q`IC7R1 `1G% VR1.1 VR

JQ1 V]`QHV `a8J .1 H: V .V :I]CVRJQ1 V]Q1V`5 e2 511CCGV1.1 V11 .1J .V

77_%1  :I]C1J$ 1J V`0:C8  .1  ]`Q]V` 7 1I]C1V  .:  .V 1IVR :I]C1J$ ]`QHV  H:J

:``VH  .VJQ1 V]Q1V` ]VH `%I5:CCQ11J$Q]]Q` %J1 1V  Q `:RVQ`` :I]C1J$`: V`Q`

.VJ%IGV`Q`G1 1J .V_%:J 1

6.2.2 Discrete-time sampling

Figure 70. Frequency-domain representation of discrete-time sampling process Direct Digital Modulation: A New Approach to Polar Systems 126

.1CV IQ  :J:CQ$ 1$J:C  :`V HQJ 1J%Q%  1IV5 R1$1 :C 7 VI  7]1H:CC7 Q]V`: V 1J

R1 H`V V 1IV8 : :HQJ0V` V` :`V %G=VH  Q .V :I]C1J$]`QHV :JRI% HQJ 1RV`

77_%1  :I]C1J$ H`1 V`1QJ8  77_%1 R&.:JJQJ :I]C1J$ : V  .:  `Q` : G:JRC1I1 VR

1$J:C5 %J1`Q`IC7 ]:HVR R1 H`V V 1IV :I]CV  HQI]CV VC7 `V]`V VJ  .V 1$J:C 1` .V

< :I]C1J$`: V1 IQ`V .:J 11HV .V 1$J:CG:JR11R .8` .V :I]C1J$`: V5 f S 2B 5

1.V`V1  .VG:JR11R .5 .VJ:C1: 1J$QHH%`  %H. .:  .VQ`1$1J:C 1$J:CH:JJQ GV

HQI]CV VC7`VHQJ `%H VR8J .VQ`1$1J:C]:]V`G7&.:JJQJ5`a5 .V V]`Q]V` 1V :`V

RVIQJ `: VR1J .VHQJ0V` 1QJGV 1VVJ 1IV:JR``V_%VJH7RQI:1J`V]`V VJ : 1QJ 8

.V 1I]CV]`QQ`G7&.:JJQJ: %IV  .: 7

∞ 1 f ()t = F(w)eiwt dw π ∫ 2 −∞ π  ^ _ 1 2 B = F(w)eiwt dw, π ∫ 2 −2πB

1.V`V `^ _ :JR ^1_ :`V .V 1IVR :JR ``V_%VJH7RRQI:1J ^$Q%`1V` `:J `Q`I_

`V]`V VJ : 1QJ  Q` : G:JRC1I1 VR HQJ 1J%Q%  1IV 1$J:C 11 . G:JR11R . 8  ` 1V CV 

n t = 1.V`VJ1 :J7]Q 1 10VQ`JV$: 10V1J V$V`5 .VR1 H`V VR 1IV V`1V 1  2B

2πB n  n  1 iw f   = F(w)e 2B dw, π ∫  ^ _  2B  2 −2πB

 n  . 1.V`V f   :`V .V :I]CVR0:C%V Q` f (t)8.V`1$.  1RVQ`^ _`V]`V VJ  .VJ   2B 

HQV``1H1VJ  1J : $Q%`1V`R V`1V  V6]:J 1QJ Q` F(w)8  &1JHV F(w) HQI]CV VC7 Direct Digital Modulation: A New Approach to Polar Systems 127

 n  H.:`:H V`1

`VHQJ `%H 1QJ.:]]VJ  .`Q%$. .V1JH`%JH 1QJ5 %H. .: 

∞ sin(2πBt − nπ ) f ()t = x ∑ n ()π − π 5 ^ _ n=−∞ 2 Bt n

. 1.V`V6J1  .VJ  :I]CV8

6.2.3 Practical sampling and reconstruction

− π sin( πfT ) H( f ) = e i fT H( f ) πfT

Figure 71. Time- and frequency-domain characteristics: zero order hold (ZOH) reconstruction

.1CV 1JH `%JH 1QJ `VHQJ `%H 1QJ 1J ^ _ ]`Q01RV  V6:H  `VHQJ `%H 1QJ Q` .V

:I]CVRR: : V`1V 5 .V 1JH`%JH 1QJ1 JQ C1I1 VR1J 1IV:JR1 R1``1H%C  Q1I]CVIVJ 

1J ]`:H 1HV8   ;`:H 1H:C `VHQJ `%H 1QJ Q` VJ 1J0QC0V  :

:I]CVRR: : V 8 &.Q1J 1JFigure 71R:5 1J .V 1IVRRQI:1J .V :I]CVR 0:C%V  :`V

.VCRGV 1VVJ :I]CV 1IV 5`V %C 1J$1J: :1`H: V1:0V`Q`I88V`V5 .VC8`%JH 1QJ

1  IQRVCVR :  : `VH :J$%C:` ]%C V 1:0V`Q`I 1J .V 1IVRRQI:1J8  .1  1  :

`:1$. `Q`1:`RIV .QRQ``VHQJ `%H 1QJ5G% RQV JQ .:0V%J1 7``V_%VJH7`V ]QJ V5 Direct Digital Modulation: A New Approach to Polar Systems 128

C1I1 1J$ .VQ% ]%  ]VH `%I Q .V 1JH`%JH 1QJ .Q1J1JFigure 71RG8.VC8 .:]V 

.VQ% ]%  ]VH `%IG7: 1JH`%JH 1QJ5 1$J1`1H:J C7: VJ%: 1J$``V_%VJH7HQJ VJ JV:`

.V J7_%1  ``V_%VJH78  $Q` .1  `V: QJ5 C8 1  IQ`V ]`:H 1H:C`Q` 7 VI  1.V`V .V

:I]C1J$``V_%VJH71  %G :J 1:CC7.1$.V` .:J .VG:JR11R .Q` .V 1$J:C8

6.2.4 Sampling with non-bandlimited signals, and relationship with quantization noise

Figure 72. Signal and noise before and after sampling

f ` .V 1$J:C1 JQ HQI]CV VC7G:JRC1I1 VR5 .VJ ]VH `:CHQJ VJ :GQ0V S 11CC`QCR 2

G:H@ Q CQ1V` ``V_%VJH1V 8  Q  :I]CVR 7 VI  % V :J 1R:C1:  `1C V`  Q %]]`V 

]VH `:CHQJ VJ :GQ0V .V77_%1 ``V_%VJH78RV:CG`1H@R1:CC`1C V` :`V1I]`:H 1H:C Q

QIV HQJ 1RV`: 1QJ Q` .V `1C V` : VJ%: 1QJ :GQ0V 77_%1  ``V_%VJH1V  1  % %:CC7

JVHV :`78Figure 72R: .Q1 : HVJ:`1Q11 .GQ . 1$J:C:JRJQ1 V]Q1V`V6 VJR1J$

GV7QJR .V77_%1 ``V_%VJH78J .V :I]CVR0V` 1QJ5 .VQ`1$1J:C 1$J:C1 HQ``%] VR

11 . 1$J:C:JRJQ1 V]Q1V``QCR1J$G:H@ QCQ1V```V_%VJH1V 8

.V HVJ:`1Q .Q1J 1J Figure 72 H:J GV HQ``VH VR 1J 1Q 1:7 7 1JH`V: 1J$ .V

: VJ%: 1QJ Q` .V :J 1R:C1:  `1C V`5 Q` 1JH`V: 1J$ .V :I]C1J$ ``V_%VJH78   J QIV Direct Digital Modulation: A New Approach to Polar Systems 129

H1`H%I :JHV 5.1$.V` :I]C1J$``V_%VJH1V :`V .VIQ ]`:H 1H:C QC% 1QJ8JH`V: 1J$

` `VC:6V  :J 1R:C1:  `1C V` `V_%1`VIVJ 5 %H. .:  1J QIV H: V  `1`  Q`RV` `1C V`  :`V

:RV_%: V8  81$.V` :I]C1J$ :C Q `VR%HV  ]`QGCVI  11 . .1$.R``V_%VJH7 JQ1 V T Q` VJ

HQJ `1G% VRG7H1`H%1 HQI]QJVJ T`QCR1J$RQ1J1J Q .V 1$J:CG:JR8J:RR1 1QJ Q

.V QG01Q%  :R0:J :$V  11 . .1$.V` :I]C1J$ `: V 5 Q0V` :I]C1J$ :C Q ]`Q01RV  :J

:R0:J :$V1J`VR%H1J$_%:J 1<: 1QJJQ1 V1J:R1 H`V VR 1IV 7 VI8

Figure 73. Quantization noise spectral density: a.) Nyquist-rate sampling, b.) Oversampling

 IVJ 1QJVR1J VH 1QJ 885_%:J 1<: 1QJJQ1 V1 $VJV`:CC7 `V: VR: :1.1 VRJQ1 V

]`QHV 11 .:`C: ]Q1V` ]VH `:CRVJ 1 711 .1J .V77_%1 1J V`0:C8` .V :I]C1J$

`: V 1JH`V: V 5 .V :0V`:$V JQ1 V ]Q1V` 11 .1J .V 1$J:C G:JR RVH`V: V 8  &.Q1J 1J

Figure 7351` .V 1$J:C1  :I]CVR: :`: V %G :J 1:CC7.1$.V` .:J .V77_%1 `: V5

_%:J 1

Q0V` :I]C1J$H:J1JH`V: V .V 1$J:CLJQ1 V`: 1QQ` .V_%:J 1

  .Q1J1J .VJV6  VH 1QJ5 .1 H:J.:0V: 1I1C:`V``VH  Q1JH`V: 1J$ .VJ%IGV`Q`

G1 1J .V_%:J 1

6.3 Oversampled Data Converters

C0V` :I]CVRR: :HQJ0V` V` V6]CQ1 Q0V` :I]C1J$:JR 1$J:C]`QHV 1J$ Q1JH`V: V

.V V``VH 10V `V QC% 1QJ Q` R1 H`V VR 1IV5 _%:J 1

]`V01Q%  VH 1QJ5 Q0V` :I]C1J$ HQIG1JVR 11 . `1C V`1J$ H:J 1JH`V: V .V 1$J:CLJQ1 V

`: 1Q Q` : R1 H`V VR 1IV5 _%:J 1

_%:J 1

.:]1J$ .VJQ1 V1J .V 1$J:CG:JR5IQ01J$V0VJIQ`VQ` .V_%:J 1<: 1QJJQ1 V1J Q

.V `1C V` Q]G:JR8  7Q1 V .:]1J$ H:J .:0V `VIVJRQ%  GVJV`1  G7 1JH`V: 1J$

1$J:CLJQ1 V %G :J 1:CC7`Q`:`16VR :I]C1J$`: V8

Figure 74. Signal and quantization noise with noise shaping

Direct Digital Modulation: A New Approach to Polar Systems 131

Figure 75. Linear model of the noise-shaping process: quantization noise appears as a disturbance

Quantizer

u[n] x[n] y[n] Quantizer

u[n] y[n] + + z-1 - + - + e[n] G(z)-1

a.) Error-feedback noise shaping b.) Sigma-delta modulator Figure 76. Noise-shaping data conversion blocks: a.) Error-feedback structure, b.) first-order sigma-delta modulator

6.3.1 Noise Shaping

.V@V7HQJHV] %:C1J 1$.  QJQ1 VR .:]1J$]`QHV V 1  .: _%:J 1<: 1QJJQ1 VH:J

GV V]:`: VR``QI .V 1$J:C .`Q%$. IV: %`VIVJ 8  ` .V _%:J 1<: 1QJ V``Q` 1$J:C5

.Q1J 1J Figure 685 1  IV: %`VR5 .V V``Q` H:J GV ]:` C7 H:JHVCCVR 11 . :H 10V

]`QHV 1J$T: %I1J$ .V :I]CV`: V1 .1$.V` .:J .VJ7_%1 `: V87Q1 V .:]1J$ Direct Digital Modulation: A New Approach to Polar Systems 132

JV 1Q`@  % V `VVRG:H@5 %H. .:  _%:J 1<: 1QJ JQ1 V ]Q1V` :]]V:`  : : R1 %`G:JHV

:JR1 : VJ%: VRG7 .VJV 1Q`@8.V 1$J:C5QJ .VQ .V`.:JR5]: V  .`Q%$. .V

7 VI11 .Q% : VJ%: 1QJ8

Figure 75 .Q1  .V C1JV:` IQRVC `Q` :J Q0V` :I]CVR IQR%C: Q` 11 . _%:J 1<: 1QJ

JQ1 V8.VJQJC1JV:`1 7Q` .V_%:J 1

Q`:RV H`1G1J$`%JH 1QJ`V]`V VJ : 1QJ8HQI]`V.VJ 10VR1 H% 1QJQ` .VRV H`1G1J$

`%JH 1QJ:]]`Q:H. Q 1I1C:`JQJC1JV:`HQJ `QC]`QGCVI 1 `Q%JR1J`a8JFigure 755

.V_%:J 1<: 1QJJQ1 V:]]V:` : :R1 %`G:JHV:  .VQ% ]% Q` .VJV 1Q`@81 . .1 

C1JV:`IQRVC51VH:JRV`10V 1Q `:J `V``%JH 1QJ `Q` .V 7 VI7 .V 1$J:C `:J `V`

`%JH 1QJ^&$_5:JR .VJQ1 V `:J `V``%JH 1QJ^7$_`a8 1J$C1JV:`JV 1Q`@ .VQ`7

.V V `:J `V``%JH 1QJ :`V7

Y (z) H (z) STF = = 5 U (z) 1+ H (z) ^ _

Y (z) 1 NTF = = 5 E(z) 1+ H (z) ^ _

1.V`V^<_1  .VQ]VJCQQ] 1$J:C `:J `V``%JH 1QJ8 1 1I]Q` :J  QJQ V .: 1J^ _5

.V

^<_ .Q%CR.:0V.1$.$:1J1J .V 1$J:CG:JRT^<_Q` VJ:]]V:` : :J1J V$`: Q`: CQ1

``V_%VJH1V 8$`QI^ _51.VJ^<_]]5 .V:]]`Q:H.V %J1 7 %H. .:  .V 1$J:C1 

%JH.:J$VR: CQ1``V_%VJH1V 8

.V`V:`VI:J71:7  Q1I]CVIVJ  .VJQ1 VR .:]1J$]`QHV 1J]`:H 1HV8Figure 76RG

.Q1  .V HQJ0VJ 1QJ:C R1:$`:I `Q` : `1` RQ`RV` 1$I:RRVC : IQR%C: Q`8  %H. .:  Direct Digital Modulation: A New Approach to Polar Systems 133

GVVJ1`1 VJ:GQ%  .1  Q]QCQ$7: :G: 1HJQ1 VR .:]1J$ `%H %`V8 V`%C`V`V`VJHV 

1JHC%RV`55a8.1  Q]QCQ$7Q`1$1J: VR: :JV6 VJ 1QJQ`RVC :IQR%C: 1QJ

.:  HQ%CR GV RVIQR%C: VR 11 . : 1I]CV CQ1R]:  `1C V` `a8  .V 1J]% RQ% ]% 

GV.:01Q`1  1I1C:` Q .VV``Q``VVRG:H@ 7 VI1JFigure 76R:5G% 1I]CVIVJ : 1QJ1 

C1$. C7R1``V`VJ 8

J 1$I:RRVC :IQR%C: 1QJQJVQ`IQ`V1J V$`: Q` :`V]C:HVRGV 1VVJ .V 1$J:C:JR

.V _%:J 1

.V JQ1 VR``VV 1J]%  1  1J V$`: VR8  1 . 1J`1J1 V $:1J :  5 Q0V` 1IV .V 1J V$`: Q`

`Q`HV  .V 1J]% :JRQ% ]% 0QC :$V  QGV .V :IV81 .`1` Q`RV`1J V$`: 1QJ5

−1 = z H (z) − 8.VQ0V`:CCJQ1 V `:J `V``%JH 1QJ^_`QCCQ1 :  1− z 1

− NTF = (1− z 1 )5 ^ _

1.1CV .V 1$J:C `:J `V``%JH 1QJ^_1 

− STF = z 1 8 ^ _

$`QI ^ _ :JR ^ _5 .V _%:J 1<: 1QJ JQ1 V 1  : VJ%: VR %G :J 1:CC7 :  CQ1

``V_%VJH1V 5 1.1CV .V 1$J:C ]: V  11 . QJC7 : RVC:78  .V ``V_%VJH7 RQI:1J

H.:`:H V`1 1H :`V 1I1C:` QFigure 7451.V`V .VJQ1 V ]VH `%I1 IQ0VR Q.1$.V`

``V_%VJH1V  %H. .: :`VHQJ `%H 1QJ`1C V`1 IQ`VV``VH 10V:  V]:`: 1J$ .V 1$J:C

:JR JQ1 V8  J V$`: 1J$ .V JQ1 V ]Q1V` 1J .V 1$J:C G:JR5 .V V``VH 10V 1$J:CLJQ1 V

`: 1Q`Q``1` RQ`RV`JQ1 V .:]1J$GVHQIV  Direct Digital Modulation: A New Approach to Polar Systems 134

SNR = .6 02N + .1 76 − .5 17 + 30log(OSR) 5 ^ _

1.V`V  1  .V J%IGV` Q` G1  1J .V _%:J 1

._%: 1QJ^ _1I]C1V  .: RQ%GC1J$ .VQ0V` :I]C1J$`: 1Q11CC1JH`V: V .V 1$J:CLJQ1 V

`: 1QG7 R1^Q`8 G1 _8  .Q%CRGVJQ VR .:  .1 JV$CVH JQ1 VHQI]QJVJ Q .V`

.:J_%:J 1<: 1QJJQ1 V:JR .V`V`Q`V V :J1RV:C%]]V`GQ%JRQJ .V:H.1V0:GCV&7?8

.V V``Q`R`VVRG:H@ JQ1 V .:]1J$ `%H %`V5 .Q1J 1J Figure 76 :8_5 .1$.C1$.  .1 

]`QHV Q`IV: %`1J$ .V_%:J 1<: 1QJV``Q`:JR1J=VH 1J$ .VV``Q` 1$J:CG:H@1J Q .V

7 VI`a88V`V5 .VV``Q` 1$J:C]: V  .`Q%$.: `:J `V``%JH 1QJ G(z) −1:JR1 

Y(z) %IIVR 11 . .V 1J]%  1$J:C8  .V 1$J:C `:J `V` `%JH 1QJ STF(z) = = 15 1.1CV U (z)

Y (z) .VJQ1 V `:J `V``%JH 1QJ5 NTF(z) = = G(z) 8J .1  7 VI .VR1 H`V VR 1IV$? E(z)

`%JH 1QJ ^<_R1`VH C71I]CVIVJ JQ1 V .:]1J$8$Q``1` RQ`RV`JQ1 V .:]1J$ .VGCQH@

− − [G(z) −1] = 1( − z 1 ) −1 = z 1 5 %H. .:  .VJV  `:J `V``%JH 1QJ1 =% :RVC:78 V 1$J

V6:I]CV `Q` .VV``Q``VVRG:H@ Q]QCQ$7:`V.1$.C1$. VR1J` a:JR`a8 Direct Digital Modulation: A New Approach to Polar Systems 135

6.3.2 RF (Narrowband) Digital-Analog Conversion (DAC)

Vout

VFS

Figure 77. RF DAC: quantization of RF carrier amplitude

Figure 78. Frequency-domain RF DAC with sampling images

?$ R1$1 :CR:J:CQ$ HQJ0V` 1QJ H:J .:0V R1``V`VJ  IV:J1J$  RV]VJR1J$ QJ .V

:]]C1H: 1QJ8J .1 H: V1VHQJ 1RV`J:``Q1G:JRR: :HQJ0V` 1QJ1.V`VV:H.R1$1 :C

HQRVHQ``V ]QJR  Q:%J1_%V:I]C1 %RVQ`:HQJ 1J%Q% R1:0V 1J% Q1R:CH:``1V` 1$J:C8

$Q` .V R: : HQJ0V` 1QJ ]`QHV  1J Figure 775 .V 1J]% RQ% ]%  GV.:01Q` 1  1I1C:` Q

CQ1]:  R HQJ0V` V`  V6HV]  .V Q% ]%  1  HVJ V`VR :  : H:``1V` ``V_%VJH7 `8  .V

Q% ]%  ]VH `%I1 :C Q 1I1C:` Q .: 1JCQ1]:  RHQJ0V` 1QJ5G% 1 JQ1RQ%GCVR

1RVR5:]]V:`1J$: :J:I]C1 %RVIQR%C: 1QJ]`QHV 8 Direct Digital Modulation: A New Approach to Polar Systems 136

Figure 78 .Q1  .V ``V_%VJH7RRQI:1J `V]`V VJ : 1QJ Q` .V J:``Q1G:JR R: :

HQJ0V` 1QJ]`QHV 8VHQJ 1RV` .V :I]C1J$]`QHV  QGV1JRV]VJRVJ Q` .VH:``1V`

± ⋅ ``V_%VJH75 %H. .:  :I]C1J$ 1I:$V  QHH%` HVJ V`VR :  f 0 n f S 5 1.V`V J 1  :J

1J V$V`8C1: 1J$HQJ 1RV`: 1QJ :`VJQ1G: VRQJ .VJ7_%1 H`1 V`1QJ`VC: 10V Q .V

G:JR11R .55Q` .VG:JR]:  1$J:C8KVJV`:CC75 Q:0Q1RQ0V`C:]Q`1I:$V]Q1V`11 .

> 1$J:C]Q1V`^:C1: 1J$_5 f S 2B 8Q`1C V` .V1I:$V :JRQ .V`Q% Q`G:JR ]VH `:C

HQJ VJ 5 .V?$ 1 `QCCQ1VRG7:G:JR]: `1C V`8J1RV:CG:JR]: `1C V` ]VH `:C

`V ]QJ V 1  .Q1J 1J Figure 785 :C .Q%$. `V:C1 1H `1C V`  11CC .:0V `1J1 V Q]G:JR

: VJ%: 1QJ5C1I1 1J$`V=VH 1QJQ`?$1I:$V 8

 Figure 79. RF DAC example implementation: binary weighted class-A amplifier stages (current summing), as in [105]

?$ R: : HQJ0V` V`  H:J GV 1I]CVIVJ VR 1J I:J7 1:7 8   `V]`V VJ : 10V H1`H%1 

1I]CVIVJ : 1QJ1  .Q1J1JFigure 7988V`V5G1J:`71V1$. VR?$:I]C1`1V` :$V  %I

Q$V .V`: 1J:H%``VJ R %II1J$ `5 a8.VHC: R^Q`1_?$H%``VJ  Q%`HV 

:`V %`JVRQJQ`Q``11 . .VR1$1 :C1J]% Q`:H: HQRVRV01HV8.V Q :CH%``VJ :  .V Direct Digital Modulation: A New Approach to Polar Systems 137

R`:1JJQRVQ` .VH: HQRVRV01HV  H:CV C1JV:`C711 . .VG1J:`71J]% 8.1 H%``VJ I:7

GV`1C V`VR:  .VQ% ]% Q` .V  Q: VJ%: V.:`IQJ1H ``QI .V:I]C1`1V`:JR 

1I:$V 8.VR1$1 :CC&;RV H`1GVR1J` aQ]V`: V : :R1``V`VJ 1:CH%``VJ IQRV

:JR1: V``VH 10V1J$VJV`: 1J$C$ 1:0V`Q`I 11 .R R1.8

f Figure 80. Bandpass Σ∆ modulator with center frequency at s 4

C0V` :I]CVRG:JR]: IQR%C: Q` :`V:C Q% VR`Q`J:``Q1G:JRR: :HQJ0V` 1QJ5: 

R1 H% VR 1J ` 5 5 a8  Figure 80 .Q1  .V 1I]C1`1VR R1:$`:I Q` : VHQJRRQ`RV`

G:JR]:  Σ∆ IQR%C: Q`8  8V`V5 .V 1I]CV 1J V$`: Q` Q` : `1` RQ`RV` CQ1]:  Σ∆

IQR%C: Q`1 `V]C:HVR11 .:`V QJ:J `1C V`8.1 `V QJ: Q`.:  `:J `V``%JH 1QJ

−1 = z H (z) − 5 ^ _ 1+ z 2

f %H. .:  .V]QCV :`V:  z = ± j 8.1 ]`Q01RV 1J`1J1 V$:1J:  s effectively shaping 4

f f noise away from the s frequency range. The oversampling ratio in this case is s 4 2B where 2B is the of the narrowband signal. For traditional bandpass Σ∆

IQR%C: Q` 5 .V :I]CV`: V5`51 .1$.V` .:J .VJ:``Q1G:JRHVJ V```V_%VJH75`8

 Direct Digital Modulation: A New Approach to Polar Systems 138

6.4 Direct-digital modulation for RF transmitters

Figure 81. Direct digital modulation: transmitter operating as a D-A converter

1 . .V RV H`1] 1QJ 1J VH 1QJ 8 Q` .V 11`VCV  `:J I1 V` :  : R1$1 :CR?$

HQJ0V` V`5 1  1  J: %`:C Q `VR .1J@ .V `:J I1 V` :`H.1 VH %`V :JR CQQ@ `Q`

Q]]Q` %J1 1V  QIQ0V .VGQ%JR:`7GV 1VVJR1$1 :C:JR?$RQI:1J 8.V`V:`VI:J7

1:7  Q IVV  .V `%JR:IVJ :C $Q:C  Q` 0VH Q` 1$J:C $VJV`: 1QJ 11 . CQ1 . :JR

]VH `:CI: @HQI]C1:JHV8Figure 81 .Q1 :$VJV`1H `:J I1 V` .: Q]V`: V : :J?$

RHQJ0V` V`7 .VR1$1 :CG: VG:JRHQJ `QC  .V0VH Q` 1$J:CIQR%C: 1QJ]`QHV 5:JR

.1$.R``V_%VJH7R1$1 :CH1`H%1 `7HQJ0V`  .1  Q:IQR%C: VR?$ 1$J:C8

QI]C1H: 1J$ .V HVJ:`1Q 1J VH 1QJ 88 QJ ?$ R: : HQJ0V` 1QJ5 I:J7 11`VCV 

1$J:C .:0VGQ .:I]C1 %RV:JR].: VIQR%C: 1QJ8.1 IV:J  .: R1$1 :C:I]C1 %RV

IQR%C: 1QJ :CQJV 1  JQ  %``1H1VJ  Q H`V: V .V HQI]CV6 0VH Q` 1$J:C  `Q` IQRV`J

11`VCV  :JR:`R 8  J V:R5 1V HQJ 1RV` R1$1 :C :J:CQ$1V  `Q` HQJ0VJ 1QJ:C ]QC:` Q`

:` V 1:J `:J I1 V`  .:  H:J H`V: V .V JVHV :`7 1:0V`Q`I  11 . GQ . :I]C1 %RV

:JR].: V1J`Q`I: 1QJ8 Direct Digital Modulation: A New Approach to Polar Systems 139

6.4.1 Cartesian RF Data Conversion

Figure 82. Cartesian RF data converter

Figure 82 .Q1 ::` V 1:J0V` 1QJQ`:R1$1 :C?$ `:J I1 V`88V`V5 .V!^ _:JR"^ _

0VH Q`  :`V 1JRV]VJRVJ C7 $VJV`: VR G7 V]:`: V 1J$CVR].: V ?$  8  .V  

Q]V`: V11 . V]:`: V_%:R`: %`VHCQH@ 1$J:C  QH`V: V .VQ` .Q$QJ:C!L" 1$J:C 8 

.VQ% ]% Q` .V  5 .V!^ _:JR"^ _ 1$J:C :`V %IIVR QH`V: V .VIQR%C: VR?$

1:0V`Q`I8`1C V`1Q%CRHQJHV10:GC7`QCCQ1 .V %II: 1QJ :$V Q`VIQ0V%J1:J VR

]VH `:CHQJ VJ ``QI .VQ% ]% 8

.V HVJ:`1Q1JFigure 821 QJC7]Q 1GCV1` .V %II: 1QJ :$V1  `:1$. `Q`1:`R Q

1I]CVIVJ 8.1 I:7GV `%V`Q`H%``VJ RIQRV 1$J:C 5G% 1  C1$. C7IQ`VR1``1H%C `Q`

0QC :$V IQRV 1$J:C 8  .1  1  GVH:% V :RR1J$ ?$ 0QC :$V  11 . .1$. ]Q1V` V``1H1VJH7

`V_%1`V  VCVH `QI:$JV 1H `%H %`V  %H. :  `:J `Q`IV` 5 HQ%]CV`  Q` /R G:C%J 8

.6:I]CV Q`0QC :$VIQRV]Q1V`HQIG1J1J$:`V`Q%JR1J` a5`a5:JR` a8 1 :C Q

1I]Q` :J  QJQ V .V!^ _:JR"^ _ 1$J:C .:0V]QC:`1 71J`Q`I: 1QJT18V8 .V7I:]Q% 

GQ .]Q 1 10V:JRJV$: 10V:6V Q` .VHQI]CV6]C:JV8.V?$ JVVR  QGV:GCV Q

`V]`V VJ GQ .]QC:`1 1V  QI:]Q%  .V`%CC 1$J:CHQJ VCC: 1QJ8.1 I:7GVRQJVG7 Direct Digital Modulation: A New Approach to Polar Systems 140

 0 1J=VH 1J$ .V   and 270 clock signals to the appropriate DAC, or phase-shifting

(inverting) the LO signal inside the DAC.

H%``VJ RIQRV 8<?$ 1 ]`V VJ VR1J` a5.1$.C1$. 1J$: 1J$CV!R"H.:JJVC

R: : HQJ0V` V` ^JQ  .V `%CC H:` V 1:J 7 VI Q`Figure 82_8  J ` a5 .V ?$  HVCC 

Q]V`: V: :R1``V`VJ 1:C0V` 1QJQ` .VH%``VJ R VV`1J$ 1JFigure 7981 . R%J1 

VCVIVJ 1J .V 5 .V 7 VI:H.1V0VR:J&7?Q` R18

6.4.2 Polar RF Data Conversion

Figure 83. Polar RF data conversion: RF amplitude DAC with phase-modulated clock signal

;QC:` :`H.1 VH %`V  :`V:JQ .V` H:JR1R: V `Q` R1`VH  R1$1 :C IQR%C: 1QJ8  J`:H 5 .V

R1$1 :C IQR%C: 1QJ ]`QHV  I:7 GV HQJHV] %:CC7 IQ`V `:1$. `Q`1:`R .:J 11 . .V

:` V 1:JV6:I]CV8J .1 H: V5 .V:I]C1 %RV]: .1 HQJ `QCCVRR1`VH C7G7: 1J$CVR

].: V?$R1$1 :CR:J:CQ$HQJ0V` V`8;.: V1J`Q`I: 1QJ1 1J=VH VR1J Q .V?$ 11 .:

].: VRIQR%C: VR?$HCQH@ 1$J:C8Figure 83 .Q1 :$VJV`:CR1:$`:I`Q`:]QC:`?$ 

11 . V]:`: V:I]C1 %RV:JR].: V]: . 8&1JHV .VQ% ]% Q` .V]QC:` .: GQ .

:I]C1 %RV :JR ].: V IQR%C: 1QJ5 1  H:J $VJV`: V HQI]CV6 0VH Q` `:=VH Q`1V 8  .V Direct Digital Modulation: A New Approach to Polar Systems 141

Q% ]%  ]VH `%I1 JQ JVHV :`1C7 7IIV `1H: 11 . .V]%`V:I]C1 %RV 1J VH 1QJ

88GVH:% VQ` .V:RR1 1QJQ`].: VIQR%C: 1QJ8

.V]QC:` .:  1I1C:`HQJ 1RV`: 1QJ  QQ .V`]QC:` `:J I1 V` 8.V:I]C1 %RV

:JR ].: V ]: .  I%  .:0V :HH%`: V 1IVR:C1$JIVJ  Q ]`V0VJ  R1 Q` 1QJ8  C Q5 .V

:I]C1 %RVIQR%C: Q`JVVR  Q.:0VCQ1R:JRR;R1 Q` 1QJ QIVV .

:JR ]VH `:C `V_%1`VIVJ 8  .V ?$ HCQH@ 11 . ].: V 1J`Q`I: 1QJ .:  1I1C:`

HQJ 1RV`: 1QJ Q .VHQJ0VJ 1QJ:C]QC:`H: VR1 H% VR1J VH 1QJ888.V?$HCQH@H:J

GV$VJV`: VR11 .:H:` V 1:J%]HQJ0V` 1QJ :$V5Q`:R1$1 :C;//: 1J` a81Q . .V

:I]C1 %RV:JR].: V]: . :C QJVVR %``1H1VJ G:JR11R . QIVV .:JR ]VH `:C

I: @`V_%1`VIVJ 8.1CV .1 1 R1``1H%C `Q`:J:CQ$R]QC:`1I]CVIVJ : 1QJ ` a5R1$1 :C

1I]CVIVJ : 1QJ H:J V6]CQ1  .1$. :I]C1J$ `: V  Q :H.1V0V `:H@1J$ G:JR11R . 

%G :J 1:CC7.1$.V` .:J .VJQI1J:CH.:JJVCG:JR11R .8

1$1 :C ]QC:` 7 VI  1J .V C1 V`: %`V 1JHC%RV ` 5  5  a8  .V 1Q`@ 1J ` a

VI]CQ7  : ; 1I1C:` Q .V V$IVJ VR  Q` Figure 79 Q ]V``Q`I _%:J 1

:I]C1 %RVIQR%C: 1QJ8.V?$ % V  RG1 Q`:I]C1 %RV_%:J 1<: 1QJ:JR:H.1V0V 

8Q ]Q1V`R:RRVRRV``1H1VJH7 ^;._ :  8 K8<8   _%:R`: %`V IQR%C: Q`5 1I1C:` Q

Figure 12R:5R`10V  .V?$].: V 1$J:C1J Q .V;8C0V`:CC .V 7 VI:H.1V0V R R1

. `Q` 8< C$  1$J:C  1.1CV RVC10V`1J$ 8 R1I Q% ]%  ]Q1V`8  $%` .V`

V6:I]CV % 1J$ .1 :`H.1 VH %`V11CCGVR1 H% VR1J VH 1QJ 8 8

6.4.3 Issues with spectral images

Direct Digital Modulation: A New Approach to Polar Systems 142

&:I]C1J$1I:$V H:JGV]`QGCVI: 1H1J11`VCV  7 VI :  .V7H:J]`QR%HVVJV`$7

.: H:J01QC: V .V ]VH `:CI: @8&.Q1J1JFigure 785 :I]C1J$1I:$V :`VHVJ V`VR: 

± ⋅ f 0 n f s 5 1.V`V J 1  :J 1J V$V`8  ;`QGCVI  11 . 1I:$V  `V %C  1` .V :I]C1J$

^G: VG:JR_HCQH@1 CQ1`VC: 10V Q .VG:JR11R .Q` .VQ% ]% `1C V`8

1J .VR: :HQJ0V` 1QJ]`QHV 11CC: VJ%: V :I]C1J$1I:$V 11 .: 1JH`V ]QJ V: 1J

Figure 718  8Q1V0V`5 1J QIV H1`H%I :JHV 5 .1  1  JQ  %``1H1VJ  Q `VR%HV ]VH `:C

]Q1V`GVCQ1 .V`V_%1`VRCV0VC8

JQ0V` :I]CVR 7 VI 51J V`]QC: 1QJI:7GVV``VH 10V1J`VR%H1J$ .VI:$J1 %RVQ`

.V :I]C1J$1I:$V 8.VR1$1 :C]QC:` 7 VI1J` a :@V ]:` 1H%C:`HQJ 1RV`: 1QJQ`

]VH `:C1I:$V 8.V 7 VI% V 6Q0V` :I]C1J$HQIG1JVR11 .C1JV:`1J V`]QC: 1QJ

± Q`VR%HV .V ]VH `:CHQJ VJ :  f 0 f s 51.V`V f 0 1  .VH:``1V```V_%VJH7:JR f s 1 

.VG: VG:JR :I]C1J$`: V8.1 IV .QR1  .Q1J Q %G :J 1:CC7`VR%HV .V1I:$V: 

± ⋅ f 0 f s 5:]]`Q:H.1J$ .VQ% ]%  ]VH `%IQ`: 7 VIQ`1$1J:CC7 :I]CVR:  OSR f s 5

1.V`V1  .VQ0V` :I]C1J$`: V8

Figure 84. Upsampling to reduce spectral images, process in Pozsgay [106]

&.Q1J1JFigure 845` a% V :J%]R :I]C1J$ H.VIV Q`VR%HV]Q1V```QI ]VH `:C

1I:$V 8  .V ]`QHV  1  ]:` 1H%C:`C7 :$$`V 10V 1J Q`RV` Q IVV  HQV61 VJHV Direct Digital Modulation: A New Approach to Polar Systems 143

`V_%1`VIVJ GV 1VVJ1$1L1:6:JRKLKHVCC%C:` :JR:`R 8& :` 1J$11 .:RG1 

!R"% G: VG:JR 1$J:C :I]CVR : 8<5 .V 1$J:C 1  %] :I]CVR Q 8<% 1J$ $?

%] :I]C1J$GCQH@ 8` V`!R"I1 I: H.HQI]VJ : 1QJ5 .V 1$J:C1 `%` .V`%] :I]CVR

f f Q 0 5:]]`Q61I: VC78K8<8.1 ]`QHV 1RV:CC7IQ0V  .V ]VH `:C1I:$V  Q 0 5 2 2

%G :J 1:CC7R1 ]C:H1J$ .VI``QI .V 1$J:CG:JR:JR:R=:HVJ G:JR Q`1J V`V 8.V

?$  % V  : H%``VJ  %II1J$ H.VIV ^:  1J Figure 79_ 11 . 0:`1Q%  1V1$.  Q

:H.1V0V:]V:@Q% ]% ]Q1V`Q`8 R1I8.V 7 VI:H.1V0V 8Q.1.1CVIVV 1J$

]VH `:C I: @ :JR HQV61 VJHV `V_%1`VIVJ 8  Q :C 7 VI ]Q1V` HQJ %I] 1QJ 1 

 I`Q` .V8 R1I^8 I_`I Q% ]% ]Q1V`CV0VC8





















 Direct Digital Modulation: A New Approach to Polar Systems 144





6.5 A 2.4GHz RF Polar Transmitter for Bluetooth 2.1+EDR 

RF DAC Amplitude 2 V Path A RF Pulse- Baseband Density Modulator 1-bit PA Modulator (@100MHz) (@ 2.4GHz) Polar Matching Digital + BPF Baseband BBclk Class-D Digital Phase RFclk Phase Path (Φ) Control

Figure 85. Digital polar modulation architecture

6.5.1 Introduction

 R1 H% VR1J.:] V`5 `VJR 1J VI1HQJR%H Q`RV01HV VH.JQCQ$75JQ :GC7 .V` 

:JR`I:6Q` C& RV01HV 5 :`VVJ:GC1J$ JV1 VH.J1_%V  1J H1`H%1 RV 1$J `Q`GCQH@  1J

11`VCV  7 VI 8  .1  1Q`@ RVIQJ `: V  : `%CC7 R1$1 :C `:J I1 V` `Q` .V .1$.R

R: :`: V1C%V QQ .8U. ? :JR:`R8.V `:J I1 V`1 G: VRQJ:]QC:`:`H.1 VH %`V

11 .R1$1 :C:I]C1 %RVIQR%C: 1QJG: VRQJ]%C VRRVJ 1 7IQR%C: 1QJQ` .V?$H:``1V`8

.V 7 VIQ]V`: V 11 .:8K8<HCQH@ .: HQJ :1J ].: V1J`Q`I: 1QJ8QJ `: 1J$

11 . ` R a5 1.1H. `QH%  QJ ?$ R: : HQJ0V` 1QJ `Q` ]`VR; 1$J:C 5 .V`V .V 7 VI

1JHC%RV  .V ; 1J .V ?$ R: : HQJ0V` 1QJ `: V$75 ]`Q01R1J$ Q% ]%  ]Q1V` %] Q

UR1I8   I:=Q` `QH%  1J .1  1Q`@ 1  Q `VR%HV .V ]Q1V` `V_%1`VR `Q` R1$1 :C Direct Digital Modulation: A New Approach to Polar Systems 145

]`QHV 1J$^ QVJ:GCV]`:H 1H:C1I]CVIVJ : 1QJ11 .CQ1]Q1V`1C%V QQ . 7 VI _8

1QR :$V 1$J:C ]`QHV 1J$ H.VIV I1J1I1

.VR1$1 :CGCQH@  QQ]V`: V11 .R I:JR:0V`:$VV``1H1VJH7Q`%] QQ`Q` .V

.1$.R: :`: V1C%V QQ . :JR:`R8

&.Q1J1JFigure 855 .V 7 VI1JHC%RV  1Q :$V Q`JQ1 V .:]1J$:JR:HC:  ;8

.V HC: R  ; Q]V`: V  11 . GQ . 7C& :JR ;C& HQI]CVIVJ :`7 RV01HV 8  1 .

;C& `  QJ .V Q`RV` Q` K8< 1J .V JI ]`QHV 5 11 H.1J$ ]Q1V` CQ  1 

%G :J 1:CC7`VR%HVRHQI]:`VR Q]`V01Q% $VJV`: 1QJ Q`C& VH.JQCQ$7881$.

_%:C1 7 `:H Q` ^F_ ]: 10V `1C V` : VJ%: V  Q% RQ`RG:JR JQ1 V5 :JR `VR%HV  ]Q1V` CQ 

``QI.:`IQJ1H 8: H.1J$JV 1Q`@ :JR`1C V`1J$:`V1I]CVIVJ VR:  .VGQ:`RCV0VC Q

:H.1V0V .1$.V` _%:C1 7 `:H Q`8  1 . :]]`Q]`1: V ]: 10V HQI]QJVJ 5 1V :H.1V0V

%JCQ:RVRF1J .V`:J$VQ`R1J .VQ% ]% JV 1Q`@` a8

;%C VRRVJ 1 7 :I]C1 %RV IQR%C: 1QJ ]`Q01RV  :J :C V`J: 10V Q GQ . HQJ0VJ 1QJ:C

C1JV:` ?$ IQR%C: Q`  :JR `VHVJ  $VJV`: 1QJ  Q` ]QC:` :JR VJ0VCQ]V `:H@1J$ ^._

7 VI  ` 5 a8  1 . ]%C VRRVJ 1 7 IQR%C: 1QJ5 11 H.1J$ CQ V  H:CV 11 . H:``1V`

:I]C1 %RV51I]`Q01J$V``1H1VJH7: CQ1]Q1V`CV0VC 8.1 1I]`Q0V :0V`:$VV``1H1VJH7

`Q` :JR:`R 11 ..1$.]V:@R QR:0V`:$V]Q1V``: 1Q^;;?_8/1JV:`1 71 :C Q1I]`Q0VR

GVH:% VH:``1V`:I]C1 %RV1 QJC7:`%JH 1QJQ`]%C VRRVJ 1 751.1H.H:JGV:HH%`: VC7

HQJ `QCCVRG7 .VR1$1 :C 7 VI817VC1I1J: 1J$ .VJVVR`Q`R7J:I1H %]]C7`V$%C: 1QJ5

.V ;  7 VI VC1I1J: V  1J.V`VJ  ]`QGCVI  11 . R5 R; R1 Q` 1QJ :JR

]Q1V` %]]C7JQ1 V1 %V ` a8 Direct Digital Modulation: A New Approach to Polar Systems 146





6.5.2 Architecture

a.) Polar system with PWM supply regulation

Pulse-Density- Modulation Amplitude Path Reactive Power Amplifier BPF Phase RF Φ Path b.) Polar system with PDM in the PA Figure 86. Candidate polar architectures

.V :`H.1 VH %`V 1J Figure 85 1  :J V6 VJ 1QJ Q` `:R1 1QJ:C %]]C7RIQR%C: VR ]QC:`

:`H.1 VH %`V V6HV]  .: H:``1V`:I]C1 %RV1 HQJ `QCCVR11 .]%C VRRVJ 1 7IQR%C: 1QJ8

&.Q1J1JFigure 865 .V]%C VRRVJ 1 7:`H.1 VH %`V1 :G:JR]: :J:CQ$7Q` .V;

%]]C7 IQR%C: VR :`H.1 VH %`V8  Q .1$.C1$.  .V R1 1JH 1QJ5 Figure 86R: .Q1  :

`:R1 1QJ:C %]]C7RIQR%C: VR ]QC:` 7 VI 1.V`V .V ; %]]C7 0QC :$V 1  HQJ `QCCVR

11 .]%C VR11R .IQR%C: 1QJ^;_8&11 H.1J$.:`IQJ1H 1J .V;1:0V`Q`I:`V Direct Digital Modulation: A New Approach to Polar Systems 147

`VIQ0VR11 .:`V:H 10VCQ1]: `1C V`CV:01J$QJC7 .VG: VG:JR:I]C1 %RVIQR%C: 1QJ

1$J:C8  J .V ]`Q]Q VR 7 VI Q` Figure 86RG5 : ]%C VRRVJ 1 7 IQR%C: 1QJ ^; _

]`QHV $VJV`: V  .VJ:``Q1G:JR:I]C1 %RV 1$J:CR1`VH C7:  .V?$H:``1V```V_%VJH78

J .1 H: V5:G:JR]: `1C V`: VJ%: V  11 H.1J$.:`IQJ1H  .: QHH%`GVH:% VQ` .V

; ]`QHV 8

.V]%C VRRVJ 1 7:]]`Q:H..:  V0V`:C:R0:J :$V Q0V` .V %]]C7RIQR%C: VR;

:]]`Q:H.8 R1 H% VR1J VH 1QJ885 .V; 7 VI1 R1``1H%C  Q1I]CVIVJ 1J

V`I  Q` G:JR11R . :JR V``1H1VJH78  .V ; 1J .V %]]C7RIQR%C: VR 7 VI Q` VJ

`V_%1`V ]`VR1 Q` 1QJR%V Q:RR1 1QJ:C Q%`HV Q`R:JRR;R1 Q` 1QJ8C Q5

0QC :$V `1]]CV ``QI ; 11 H.1J$ .:`IQJ1H  H:J I16 11 . .V ?$ H:``1V`5 H:% 1J$

]VH `:C`V$`Q1 .JV:` .VG:JRQ`1J V`V 8

J .V; 1I]CVIVJ : 1QJQ`Figure 86RG5 .V 7 VI1  1I]C1`1VR %H. .:  .V`V:`V

`V1V`R1 Q` 1QJIVH.:J1 I 8C Q5 .V; ]`QHV H:JGV1I]CVIVJ VR11 .R1$1 :C

.:`R1:`V5 %G :J 1:CC7`VR%H1J$ .V:J:CQ$HQI]CV61 7Q` .V 7 VI8 I:7:C QGV

V: 1V` Q :H.1V0V .1$. G:JR11R . 11 . :J Q0V` :I]CVR R1$1 :C 7 VI8  C0V` :I]C1J$

CV  .V 7 VI:H.1V0V.1$. `V QC% 1QJ5 1.1CV .:]1J$ .V ]VH `:C HQI]QJVJ  :1:7

``QI .VH:``1V```V_%VJH78&7 VIG:JR11R .1 QJC7C1I1 VRG7 .V :I]C1J$`: V:JR

Q% ]% `1C V`H.:`:H V`1 1H 8 Direct Digital Modulation: A New Approach to Polar Systems 148

Figure 87. Time and frequency domain examples for full- and half-amplitude modulation

&.Q1J1J$1$%`V 5 1Q :$V Q`JQ1 V .:]1J$HQJ `QC .V]%C VRVJ 1 7IQR%C: 1QJ

1:0V`Q`I %H. .: %J1:J VR ]VH `:CHQJ VJ 1 IQ0VR:1:7``QI .V 1$J:CG:JR8 

.VQ% ]% Q` .V 7 VI5 .V;R`10V :]%C V1:0V`Q`I11 . QR% 7H7HCV1J Q .V

I: H.1J$ JV 1Q`@ :JR G:JR]:  `1C V`8  .V .1$.RF Q% ]%  `1C V` : VJ%: V  .V

.:`IQJ1H :JR VCVH QJC7``V_%VJH7HQJ VJ :  .V?$H:``1V``%JR:IVJ :C8.V; 

]`QHV Q]V`: V : :J?$R HQJ0V` 1J$ .V.1$.R7J:I1H`:J$VG: VG:JR 1$J:C Q:

RG1  `V]`V VJ : 1QJ :  .V H:``1V` ``V_%VJH78  .V `1` R :$V ∆Σ IQR%C: Q` .:]V 

_%:J 1<: 1QJ JQ1 V 11 . : R1 H`V VR 1IV `:J `V` `%JH 1QJ8  .V Q% ]%  Q` .V ∆Σ

IQR%C: Q`HQJ `QC  .V VHQJR :$V]%C VRRVJ 1 7IQR%C: Q`8 11CCGVR1 H% VR1J

VH 1QJ 8 85 .V VHQJR :$VIQR%C: Q`% V ]`Q$`:IIVRG1J:`7HQRV  Q$VJV`: V

.V ]%C V 1:0V`Q`I :  .V ?$ H:``1V` ``V_%VJH78  .V %]HQJ0V` 1QJ GCQH@ I16V  .V

Q% ]% 11 . .V?$H:``1V` Q$VJV`: V .VHQ``VH :I]C1 %RV`Q` .VH:``1V`8.V;  Direct Digital Modulation: A New Approach to Polar Systems 149

]`QHV HQJ `QC  .V:I]C1 %RVQ` .VH:``1V``%JR:IVJ :CG7H.:J$1J$ .VRVJ 1 7Q`

]%C V :  .VH:``1V```V_%VJH78

.V ]%C VRRVJ 1 7 ]`QHV  H`V: V  : ]VH `%I 1I1C:` Q :I]C1 %RVRIQR%C: 1QJ8

&.Q1J1J$1$%`V 5 .VQ% ]% 1JHC%RV .:`IQJ1H  7IIV `1H:`Q%JR .VH:``1V` .: 

H:JHQJ :I1J: V .VQ% ]%  ]VH `%I88:`IQJ1H H:J:C QGV: Q%`HVQ`]Q1V`CQ 1J

.V 7 VI8 R1 H% VR1J` a5 .V]Q1V`R1 `1G% 1QJ1J]%C VRRVJ 1 7IQR%C: VR

1:0V`Q`I 1 :`%JH 1QJQ`IQR%C: 1QJRV] .^]%C VRVJ 1 7_:JR .V_%:C1 7`:H Q`Q`

= .VQ% ]% `1C V`8$Q` .VV6:I]CV1JFigure 87511 .CQ:RVR_%:C1 7`:H Q`Q`Qloaded 12 

:JR ]%C VRRVJ 1 7 Q` Q ^ R1 ]Q1V` G:H@Q``_5 :]]`Q61I: VC7 Q Q` .V .:`IQJ1H

]Q1V`1 HQJHVJ `: VR1J .VH:``1V`` a8

.1  J%IGV` 1$JQ`V  CQ  1J :H 10V :JR ]: 10V HQI]QJVJ  :JR `:CC  Q`` 11 .

RVH`V: 1J$]%C VRRVJ 1 78.V`1C V`1 RV 1$JVR QGV.1$.R1I]VR:JHVQ% Q`G:JR Q

GCQH@.:`IQJ1H]Q1V```QI`V:H.1J$ .V:J VJJ:8$Q` .V0QC :$VRIQRVHC: R ;5:

V`1V `V QJ:J /RI: H.1J$JV 1Q`@1 % VR: :`1`  :$V`1C V`8;:`:CCVC`V QJ:J `1C V` 

:`V :C Q ]Q 1GCV5 G%  1JH`V: V ]Q1V` CQ  G7 ]`Q01R1J$ CQ1R1I]VR:JHV :  .V Q% ]% 

.:`IQJ1H 8









 Direct Digital Modulation: A New Approach to Polar Systems 150





6.5.3 Pulse-density modulator (PDM)

Figure 88. Pulse-density modulator block

.V ;  GCQH@ 1J Figure 88 % V  ]`Q$`:IIVR HQRV 5 J1JV ]%C V  1J CVJ$ .5 Q

$VJV`: V VJ_%:J 1

HQRV :`V]`VR .:]VR Q`Q`HVQ% RQ`RG:JRJQ1 V:1:7``QI .VH:``1V`8

.V]%C VRRVJ 1 7IQR%C: Q`^; _GCQH@HQJ0V`  .VQ% ]% Q` .V∆ΣGCQH@ Q:R

G1 `V]`V VJ : 1QJ8.V∆ΣQ% ]% 1  :I]CVR11 .: 7JH.`QJQ% 8<HCQH@:JR

.VJ `VR 7JH.`QJ1

].: V 1J`Q`I: 1QJ_8  .V .1`  `V$1 V`  $VJV`: V : ;  1:0V`Q`I ``QI ]`VR

]`Q$`:IIVR G1J:`7 HQRV  Q`VR 1J :J QJRH.1] ?C8  .V HQRV  `V]`V VJ  G1 

V_%VJHV  HQ``V ]QJR1J$ Q RCV0VC :I]C1 %RV _%:J 1<: 1QJ8  QJV  ``QI .V

]`Q$`:IIVR G1  V_%VJHV  QHH%` `:` ``QI .V H:``1V` ``V_%VJH7 Q I:61I1

: VJ%: 1QJ8.VHCQH@`VHQ0V`71J0V`  .V].: VQ` .VHCQH@RV]VJR1J$QJ .V]QC:`1 7

G1 8  .1  :CCQ1  ]QC:`1 7 1J`Q`I: 1QJ Q GV 7JH.`QJ1

VC1I1J: 1J$ 11RVG:JR ].: V 1J0V` 1QJ  1J .V ].: V ]: .5 :  11CC GV R1 H% VR 1J .V

JV6  VH 1QJ8.V; $VJV`: 1QJGCQH@I16V  .V;  1$J:C``QI .V .1` R`V$1 V` 

11 . .V?$HCQH@8.V?$HCQH@HQJ :1J ].: V1J`Q`I: 1QJ:JR .V;  1$J:CHQJ :1J 

:I]C1 %RV1J`Q`I: 1QJ8.V`V %C 1 :]QC:`IQR%C: VRRG1 Q% ]%  .: 1 ]`Q01RVR Q

.VHC: R ;8

$Q`V6:I]CV5: .:C`:I]C1 %RV5 .V V_%VJHV$VJV`: V :C V`J: 1J$:

J .1  H: V5 .V HCQ V  .:`IQJ1H 1  :  1L% 1.V`V 1 1  .V H:``1V` ``V_%VJH78  .1 

HQJHV] 1 .1$.C1$. VR1JFigure 878;`VR .:]VRHQRV :`V% VR Q$VJV`: V:I]C1 %RV 

. 1JH`V: 1J$: L Q` .V`%CC H:CV:I]C1 %RV8.1 ]C:HV  .V1Q` RH: V QJV: 1L 5

Q` 8<:1:7``QI .V8K8<H:``1V`8.V ]VH `:CHQI]QJVJ Q` .V]`VR .:]VR

HQRV :`VR10V` 1`1VR %H. .:  .VQ% ]%  QJV :`V %G :J 1:CC7`VR%HVRG7 .V`1` R

:$V∆Σ]`QHV 8





6.5.4 Polarity Bit

Direct Digital Modulation: A New Approach to Polar Systems 152

Figure 89. 1-Bit polarity feedforward to reduce power from rapid phase transitions

π 5π Figure 90. Constellation diagram for 8DPSK with feedforward phase transition: → 4 4

Direct Digital Modulation: A New Approach to Polar Systems 153

Figure 91. Polarity bit significantly reduces high frequency power in the RF clock signal waveform by smoothing phase transitions near origin

  IVJ 1QJVR 1J VH 1QJ 885 `:]1R ].: V `:J 1 1QJ  H:J QHH%` 1.VJ .V

HQJ VCC: 1QJ `:=VH Q`7]: V JV:` .VQ`1$1J8J:HQJ0VJ 1QJ:C:` V 1:J:`H.1 VH %`V5

.V RF 0VH Q`  `VI:1J C1JV:` 1JHV .V :I]C1 %RV :C Q :]]`Q:H.V 

8Q1V0V`5 1J : ]QC:` 7 VI5 .V ].: V 1$J:C I:1J :1J  `%CC :I]C1 %RV5 H`V: 1J$ .1$.

``V_%VJH7 ]VH `:C HQJ VJ 8  Figure 90 .Q1  .V HQJ VCC: 1QJ R1:$`:I `Q` ;&G

IQR%C: 1QJ81 . ;&G5 .V 1$J:C `:=VH Q`7H:J]:  .`Q%$. .VQ`1$1J5H:% 1J$%]

 Q    1J :J :JVQ%  ].: V .1` 8  .1  `:]1R ].: V .1`  1  R1``1H%C  Q $VJV`: V 1J :

`V:C1 1H].: VIQR%C: Q`:  .V`V1 % %:CC7:C1I1 QJ .VG:JR11R .Q` .VIQR%C: Q`8 Direct Digital Modulation: A New Approach to Polar Systems 154

Q `VR%HV .V ]VH `:C HQJ VJ  ``QI `:]1R ].: V `:J 1 1QJ 5 1V % V 1J$CV G1 

`VVR`Q`1:`R Q` ]QC:`1 7 1J`Q`I: 1QJ 1J .V R1$1 :C 7 VI8  .V ]QC:`1 7 G1  `:J I1 

].: V1J0V` 1QJ  Q .V`1J:CR1$1 :C%]HQJ0V` 1QJ :$V1J .V]QC:`:`H.1 VH %`V8.V

]QC:`1 7G1 H:JGV .Q%$. Q`: :`VVR`Q`1:`RIVH.:J1 IVJHQR1J$`:]1R].: V .1` 

1J .V HQJ VCC: 1QJ R1:$`:I8  Figure 89 .Q1  .V H.VI: 1H `V]`V VJ : 1QJ Q` .V

R1$1 :C `:J I1 V`11 .]QC:`1 7`VVR`Q`1:`R8.VR1$1 :CG: VG:JRRV V`I1JV 1.VJ:

]QC:`1 7 .1`  QHH%`  :JR ]`Q01RV  : RG1  1$J:C Q .V %]HQJ0V` 1QJ ]`QHV 8  .VJ

 ]QC:`1 7 H.:J$V 5 .V %]HQJ0V` 1QJ HCQH@ 1  1J0V` VR5 Q` .1` VR G7   8    1  :C Q

  ]Q 1GCV QI%C 1]CV6GV 1VVJ :JR  CQH:CQ H1CC: Q`  Q$%:`:J VV 7IIV `71J .V

1J0V` 1QJ8J`% %`V1I]CVIVJ : 1QJ 1 I:7:C QGV]Q 1GCV Q% VR].: V_%:R`: %`V

    HCQH@ 1$J:C ^ 5  5  5:JR  _5 %H. .:  .V`:J$VQ` .V].: VIQR%C: Q`1 QJC7

QJV_%:R`:J Q` .VHQI]CV6]C:JV8

1 .:JVJ 1`VC7R1$1 :C `:J I1 V`51 1  `:1$. `Q`1:`R Q 7JH.`QJ1

1VH:% V :I]C1 %RV :JR ].: V JVVR Q GV :C1$JVR `Q` ]`Q]V` ]QC:` VJHQR1J$ Q` .V

1$J:C5 .VG: VG:JR^Q`].: VIQR%C: Q`H1`H%1 `7_1 :1:`VQ` .V 1I1J$HQJ `:1J 

GV 1VVJ :I]C1 %RV :JR ].: V8   1J$ .1  1J`Q`I: 1QJ .V ]QC:`1 7 1J0V` 1QJ H:J GV

7JH.`QJ1

$C1 H.V 1J .V]QC:` 7 VI8

Figure 91 .Q1  .V 1IVR:JR``V_%VJH7RRQI:1JV``VH Q`% 1J$ .V]QC:`1 7G1 8.V

RFR: :1JFigure 91`V]`V VJ : 1J$CV:;Q`:F;G: 1 0VH Q`: 1Q%CRGV .VH: V11 . Direct Digital Modulation: A New Approach to Polar Systems 155

HQJ :J RVJ0VCQ]V :` V 1:J `V]`V VJ : 1QJ Q` .V ].: VR]: . 1$J:C8  J .V 1IVR

 RQI:1J5 .VRF`V]`V VJ : 1QJ .Q1 `V1V``:]1R `:J 1 1QJ :  .V   `:J 1 1QJ :`V

JQ1 VJHQRVR 11 . .V `VVR`Q`1:`R 1$J:C8  J .V ``V_%VJH7RRQI:1J5 .1$. ``V_%VJH7

]Q1V`1J .VRF 1$J:C 1  %G :J 1:CC7`VR%HVR8 8<5 .V`V1 IQ`V .:J:R1

`VR%H 1QJ1J .VRF 1$J:C]Q1V`8.1  1$J1`1H:J C7`VC:6V  .VG:JR11R .`V_%1`VIVJ 

Q` .V].: VIQR%C: Q`H1`H%1 `78

RF-out

∆Σ Process remains linear

Digital-in

 Figure 92. Effect of polarity on amplitude quantization - ∆Σ process remains linear near zero

.V].: VR`VVR`Q`1:`R `: V$7.: :R1``V`VJ V``VH QJ .V:I]C1 %RV]: .81 .

.V]QC:`1 7G1 5 .V:I]C1 %RVH:JGV `V: VRJ%IV`1H:CC7: :G1R]QC:` 1$J:C8&.Q1J1J

Figure 915 .V 1IVR :JR ``V_%VJH7RRQI:1J `V]`V VJ : 1QJ :`V J%IV`1H:CC7 R1``V`VJ 8

8Q1V0V`5 .1  1  QJC7 :J :` 1`:H  Q` .V R1$1 :C `V]`V VJ : 1QJ8  ?V:C1 1H:CC75 .V

:I]C1 %RV ]: . 11CC `V_%1`V .V :IV G:JR11R . :  GV`Q`V Q H:``7 .V VJ0VCQ]V

1J`Q`I: 1QJ8.VGVJV`1 Q`]QC:`1 7VJHQR1J$1 1J .VC1JV:`1 7Q` .V∆ΣJQ1 VR .:]1J$ Direct Digital Modulation: A New Approach to Polar Systems 156

]`QHV 81 .]QC:`1 75 .V∆Σ]`QHV RQV JQ  : %`: V: 

.VJQ1 VR .:]1J$]`QHV `VI:1J C1JV:`JV:`

GV JV$: 10V8  17 ]`V0VJ 1J$ :I]C1 %RV : %`: 1QJ : 

$VJV`: V JV:`R

.:JRCV :JR:`R 1.V`V .V:I]C1 %RV$QV  Q

V``VH 10VC7 .:J11 .Q% ]QC:`1 71J`Q`I: 1QJ8

6.5.5 ∆∆∆Σ∆ΣΣΣ Noise-shaping process

J .1  1Q`@5 .V ∆Σ IQR%C: Q` 1J V``:HV  GV 1VVJ .V .1$.R`V QC% 1QJ G: VG:JR

1$J:C :JR .V ]%C VRRVJ 1 7 IQR%C: Q`8  .V _%:J 1

]QC:`1 7 Q` .V RG1  `V]`V VJ : 1QJ8   ?C RVHQRV` I:]  .V G1R]QC:` RCV0VC

_%:J 1<: 1QJ Q RG1  11 . ]QC:`1 7 `Q` .V JV6 R :$V ;  GCQH@8  1 . .V 7 VI

HCQH@VR:  .VG: VG:JR``V_%VJH7Q`8<5]V:@ 1J .VJQ1 V ]VH `%I:`VQ`` V 

``QI .VH:``1V```V_%VJH7G7 8<8

A = I 2 + Q 2

Figure 93. Error-feedback digital ∆Σ modulator

Direct Digital Modulation: A New Approach to Polar Systems 157

.V∆ΣIQR%C: Q`1 1I]CVIVJ VR11 .:R1$1 :CV``Q`R`VVRG:H@ `%H %`V5:  .Q1J1J

$1$%`V 8 R1 H% VR1J VH 1QJ 85 .VV``Q``VVRG:H@ `%H %`V .:]V _%:J 1<: 1QJ

Y (z) JQ1 V11 . `:J `V``%JH 1QJ NTF(z) = = G(z) 51.V`V .VV``Q`R `:J`V`R`%JH 1QJ%1  E(z)

G(z) −1` a8.1 ]`Q01RV `CV61G1C1 71J:`%CC7R1$1 :C 7 VI1.V`V1 1  `:1$. `Q`1:`R

Q H.:J$V .V R1 H`V VR 1IV ^<_ $? `:J `V` `%JH 1QJ8  J Figure 935 `Q` V6:I]CV5

− 2 G(z) = (1− z 1 ) 5 %H. .:  .V`V:`V 1Q

-30

-50

-70 POWER (dBm) POWER

-90 0 10 20 30 40 50 FREQUENCY (MHz) Figure 94. Example baseband 3rd order ∆Σ modulator spectrum with a notch at ±12MHz, − − − G(z) = −z 3 + 5.2 z 2 − 5.2 z 1

Direct Digital Modulation: A New Approach to Polar Systems 158

Figure 95. ∆Σ Modulator: 1st, 2nd, 3rd order comparison, all zeros at 2.4GHz

$1$%`V :JR$1$%`V .1$.C1$.  .V`CV61G1C1 7Q` .VV``Q`R`VVRG:H@ 7 VI8$1$%`V

 .Q1  .V 1I%C: VR`V ]QJ VQ`: .1`RRQ`RV``1C V`11 . 1QHQI]CV6

.V CQQ] `1C V` 1  ]C:HVR :]]`Q61I: VC7 8< ``QI .V H:``1V`8  7Q H.V  1J .V

_%:J 1<: 1QJJQ1 V ]VH `%II:7GV% V`%C Q.VC]IVV  ]VH `:CI: @`V_%1`VIVJ 1J

QIV H1`H%I :JHV 8  J`Q` %J: VC75 .1$.V` Q`RV` IQR%C: Q`  :C Q 1JH`V: V .V ]V:@

± ^%J`1C V`VR_ _%:J 1<: 1QJ JQ1 V .:  QHH%`  JV:` f 0 f S 5 1.V`V f 0  1  .V H:``1V`

∆Σ ``V_%VJH7:JR f S 1  .V :I]C1J$``V_%VJH7Q` .V IQR%C: Q`8JI:J7H: V 5 .V

]V:@Q% RQ`RG:JRJQ1 V1  .VC1I1 1J$`:H Q`QJ ]VH `:CI: @HQI]C1:JHV8` Q5CQ1V`

Q`RV`IQR%C: Q` H:J]`Q01RVCQ1V`]V:@JQ1 V:  .V `:RVQ``Q`.1$.V`1JRG:JRJQ1 V8

Figure 95 .Q1  .V 1I%C: VR``V_%VJH7 `V ]QJ VQ` .V 7 VI 11 . 0:`1Q%  CQQ]

`1C V` `Q`: %]]`V VRH:``1V` 1$J:C8.V`RQ`RV` 7 VI.:  .VCQ1V JQ1 V:  Direct Digital Modulation: A New Approach to Polar Systems 159

.VHVJ V```V_%VJH75G% .1$.V ]V:@Q% RQ`RG:JRJQ1 V8.V`1` RQ`RV` 7 VI.: 

CQ1V`]V:@Q% RQ`RG:JRJQ1 V5G% I:7.:0V QJV 1J .VQ% ]%  ]VH `%I`Q`HV` :1J

1J]%  1$J:C 8 VHQJRRQ`RV``1C V`:H.1V0V GQ .`:0Q`:GCVJQ1 VR .:]1J$:JR`VR%HVR

]Q 1G1C1 7 Q` QJV  1J .V Q% ]%  ]VH `%I8  .V VHQJRRQ`RV` `1C V` 1:  % VR 1J .V

V6]V`1IVJ :C]`Q Q 7]V8

6.5.6 Class-D PA

Figure 96. Complementary class D PA schematic

&11 H.1J$ ]Q1V` :I]C1`1V`  `:R1 1QJ:CC7 % V JRH.:JJVC ]Q1V` RV01HV  GVH:% V Q`

.1$.V`IQG1C1 78.1 CV:R  Q I:CCV`RV01HV :JRCQ1V` 11 H.1J$CQ V 8C: R.:JR

HC: R$ Q` R 11 H.1J$ VH.J1_%V  1I]`Q0V V``1H1VJH7 %JRV` JQ`I:C H1`H%I :JHV  G7

`VR%H1J$]Q1V`CQ  Q`V:H 10V]:`: 1 1HHQI]QJVJ `a88Q1V0V`5 .V V:I]C1`1V` 

`VC7 QJ .V Q% ]%  JV 1Q`@ Q .:]V .V 0QC :$V 1:0V`Q`I :H`Q  .V :H 10V RV01HV8

.1 H:J`V %C 1J.1$.0QC :$V `V 8QRV`JC&]`QHV V .:0V`: :H 10VRV01HV 

.: :`VHQJ `:1JVRG7CQ1G`V:@RQ1J0QC :$V 8J .1  HVJ:`1Q5 .VHQI]CVIVJ :`7

HC: R Q% ]%  :$V.: :R0:J :$V Q0V`IQ`V `:R1 1QJ:C Q]QCQ$1V 8 Direct Digital Modulation: A New Approach to Polar Systems 160

&.Q1J1JFigure 965G7% 1J$:HQI]CVIVJ :`7Q% ]%  :$V11 .:H 10V;C&]%CCR%]

`:J 1 Q` 5 .VR`:1J0QC :$V1 : _%:`V1:0V8I]Q` :J C75 .VQ% ]%  :$V1 :C1:7 

CQ1 1I]VR:JHV CQQ@1J$ G:H@ 1J Q .V 11 H.1J$ JQRV8  .1  VJ:GCV  .1$. C1JV:`1 7 1J

]%C VRRVJ 1 7Q]V`: 1QJ:JRI:@V  .VHC: R  :$V`QG% :$:1J 1I]VR:JHV0:`1: 1QJ

Q` .VQ% ]% JV 1Q`@8C: R.:JRHC: R$ Q]QCQ$1V :`V VJ 1 10V Q0:`1: 1QJ1J .V

CQ:R 1I]VR:JHV8  .0VJ 1` .V Q% ]%  JV 1Q`@ 1  1RV:C5 HC: R$ Q]QCQ$1V  H:J QJC7

:]]`Q61I: V: _%:`V1:0VG7GCQH@1J$0:`1Q% HQIG1J: 1QJ Q` 11 H.1J$.:`IQJ1H 8

J : `V:C1 1H VJ01`QJIVJ 5 .V V Q]QCQ$1V  :`V C1I1 VR G7 Q61RV `V  1J .V :H 10V

RV01HV :  .VR`:1J0QC :$VH:J 11J$:GQ0V .V %]]C70QC :$V8

J`a5`1$%`V Q`IV`1 :`V: 1$JVR QR1``V`VJ  11 H.1J$:I]C1`1V` `Q`HQI]:`1 QJ8

1Q1I]Q` :J `1$%`V Q`IV`1 ^$C_:`V`VC: VR Q .V0QC :$V:JRH%``VJ  `V V 1J

.VRV01HV7

V ≡ pk FV 5 ^ _ VDC

I ≡ rms FI . ^ _ I DC

J ^ _ :JR ^ _5]@ :JR :`V .V ]V:@ :JR  0QC :$V  :  .V R`:1J Q` .V :H 10V

RV01HV5:JR!`I:JR!:`V .V?&:JR H%``VJ 8.V`1$%`VQ`IV`1 1 1JR1H: 10V

Q`Q61RV `V 1J .V:H 10VRV01HV881$.V`1I]C1V .1$.V`R`:1J0QC :$V 11J$`VC: 10V

Q .V %]]C78    1  `VC: VR Q .V V``1H1VJH7 Q` .V :I]C1`1V` Q]QCQ$78  81$.V` ?&

H%``VJ CV0VC ``QI.1$.]V:@H%``VJ `V %C 1J1JH`V: VR`V 1 10VCQ V 1J .V 11 H.V 8 Direct Digital Modulation: A New Approach to Polar Systems 161



Table IV. COMPARISON: FV-FI FIGURE OF MERIT FOR VARIOUS AMPLIFIER CLASSES (DATA FOR CLASS E, F-1, F2,3,4,5 FROM [34])

Amplifier Class FV FI E 3.56 1.54

F-1 3.14 1.41

E/F2,3,4,5 3.20 1.45 D 2.00 1.57 

Table IV HQI]:`V  .V HC: R  Q]QCQ$7 Q Q .V` 11 H.1J$RHC:  :I]C1`1V` 8  C61RV

`V : :`%JH 1QJQ` %]]C70QC :$V1 CQ1V``Q`HC: R 5V ]VH1:CC7HQI]:`VR QHC: R.8

.1  :CCQ1  .V RV01HV  Q RVC10V` .1$.V` :0V`:$V ]Q1V` Q .V CQ:R `Q` : $10VJ ]V:@

Q61RV `V 8&1JHVV:H. 11 H..: .:C`R1:0V 1J% Q1R:CR`:1JH%``VJ 5 1 HQI]:`:GCV

Q .VQ .V` :I]C1`1V` Q]QCQ$1V 8  J 1I]Q` :J  :R0:J :$V Q` .V HC: R  :I]C1`1V` 1 

.:  .V Q% ]%  :$V 1  :C1:7  CQ1 1I]VR:JHV8  :`1: 1QJ 1J .V 1I]VR:JHV Q` .V

Q% ]% JV 1Q`@H:% VRG7CQ:R]%CC``QI .V:J VJJ:RQV JQ :``VH  :JR`: 1Q 8

.1  I:@V  .V HC: R Q% ]%  :$V`QG%  :$:1J  1I]VR:JHV 0:`1: 1QJ HQI]:`VR Q

Q .V` 11 H.1J$:I]C1`1V` Q]QCQ$1V 8

.V `:R1 1QJ:CR1 :R0:J :$VQ` .VHQI]CVIVJ :`7HC: R  Q]QCQ$71  .V% VQ`]R

H.:JJVCRV01HV 11 .CQ1V``  .:J .VJRH.:JJVCRV01HV 8.1 1JH`V: V H:]:H1 :JHV5

`VR%H1J$V``1H1VJH7HQI]:`VR Q7C&RQJC7 Q]QCQ$1V 88Q1V0V`51JRVV]R %GI1H`QJ

]`QHV V 5]RH.:JJVCRV01HV I:7.:0V` 1JV6HV Q`K8<`a8 V01HV H:C1J$`%` .V`

1I]`Q0V  Q]V`: 1QJ ``V_%VJH1V  :JR `VR%HV  11 H.1J$ CQ V  `a8  J .1  RV 1$J .V Direct Digital Modulation: A New Approach to Polar Systems 162

:R0:J :$V Q` % 1J$ : CQ1R1I]VR:JHV HQI]CVIVJ :`7 Q% ]%  :$V Q% 1V1$.  .1$.V`

CQ V 1J .V]RH.:JJVCRV01HV8

C: R 1 :C QIQ`VC1JV:`11 .]%C VRRVJ 1 7IQR%C: 1QJ .:JQ .V`:I]C1`1V`HC: V 8

$Q` .V]%C VRRVJ 1 7IQR%C: 1QJ H.VIV5 .VHC: R Q% ]%  :$V.:  .V:R0:J :$V

.:  .VR`:1J0QC :$V1:0V`Q`I1 JQ :``VH VRG7]%C VR @1]]1J$8$Q`HC: R.Q`$5 .V

:` %] 1IV Q :H.1V0V JQI1J:C V:R7 : V Q]V`: 1QJ H:J CV:R Q R1 Q` 1QJ8  .1 

VHQJRRQ`RV` V``VH  1  H:% VR G7 `VC1:JHV QJ .V Q% ]%  JV 1Q`@ Q .:]V .V R`:1J

0QC :$V1:0V`Q`I8QC :$VRIQRVHC: R :I]C1`1V` `Q`HV:JV:`C71RV:CR`:1J0QC :$V

GVH:% V .V 11 H.1J$RJQRV1 :C1:7 CQ11I]VR:JHV8C: R :I]C1`1V` :`VCV C1@VC7

Q JVVR ]`VR1 Q` 1QJ Q HQI]VJ : V R :JR R; R1 Q` 1QJ .:J HC: R. Q`

HC: R$:I]C1`1V` R%V Q1J.V`VJ Q]VJRCQQ]C1JV:`1 71J; Q]V`: 1QJ8

6.5.7 CMOS Class D PA Implementation

Figure 97. Schematic representation of class-D power amplifier with cascode output stage

Direct Digital Modulation: A New Approach to Polar Systems 163

Figure 98. Current recycling scheme: excess current from PMOS drive stage used by digital processing

source drain source drain

current

5µm

G C C G G C  Figure 99. Class-D PA output stage NMOS layout: gate and cascode share diffusion region to reduce junction capacitance

Figure 97 .Q1  .V H.VI: 1H Q` .V C& HC: R  ;8  Q :H.1V0V .1$.V` Q% ]% 

]Q1V`5 .VQ% ]%  :$V% V H: HQRVRV01HV 5:CCQ11J$.1$.V`0QC :$VQ]V`: 1QJ8.V

Q% ]% RV01HV :`V .1JRQ61RV `:J 1 Q` 11 ..1$.` 1.1H.H:J:H.1V0V.1$.V`V``1H1VJH7 Direct Digital Modulation: A New Approach to Polar Systems 164

.:J .1H@RQ61RVRV01HV `Q` .V :IV %]]C70QC :$V` a8.V;Q]V`: V 11 .:.1$.

0QC :$V`:1C5Y85:JR:HVJ V`0QC :$V`:1C5.:C`Y88.1 C1I1  .VI:61I%I

Q61RV `V  Q81JJQ`I:CQ]V`: 1QJ8

&.Q1J 1J Figure 985 .V .:C` JQRV 1  .:`VR G7 .V .1$.R 1RV :JR CQ1R 1RV R`10V` 

%H. .:  H%``VJ  ``QI R`101J$ .V ;C& Q% ]%  RV01HV 1  `V% VR Q R`10V .V 7C&

RV01HV8.V`V1  7]1H:CC7V6HV H%``VJ ``QI .V;C&R`10V` GVH:% V .V;C&1 

11HV .V 1

]`QHV 1J$ GCQH@5 ]`Q01RVR .:  0QC :$V `:J 1VJ  :`V :RV_%: VC7 `1C V`VR8  .V .:C`

JQRV ]Q VJ 1:C1 `V$%C: VR11 .:JQ``RH.1]]Q1V` %]]C78]$QJRH.1]G7]: 

H:]:H1 Q` %]]C1V  .1$.R``V_%VJH7 H%``VJ  ``QI .V  JQRV8  &1I1C:` G7]: 1J$ 1 

]C:HVRQJ .V.:C`JQRV8

.VQ% ]%  :$V1  1

11 .G:C:JHVR 11 H.1J$:JRHQJR%H 1QJCQ `Q`8K8<Q]V`: 1QJ8.VQ% ]%  :$V1 

.:`R 11 H.VR QI:1J :1J:HH%`: VHQJ `QCQ` .V]%C VRRVJ 1 7IQR%C: 1QJ1:0V`Q`I8

8:`R 11 H.1J$ 1  ]V``Q`IVR G7 1J0V` V` R`10V` 5 1.1H. :`V H:CVR 11 . :]]`Q61I: V

`:JQ%  Q` .`VV8  &.Q1J 1J Figure 995 V:H. H: HQRV RV01HV 1:  G%1C  Q .:`V .V

R1``% 1QJ`V$1QJQ` .V 11 H.1J$RV01HV1JQ`RV` Q`VR%HV]:`: 1 1H=%JH 1QJH:]:H1 :JHV

:  .VH: HQRVJQRV8.V`1J$V`11R .`Q`GQ .H: HQRV:JR 11 H.1:  -I QI1J1I1

$: V`V 1 :JHV8 Direct Digital Modulation: A New Approach to Polar Systems 165

Figure 100. Level shift and deadtime control

.VCV0VC .1` GCQH@5 .Q1J1JFigure 10051 % VR Q1J V``:HV .VJQI1J:C8R1$1 :C

]`QHV 1J$GCQH@ Q .V;Q% ]% RV01HV 8.V:`H.1 VH %`V1  1I1C:` Q .: ]`Q]Q VR

1J` a8/: H.1J$ `%H %`V 1V`V% VR Q`V Q`V 1$J:C 11J$QJ1J V`IVR1: VJQRV 8

Q%]C1J$H:]:H1 Q` 1JH`V: V``V_%VJH7`V ]QJ VQ` .VR1$1 :C 1$J:C 8 V:R 1IVHQJ `QC

1 1I]CVIVJ VR11 .`16VRRVC:7Q` ] 1J .V.1$.R 1RV:JRCQ1R 1RV 1$J:C]: . 8.V

RV:R 1IV H1`H%1  ]`V0VJ  .QQ R .`Q%$. H%``VJ  :JR 7JH.`QJ1

0QC :$V 1:0V`Q`I 8  .V ]  RV:R 1IV Q] 1I1

`V: QJ:GCV G%``V` `Q` ]`QHV  :JR VI]V`: %`V 0:`1: 1QJ8  J .V RV:R 1IV H1`H%1 5

H:]:H1 Q` :`V]C:HVRGV 1VVJ .V.1$.R 1RV:JRCQ1R 1RV 1$J:C  Q: %`V]`Q]V` 1IVR

:C1$JIVJ 8





 Direct Digital Modulation: A New Approach to Polar Systems 166



6.5.8 System Implementation

FPGA On-Board On-Chip

) A ( de u it pl m A Matlab Labview

Figure 101. System-level implementation of Bluetooth transmitter

Figure 102. Die Photo of CMOS class D PA and RF pulse-density modulator circuits 

.V 7 VI1 1I]CVIVJ VR11 . 1Q V H.1] 1J JIC&8`1` H.1]HQJ :1J 

 .V HC: R  ; :JR R`10V`  ^:H 10V :`V: 8 II _8   VHQJR H.1] HQJ :1J  .V ; 

 `%H %`V5 7JH.`QJ1<: 1QJ5HCQH@`VHQ0V`7:JR?C^:H 10V:`V:8II _8R1V].Q Q1 

.Q1J1JFigure 1028.VG: VG:JR:JR∆ΣIQR%C: Q`:`V1I]CVIVJ VR1J:J$;K8 Direct Digital Modulation: A New Approach to Polar Systems 167

.V 7 VI1  V VR11 .:/:G01V1; V %]11 .?$%]HQJ0V` V`:JRRQ1JHQJ0V` V`8

.VC:G01V1 7 VI:JR$;K% V: 7JH.`QJQ% HCQH@ Q]V``Q`I 1IVR:C1$JIVJ Q` .V

:I]C1 %RV:JR].: V 1$J:C 8.VQ% ]% `1C V`1 1I]CVIVJ VRQ``RH.1]:JRHQJ 1 Q`:

`:R1 1QJ:C /RI: H.1J$ JV 1Q`@ :JR :J :RR1 1QJ:C G:JR]:  `1C V` HQI]QJVJ 8  .V

G:JR]:  `1C V` 1  : EQ.:J QJ  1; 1 HQI]QJVJ  `Q` .V 8 K8< G:JR 11 .

8R1I:61I%I1J V` 1QJCQ 8

6.5.9 Experimental results

2 V

RF Pulse- Density 1-bit PA Modulator (@ 2.4GHz)

RFclk Class-D (φ)

Figure 103. Block diagram of the experimental setup

.V V6]V`1IVJ :C V %] 1  .Q1J 1J Figure 1038  .V :I]C1 %RV ]: . Q` .V R1$1 :C

]QC:` `:J I1 V` 1  HQJ `QCCVR G7 : 7C1J6 $;K8  .V ?$ HCQH@ HQJ :1J1J$ ].: V

1J`Q`I: 1QJ1 1I]CVIVJ VR1J/:G01V1:JR %]]C1VRR1`VH C7 Q .VH.1]8.V/:G01V1

%]HQJ0V` V` 1  7JH.`QJ1

Q%`HV1 :C Q% VR Q 7JH.`QJ1

.V ].: V Q` .V ?$ HCQH@ 1  :R=% VR %J 1C .V 7 VI `V:H.V  I:61I%I .

]V``Q`I:JHV8

a.) PA output with 200MHz clock signal 1.0 0.75

0.50

0.25

0.0

-0.25

-0.50

-0.75

-1.0

0.0 25 50 75 100 125 150 175 200 225 250 Time (us)

b.) Downconverted transmitter output with 2.4GHz clock, linear ramp signal programmed into amplitude path Figure 104. Time-domain waveforms at transmitter output

Figure 104 .Q1  1IVRQI:1J1:0V`Q`I :  .VQ% ]% Q` .V 7 VI8Figure 104R:

.Q1  .V H`VVJH:] %`VQ`:JQ H1CCQ HQ]V1:0V`Q`I:  .VQ% ]% Q` .V;R%`1J$

; Q]V`: 1QJ8.V 7 VIHCQH@1  CQ1VR Q8< QVJ:GCV .VQ H1CCQ HQ]V Q Direct Digital Modulation: A New Approach to Polar Systems 169

H:] %`V .V ?$ 1:0V`Q`I8  .V ; Q% ]%  1  .Q1J Q @1] ]%C V  Q H`V: V .V

:I]C1 %RVRIQR%C: VRQ% ]% Q` .V 7 VI8

Figure 104RG .Q1  .V Q% ]%  Q` .V ]QC:` `:J I1 V` :` V` .V /:G01V1

RQ1JHQJ0V` V`11 .8K8<H:``1V```V_%VJH78.V:I]C1 %RV 1$J:C1 ]`Q$`:IIVR Q

GV:`%CCR H:CVC1JV:``:I] 1$J:C11 .]QC:`1 78` V` .VRQ1JHQJ0V` V`5 .VC1JV:``:I]

I: H.V  .VRV 1`VR]: V`J11 .Q% RV01: 1QJQ`JQ 1HV:GCVR1 Q` 1QJ8.V]QC:`1 7Q`

.VVJ0VCQ]V 1$J:CH.:J$V : 

45% 20

18 35% 16

14

Efficiency 25% 12 Output Power (dBm) Power Output 15% 10 1.4 1.6 1.8 2 2.2 2.4 Supply Voltage (V) Figure 105. Efficiency and output power vs supply voltage

VHV=2.0V, Vhalf=1.0V, fo=2.4GHz, Tamb=27oC 3.0 40%

30% 2.0

20% 1.0 Efficiency Efficiency

10% (V) Amplitude

0% 0.0 0 1 2 3 4 5 6 7 8 9 Code (# pulses in 9 full RF-clock cycles) Figure 106. Efficiency and linearity0]%CVRRVJ1 7 Direct Digital Modulation: A New Approach to Polar Systems 170

Figure 105 .Q1  .V Q :CQ% ]% ]Q1V`:JRV``1H1VJH7Q` .VHC: R ;:H`Q  %]]C7

0QC :$V11 .`%CCIQR%C: 1QJ^]V:@]Q1V`_88V`V5V``1H1VJH71JHC%RV ]Q1V`Q` .V;

R`10V`  :JR CQ  1J .V I: H.1J$ JV 1Q`@5 G%  RQV  JQ  1JHC%RV 1J V` 1QJ CQ  Q` .V

G:JR]:  `1C V`8  .V ]V:@ Q% ]%  ]Q1V` Q` R1I QHH%`  `Q` .V I:61I%I %]]C7

0QC :$VQ`8^I:61I%IQ61RV `V Q`8_8.V]V:@V``1H1VJH7Q`8 QQHH%` `Q`

: %]]C7 0QC :$V Q` 88  1 . .V G:JR]:  `1C V` 1JHC%RVR5 ]V:@ V``1H1VJH7 1: 

IV: %`VR:  8 Q8Figure 106 .Q1 C1JV:`1 7:JRV``1H1VJH7: V:H.Q` .VRCV0VC Q`

:I]C1 %RV _%:J 1<: 1QJ8  /1JV:`1 7 `Q` .V ; 1  .1$. 11 . ]%C VRRVJ 1 7 IQR%C: 1QJ8

I]Q` :J C75V``1H1VJH7 :7 .1$.V`: CQ1V`]Q1V`CV0VC  .:J11 . 7]1H:CHC: L1

]Q1V`:I]C1`1V` 8.``1H1VJH7Q` .V;51JHC%R1J$R`10V`]Q1V`5 :7 :GQ0V Q`Q`R1

]Q1V`G:H@Q``8

12

10

8

6

4 Power (mW) (mW) Power

2

0 0 0.5 1 1.5 2 2.5 3 Carrier Frequency (GHz) without current recycle with current recycle

Figure 107. Power of digital processing (pulse-density modulation, clock recovery, sampling and synchronization) with and without current recycling scheme. Measured as power drawn from Vhalf regulator Direct Digital Modulation: A New Approach to Polar Systems 171

.V :0V`:$V V``1H1VJH7 Q` .V 7 VI 1  `%` .V` 1I]`Q0VR 11 . : H%``VJ  `VH7HC1J$

H.VIV8&.Q1J1JFigure 985 1JHV .V.:C`JQRV1J .V;Q]V`: V : 85 .1 JQRV

H:JGV .:`VR11 . .V8JQRV8.1 :CCQ1 V6HV H%``VJ ``QIR`101J$ .V;C&

]Q1V`RV01HV1J .V;1 % VR Q]Q1V` .V`VI:1J1J$8H1`H%1 `78 8K8< .1 

`VR%HV  .VH%``VJ R`:1J``QI .V8 %]]C7``QI8 I Q8 I8.VH%``VJ 

`VH7HC1J$ H.VIV:CCQ1  .VVJ 1`V 7 VI QQ]V`: V11 .Q:0V`:$VV``1H1VJH7`Q`

πL F;&G:JR ;&GIQR%C: VR 1$J:C 11 .:]]`Q61I: VC7R1;;?8

/Q1R1$1 :C]`QHV 1J$]Q1V`:JR.1$.:0V`:$VV``1H1VJH7I:@V .1  H.VIV:IVJ:GCV

Q CQ1R]Q1V` ]Q` :GCV 11`VCV  :JR:`R 5 %H. :  1C%V QQ .8  QI]:`:GCV 1Q`@

]%GC1 .VR1J .VC1 V`: %`V:H.1V0V .1$.V` ]VH `:C`1RVC1 7:  .V `:RVQ``Q` 1$J1`1H:J C7

.1$.V` ]Q1V` HQJ %I] 1QJ8  ?V`V`VJHV ` a RVIQJ `: V  : 7 VI 11 . ∆Σ  

Q]V`: 1J$ :  8K8< .:  IVV  HVCC%C:` HQV61 VJHV `V_%1`VIVJ  `Q` 8GL$ :JR

8 V8  1$1 :C ]`QHV 1J$ ]Q1V` 1  1J V6HV  Q` I `Q` `I  Q% ]%  ]Q1V` Q`

8 R1I8  .V QC% 1QJ ]`V VJ VR .V`V `V_%1`V  GV 1VVJ R I `Q` .V R1$1 :C ; 

GCQH@`Q`RR1I`I ]Q1V`CV0VC 8 Direct Digital Modulation: A New Approach to Polar Systems 172

a.) π/4DQPSK (2MBPS)

b.) 8DPSK (3MBPS) Figure 108. Measured constellation diagrams Direct Digital Modulation: A New Approach to Polar Systems 173

Figure 109. Efficiency and output power vs supply voltage

Figure 108 .Q1  .VIV: %`VRHQJ VCC: 1QJR1:$`:I`Q`πL F;&G:JR ;&G V 

0VH Q` 8.V V V  1$J:C IVV  .V`V_%1`VIVJ Q` .V1C%V QQ .8U. ? :JR:`R

π = `Q` .V1;&:JR1;&R: :`: V ` a8V: %`VR.`Q` L F;&G1  EVM rms 8.1 % 

= = = :JR EVM peak 8.2 % 8$Q` ;&G5 EVM rms 1.2 % :JR EVM peak 9.2 % 8  VVJ`Q` .V ;&G

R: :1JFigure 108RG5 .V `:J I1 V`1 H:]:GCVQ`$VJV`: 1J$HQJ VCC: 1QJ `:=VH Q`1V 

.: ]:  .`Q%$. .VQ`1$1J^1J`1J1 V]V:@RI1J1I%I`: 1Q_8.V 7 VI`VI:1J C1JV:`

JV:`

.1` 11 . .VR1$1 :C]QC:`1 7G1 1J .V:I]C1 %RV]: .8.1  1$J1`1H:J C7`VR%HV  .V

G:JR11R . `V_%1`VIVJ  Q` .V ].: V IQR%C: Q` :JR 1I]`Q0V  ]V``Q`I:JHV `Q` .1$.

;;? 1$J:C 8

Quantization noise of the digital modulator is a limiting factor for spectral performance.

Figure 109 a-d.) shows that the nearband spectral requirements for Bluetooth 2.1+EDR are satisfied for both π/4DQPSK and 8DPSK test signals. Average power levels at the spectrum analyzer are between 11-14dBm. The wideband is satisfied due to the addition of the bandpass filter at the output. However, it should be noted that in peak-hold mode, which is required for the Bluetooth standard, there is little margin for the -40dBm power limit (100kHz RBW). Shown in Figure 109 c.), the lowest margin occurs near peaks in the quantization noise spectrum 50MHz from the center frequency.

Low margin in the spectral mask could make the system susceptible to load pull, power supply variation, or other scenarios which cause wideband noise levels to increase. This can be improved by operating the ∆Σ process at higher clock , or reducing transmitter power level. In a fully-integrated version, it may be practical to operate the

∆Σ modulator at 250MHz or more, reducing the peak noise by 3-10dB. Due to limited margin in meeting the spectral-mask, we do not present this as a fully-functional

Bluetooth transmitter, but rather a demonstration of a new and interesting topology worthy of further investigation. The high efficiency and excellent linearity show that this is a promising alternative to traditional Cartesian and polar transmitters. 175

Chapter 7 Conclusion and Future Work



1$1 :C `:R1Q :`H.1 VH %`V  .Q1 `VIVJRQ%  ]`QI1 V `Q` `% %`V $VJV`: 1QJ  Q`

11`VCV  HQII%J1H: 1QJ  RV01HV 5 G%  `%` .V` `V V:`H. 1  JVVRVR Q GV R1`VH C7

HQI]V 1 10V 11 . .V ]VH `:C ]V``Q`I:JHV Q` V61 1J$ .:`R1:`V8  C%` `V V:`H.

RVIQJ `: V  : QC% 1QJ .:  1  1$J1`1H:J C7 IQ`V VJV`$7 V``1H1VJ  .:J V61 1J$

`:J I1 V` Q]QCQ$1V :JRIVV  .V`V_%1`VIVJ Q`:.1$.RR: :`: VR1$1 :C11`VCV 

:JR:`R8V:H.1V0V:0V`:$V^VJV`$7_V``1H1VJH71JV6HV Q`Q11 ..=% Q0V`

Q `Q` .V πL F;&G :JR ;&G 1C%V QQ . HQJ VCC: 1QJ8  .V C1I1 1J$ `:H Q` `Q` Q%`

QC% 1QJ 1  ]VH `:C HQI]C1:JHV8  ` 1`:H  ``QI .V _%:J 1

`V]`V VJ : 1QJQ` .V?$0VH Q` 1$J:C`V %C 1J_%:J 1<: 1QJJQ1 V:JR :I]C1J$1I:$V 

.:  :`V R1``1H%C  Q `1C V`8  Q V6 VJR .1  VH.JQCQ$7 Q Q .V` 11`VCV  :JR:`R 

1JHC%R1J$ HVCC%C:`5 1$15 :JR 1:6 1  1  JVHV :`7 Q `%` .V` 1I]`Q0V .V 11RVG:JR

]VH `:C]V``Q`I:JHV8

$Q` %J: VC75 H:C1J$ `VJR :`V1J .V`:0Q`Q` .1  7]VQ` QC% 1QJ817Q]V`: 1J$ .V

:I]C1J$]`QHV : .1$.V```V_%VJH1V 5_%:J 1<: 1QJJQ1 V1 `VR%HVRGQ .1J:JRQ% Q`

G:JR8  C Q5 `1C V`1J$ :  .V Q% ]%  1  IQ`V %HHV `%C 1J `VIQ01J$ JQ1 V ]Q1V`8

RR1 1QJ:C H1`H%1  VH.J1_%V  11CC :C Q .:0V %HHV  1J 1I]`Q01J$ ]V``Q`I:JHV8  

]`QI1 1J$ R1`VH 1QJ HQIG1JV  .1  1Q`@ 11 . .V 1Q`@ ]`V VJ VR 1J  ` a5 ` a5 :JR

` a8&]VH1`1H:CC75 .1 1Q%CRHQIG1JV VH.J1_%V ]`V VJ VR.V`V1J.:] V` 11 .: Conclusion and Future Work 176

I%C 1RG1 ]Q1V`:I]C1`1V`81 .0QC :$VRIQRV]Q1V`HQIG1J1J$5 .VQ% ]% Q`I%C 1]CV

]Q1V`:I]C1`1V` H:JGVHQIG1JVR QH`V: V:I%C 1RG1 ?$ 8.:H.:RR1 1QJ:CG1 11CC

`VR%HVQ% RQ`RG:JRJQ1 V`VC: 10V Q]V:@]Q1V`8;Q1V`HQIG1J1J$:C Q.VC]  .V;

:H.1V0V.1$.V`]Q1V``Q`:$10VJ %]]C70QC :$V` a81Q .Q% HQIV I:7GVJVHV :`7

`Q``% %`V:CCRC& `:J I1 V` 8

?V$:`R1J$ .V 1Q`@ 1J .:] V`  QJ .7G`1R 0QC :$V `V$%C: Q` 5 1V ]`Q]Q V : JV1

Q]V`: 1J$ `: V$7 .:  ]`QI1 V  %G :J 1:CC7 .1$.V` V``1H1VJH7 `Q` %]]C7 IQR%C: VR

]QC:` 7 VI 8  8Q1V0V`5 IQ`V 1Q`@ 1  `V_%1`VR Q `%CC7 1I]CVIVJ  .1  HQJHV]  1J :

.:`R1:`V QC% 1QJ8.V`V:`V 1$J1`1H:J `V V:`H.HQI]QJVJ `VI:1J1J$1J .1 :`V:5

1JHC%R1J$ .Q1 Q RV V`I1JV .V R  H%``VJ  `:=VH Q`7 `Q` `:]1R 0:`1: 1QJ 1J .V

VJ0VCQ]V 1$J:C8V VVQ]]Q` %J1 1V `Q``VVR`Q`1:`RHQJ `QC1J .1 :`V:81 .:J

:HH%`: VIQRVCQ` .VCQ:R5 .VH%``VJ  `:=VH Q`7HQ%CRGV]`VRHQI]% VRQJRC1JV8.1 

HQ%CRI:61I1

8V`V1V.:0V]`V VJ VR V0V`:C]1VHV Q``V V:`H. .: :RR Q .VGQR7Q`@JQ1CVR$V

Q` `:J I1 V` VH.JQCQ$78  .V Q0V`:CC .VIV 1  HQJJVH VR .`Q%$. 1I]`Q01J$ .V

]V``Q`I:JHV :JR5 %C 1I: VC75 VJV`$7 V``1H1VJH7 Q` 11`VCV  `:J I1 V` GCQH@ 8  .1CV

.V V:`VQJC7 I:CC V] 1J .VG`Q:RV`$Q:CQ``%CC7R1J V$`: VRCQ1]Q1V`R1$1 :C`:R1Q

7 VI 5 .V7 .Q%CR]`Q01RV: QC1RG: 1 `Q``%` .V`:H:RVI1H:JRHQIIV`H1:C`V V:`H.

1J .1 :`V:8 177



References

[1] ITRS, "International Technology Roadmap for Semiconductors." Online Reference: www.itrs.net, 2008. [2] C. H. Doan, S. Emami, D. A. Sobel, A. M. Niknejad, and R. W. Brodersen, "Design considerations for 60GHz ," IEEE Communications Magazine, vol. 42, pp. 132- 140, 2004. [3] A. A. Abidi, "Direct-conversion radio transceivers for digital communications," IEEE Journal of Solid State Circuits, vol. 30, pp. 1399-1411, Dec. 1995. [4] F. Montaudon, R. Mina, S. Le Tual, L. Joet, D. Saias, R. Hossain, F. Sibille, C. Corre, V. Carrat, E. Chataigner, J. Lajoinie, S. Dedieu, F. Paillardet, and E. Perea, "A scalable 2.4- to-2.7GHz Wi-Fi/WiMAX discrete-time receiver in 65nm CMOS," IEEE International Solid State Circuits Conference, pp. 362-363, 619, 2008. [5] R. B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All-digital PLL and GSM/EDGE transmitter in 90nm CMOS," IEEE International Solid State Circuits Conference, vol. 1, pp. 316-600, 2005. [6] J. T. Stauth and S. R. Sanders, "A 2.4GHz, 20dBm Class-D PA with Single-Bit Digital Polar Modulation in 90nm CMOS," IEEE Custom Integrated Circuits Conference (CICC), 2008. [7] P. Reynaert and M. Steyaert, RF power amplifiers for mobile communications. Dordrecht: Springer, 2006. [8] A. J. Viterbi, CDMA : principles of communication. Reading, Mass.: Addison-Wesley Pub. Co., 1995. [9] Bluetooth_Special_Interests_Group_(SIG), "Bluetooth technical specifications," in www.bluetooth.org, 2008. [10] T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004. [11] S. C. Cripps, RF power amplifiers for wireless communications. Boston: Artech House, 1999. [12] J. L. Dawson and T. H. Lee, Feedback linearization of RF power amplifiers. Boston: Kluwer, 2004. [13] P. Reynaert and M. Steyaert, "A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE," IEEE Journal of Solid State Circuits, vol. 40, pp. 2598-2608, Dec. 2005. [14] A. A. Abidi, "Low-power radio-frequency ICs for portable communications," Proceedings of the IEEE, vol. 83, pp. 544-569, April, 1995. [15] P. Wambacq and W. M. C. Sansen, Distortion analysis of analog integrated circuits. Boston, Mass: Kluwer Academic, 1998. References 178

[16] J. Vuolevi and T. Rahkonen, Distortion in RF power amplifiers. Boston: Artech House, 2003. [17] J. K. Cavers and M. W. Liao, "Adaptive Compensation for Imbalance and Offset Losses in Direct Conversion Transceivers," IEEE Transactions on Vehicular Technology, vol. 42, pp. 581-588, November 1993. [18] J. Crols and M. Steyaert, CMOS wireless transceiver design. Boston: Kluwer Academic Publishers, 1997. [19] L. R. Kahn, "Single Sideband Transmission by Envelope Elimination and Restoration," Proceedings IRE, vol. 40, pp. 803-806, July, 1952. [20] F. H. Raab, S. B.E., R. G. Meyers, and R. M. Jackson, "High efficiency L-band Kahn- technique transmitter," IEEE Microwave Symposium Digest MTT-S, vol. 2, pp. 2220- 2225, 1998. [21] G. Hanington, P.-F. Chen, P. Asbeck, and L. E. Larson, "High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1471-1476, Aug. 1999. [22] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, "High Efficiency CDMA RF Power Amplifier Using Dynamic Envelope Tracking Technique," IEEE Microwave Symposium Digest MTT-S, vol. 2, 2000. [23] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, "Quad-Band GSM/GPRS/EDGE Polar Loop Transmitter," IEEE Journal of Solid State Circuits, vol. 39 pp. 2179-2189, Dec. 2004. [24] M. Elliott, T. Montalvo, F. Murden, B. Jeffries, J. Strange, S. Atkinson, A. Hill, S. Nadipaku, and J. Harrebek, "A Polar Modulator Transmitter for EDGE," presented at IEEE Solid States Circuits Conference, San Francisco, CA, 2004. [25] P. Reynaert and M. Steyaert, "A 1.75GHz GSM/EDGE Polar Modulated CMOS RF Power Amplifier," presented at IEEE Solid State Circuits Conference, San Francisco, 2005. [26] R. B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All-digital PLL and GSM/EDGE transmitter in 90nm CMOS," IEEE International Solid State Circuits Conference, vol. 1, pp. 316-600, Feb. 2005. [27] F. Wang, A. H. Yang, D. Kimball, L. E. Larson, and P. Asbeck, "Design of wide- bandwidth envelope tracking power amplifiers for OFDM applications," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1244-1255, April 2005. [28] F. Wang, D. Kimball, D. Y. Lie, P. Asbeck, and L. E. Larson, "A Monolithic High- Efficiency 2.4GHz 20dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE Journal of Solid State Circuits, vol. 42, pp. 1271-1281, June 2007. [29] J. T. Stauth and S. R. Sanders, "Power Supply Rejection for Amplifiers: Theory and Measurements," IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 2043-2052, Oct. 2007. [30] J. T. Stauth and S. R. Sanders, "Power supply rejection for common-source linear RF amplifiers: theory and measurements," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 317-320, June 2006. [31] J. B. Groe and L. E. Larson, CDMA mobile radio design. Boston: Artech House, 2000. [32] F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power Amplifiers and Transmitters for RF and Microwave," IEEE Transactions on Microwave Theory and Techniques, vol. 50, March 2002. References 179

[33] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully Integrated CMOS Power Amplifier Using the Distributed Active-Transformer Architecture," IEEE Journal of Solid State Circuits, vol. 37, 2002. [34] S. D. Kee, I. Aoki, A. Hajimiri, and D. B. Rutledge, "The Class-E/F Family of ZVS Switching Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 51, 2003. [35] B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998. [36] J. T. Stauth, "Dynamic Power Supply Design for High-Efficiency Wireless Transmitters," in EECS, vol. M.S. . Berkeley, CA: U.C. Berkeley, 2006, pp. 79. [37] A. M. Niknejad, Electromagnetics for high-speed analog and digital communication circuits. Cambridge, UK ; New York: Cambridge University Press, 2007. [38] G. Liu, P. Haldi, T.-J. King, and A. M. Niknejad, "Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off," IEEE Journal of Solid State Circuits, vol. 43, pp. 600-609, March 2008. [39] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, "A 5.8GHz 1V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90nm CMOS," IEEE Journal of Solid State Circuits, vol. 43, pp. 1054-1063, May, 2008. [40] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition ed. New York: John Wiley & Sons, 2001. [41] N. O. Sokal and A. D. Sokal, "Class E - A New Class of High-Efficiency Tuned Single- Ended Switching Power Amplifiers," IEEE Journal of Solid State Circuits, vol. sc-10, pp. 168-176, June 1975. [42] K.-C. Tsai and P. R. Gray, "A 1.9GHz, 1-W class-E power amplifier for wireless communications," IEEE Journal of Solid State Circuits, vol. 34, pp. 962-970, July 1999. [43] J. M. Rivas, R. S. Wahby, J. S. Shafran, and D. Perreault, "New Architectures for Radio- Frequency DC-DC Power Conversion," IEEE Transactions on Power , vol. 21, pp. 380-393, March 2006. [44] ITRS, "International Technology Roadmap for Semiconductors: http://www.itrs.net," 2006. [45] A. J. Stratakos, C. R. Sullivan, S. R. Sanders, and R. W. Brodersen, "High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications," in Low-Voltage/Low-Power Integrated Circuits and Systems, E. Sanchez-Sinencio, Ed.: IEEE Press, 1999. [46] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, "Low-power CMOS digital design," IEEE Journal of Solid State Circuits, vol. 27, pp. 1415-1428, April 1992. [47] N. Schlumpf, M. Declercq, and C. Dehollain, "A Fast Modulator for Dynamic Supply Linear RF Power Amplifier," IEEE Journal of Solid State Circuits, vol. 39, July, 2004. [48] P. Midya, K. Haddad, L. Connel, S. Bergstedt, and B. Roeckner, "Tracking Power Converter for Supply Modulation of RF Power Amplifiers," Power Electronics Specialists Conference (PESC), vol. 3, 2001. [49] D. Anderson and W. Cantrell, "High Efficiency High Level Modulator for Use in Dynamic Envelope Tracking CDMA RF Power Amplifiers," Microwave Symposium Digest MTT-S, vol. 3, 2001. [50] B. Sahu and G. A. Rincon-Mora, "A high Efficiency Linear RF Power Amplifier with a Power Tracking Dynamically Adaptive Buck-Boost Supply," IEEE Transactions on Microwave Theory and Techniques, vol. 52, Jan. 2004. [51] V. Pinon, F. Hasbani, A. Giry, D. Pache, and C. Garnier, "A Single-Chip WCDMA Envelope Reconstruction LDMOS PA with 130MHz Switched-Mode Power Supply," IEEE International Solid State Circuits Conference, vol. 51, pp. 564-565, Feb. 2008. References 180

[52] E. Alon, J. Kim, S. Pamarti, K. Chang, and M. Horowitz, "Replica compensated linear regulators for supply-regulated phase-locked loops," IEEE Journal of Solid State Circuits, vol. 41, pp. 413-424, Feb. 2006. [53] V. Gupta and G. A. Rincon-Mora, "A low dropout, CMOS regulator with high PSR over wideband frequencies," IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 4245-4248, 2005. [54] P. K. Hazucha, T., Bloechel, B., Parsons, C., Finan, D., Borkar, S., "Area-efficient linear regulator with ultra-fast load regulation," IEEE Journal of Solid State Circuits, vol. 40, pp. 933-940, April, 2005. [55] P. T. Krein, Elements of power electronics. New York: Oxford University Press, 1998. [56] J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of power electronics. Reading, Mass.: Addison-Wesley, 1991. [57] M. D. seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC- DC Converters," IEEE Transactions on Power Electronics, vol. 23, pp. 841-851, March, 2008. [58] A. V. Peterchev, "Digital Pulse-Width Modulation Control in Power Electronic Circuits: Theory and Applications," in EECS, vol. PhD. Berkeley: University of California, Berkeley, 2005. [59] A. V. Peterchev and S. R. Sanders, "Load-line regulation with estimated load-current feedforward: application to microprocessor voltage regulators," IEEE Transactions on Power Electronics, vol. 21, pp. 1704-1717, Nov. 2006. [60] J. Kitchen, W.-Y. Chu, I. Deligoz, S. Kiaei, and B. Bakkaloglu, "Combined Linear and Delta-Modulated Switched-Mode PA Supply Modulator for Polar Transmitters," IEEE International Solid State Circuits Conference, pp. 82, 588, Feb. 2007. [61] P. Midya, "Linear Switcher combination with novel feedback," Power Electronics Specialists Conference (PESC), vol. 3, pp. 1425-1429, June 18-23, 2000. [62] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Efficiency optimization in Linear- Assisted switching power converters for envelope tracking in RF power amplifiers," IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1302-1305, May 23-26, 2005. [63] J. T. Stauth and S. R. Sanders, "Optimum Biasing for Parallel Hybrid Switching-Linear Regulators" IEEE Transactions on Power Electronics, vol. 22, pp. 1978-1985, Sept. 2007. [64] J. T. Stauth and S. R. Sanders, "Optimum Bias Calculation for Parallel Hybrid Switching- Linear Regulators," Applied Power Electronics Conference (APEC), pp. 569-574, Feb. 2007. [65] L. O. Chua and N. C.-Y., "Frequency-domain analysis of nonlinear systems: formulation of transfer functions," IEE Journal on Electronic Circuits and Systems, vol. 3, pp. 257- 269, 1979. [66] M. Schetzen, The Volterra and Wiener theories of nonlinear systems. New York: Wiley, 1980. [67] K. S. Kundert and A. Sangiovanni-Vincentelli, "Simulation of Nonlinear Circuits in the Frequency Domain," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 5, pp. 521-535, October 1986. [68] B. Baytekin and R. Meyer, "Analysis and simulation of spectral regrowth in radio frequency power amplifiers," IEEE Journal of Solid State Circuits, vol. 40, pp. 370-381, 2005. References 181

[69] E. Alon, V. Stojanovic, and M. Horowitz, "Circuits and techniques for high-resolution measurement of on-chip power supply noise," IEEE Journal of Solid State Circuits, vol. 40, pp. 820-828, April, 2005. [70] D. O. Pederson and K. Mayaram, Analog integrated circuits for communication : principles, simulation, and design. Boston: Kluwer Academic Publishers, 1991. [71] J. Engberg and T. Larsen, Noise Theory of Linear and Nonlinear Circuits. New Yory: John Wiley and Sons, 1995. [72] J. Vuolevi and T. Rahkonen, "Analysis of third-order intermodulation distortion in common emitter BJT and HBT amplifiers," IEEE Transactions on Circuits and Systems, vol. 50, pp. 994-1001, 2003. [73] T. J. Brazil and T. Wang, "Volterra-mapping-based behavioral modeling of nonlinear circuits and systems for high frequencies," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 1433-1440, May 2003. [74] R. Meyer, "EECS 242 Course Notes," University of California, Berkeley, 2004. [75] J. J. Bussgang, L. Ehrman, and J. W. Graham, "Analysis of Nonlinear Systems with Multiple Inputs," Proceedings of the IEEE, vol. 62, pp. 1088-1119, 1974. [76] P. Dobrovolny, G. Vandersteen, P. Wambaq, and S. Donnay, "Analysis and compact behavioral modeling of nonlinear distortion in analog communications circuits," IEEE transactions on Computer-Aided design of integrated circuits and systems, vol. 22, pp. 1215-1227, Sept. 2003. [77] P. Midya, "Linear Switcher combination with novel feedback," Power Electronics Specialists Conference (PESC), vol. 3, pp. 1425-1429, 2000. [78] F. Wang, D. Kimball, D. Y. Lie, P. Asbeck, and L. E. Larson, "A Monolithic High- Efficiency 2.4GHz 20dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE Journal of Solid State Circuits, vol. 42, pp. 1271-1281, 2007. [79] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Efficiency optimization in Linear- Assisted switching power converters for envelope tracking in RF power amplifiers," IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1302-1305, 2005. [80] A. V. Peterchev and S. R. Sanders, "Digital multimode buck converter control with loss- minimizing syncronous rectifier adaptation," IEEE Transactions on Power Electronics, vol. 21, pp. 1588-1599, Nov. 2006. [81] J. Xiao, A. V. Peterchev, J. Zhang, and S. R. Sanders, "A 4-ua quiescent-current dual- mode digitally controlled buck converter IC for cellular phone applications," IEEE Journal of Solid State Circuits, vol. 39, pp. 2342-2348, Dec. 2004. [82] F. Wang, A. Ojo, D. Kimball, P. Asbeck, and L. E. Larson, "Envelope tracking power amplifier with pre-distoriton linearization for WLAN 802.11g," Microwave Symposium Digest MTT-S, vol. 3, pp. 1543-1546, June 2004. [83] R. A. R. van der Zee and E. A. van Tuijl, "A power-efficient audio amplifier combining switching and linear techniques," IEEE Journal of Solid State Circuits, vol. 34, pp. 985- 991, July 1999. [84] H. Ertl, J. W. Kolar, and F. C. Zach, "Basic Considerations and Topologies of Switched- Mode Assisted Linear Power Amplifiers," IEEE Transactions on Industrial Electronics, vol. 44, pp. 116-123, February 1997. [85] T. ido, S. Ishizuka, L. Risbo, F. Aoyagi, and T. Hamasaki, "A digital input controller for audio class-d amplifiers with 100W 0.004% THD+N and 113dB DR," IEEE International Solid State Circuits Conference, vol. 49, pp. 348-349, Feb. 2006. [86] C. Pascual, Z. Song, P. T. Krein, D. V. Sarwate, P. Midya, and B. Roeckner, "High- Fidelity PWM inverter for amplification: Spectral analysis, real-time DSP References 182

implementation, and results," IEEE Transactions on Power Electronics, vol. 18, pp. 473- 485, 2003. [87] J. R. Wells, B. M. Nee, P. L. Chapman, and P. T. Krein, "Selective harmonic control: a general problem formulation and selected solutions," IEEE Transactions on Power Electronics, vol. 20, pp. 1337-1345, 2005. [88] J. F. Sevic, "Statistical Characterization of RF Power Amplifier Efficiency for CDMA Wireless Communication Systems," Wireless Communications Conference, Proceedings, pp. 110-113, Aug 11-13 1997. [89] E. McCune, "High-efficiency, multi-mode, multi-band terminal power amplifiers," in IEEE Microwave Magazine, March, 2005, pp. 44-55. [90] R. Redl and N. O. Sokal, "Near-optimum dynamic regulation of DC-DC converters using feed-forward of output current and input voltage with current-mode control," IEEE Transactions on Power Electronics, vol. PE-1, pp. 181-192, Jul. 1986. [91] S. Jantzi, R. Schreier, and M. Snelgrove, "Bandpass sigma-delta analog-to-digital conversion," IEEE Transactions on Circuits and Systems, vol. 38, pp. 1406-1409, 1991. [92] A. Jayaraman, P.-F. Chen, G. Hanington, L. E. Larson, and P. Asbeck, "Linear high- efficiency microwave power amplifiers using bandpass delta-sigma modulators," Microwave and Guided Wave Letters, IEEE, vol. 8, pp. 121-123, 1998. [93] Y. Wang, "An improved kahn transmitter architecture based on delta-sigma modulation," IEEE International microwave symposium digest, vol. 2, pp. 1327-1330, 2003. [94] A. Jerng and C. G. Sodini, "A Wideband Delta-Sigma Digital-RF Modulator for High Data Rate Transmitters," IEEE Journal of Solid State Circuits, vol. 42, pp. 1710-1722, Aug. 2007. [95] C. Berland, I. Hibon, J. F. Bercher, D. Villegas, D. Belot, D. Pache, and V. L. Goascoz, "A transmitter architecture for nonconstant envelope modulation," IEEE Transactions on Circuits and Systems, vol. 53, 2006. [96] S. M. Taleie, T. Copani, B. Bakkaloglu, and S. Kiaei, "A bandpass Delta-Sigma RF-DAC with embedded FIR reconstruction filter," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 578-579, 2006. [97] J. Lindeberg, J. Vanakka, J. Sommarek, and K. Halonen, "A 1.5-V direct digital with tunable delta-sigma modulator in 0.12um CMOS," IEEE Journal of Solid State Circuits, vol. 40, pp. 1978-1982, Sept. 2005. [98] S. Luschas, R. Schreier, and H.-S. Lee, "Radio frequency digital-to-analog converter," IEEE Journal of Solid State Circuits, vol. 39, pp. 1462-1467, 2004. [99] D. Johns and K. W. Martin, Analog integrated circuit design. New York: John Wiley & Sons, 1997. [100] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time , 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1999. [101] C. E. Shannon, "Communication in the presence of noise," Proceedings of the Institute of Radio Engineers, vol. 37, pp. 10-21, 1949. [102] S. R. Norsworthy, R. Schreier, G. C. Temes, and IEEE Circuits and Systems Society., Delta-Sigma data converters : theory, design, and simulation. New York: IEEE Press, 1996. [103] R. Schreier and G. C. Temes, Understanding delta-sigma data converters. Piscataway, NJ, Hoboken, N.J. ; Chichester: IEEE Press ; Wiley ;, 2005. [104] D. Anastassiou, "Error Diffusion Coding for A/D Conversion," IEEE Transactions on Circuits and Systems, vol. 36, pp. 1175-1186, 1989. References 183

[105] A. Kavousian, D. K. Su, and B. A. Wooley, "A Digitally Modulated Polar CMOS PA with 20MHz Signal BW," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 78-588, 2007. [106] A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, "A Fully Digital 65nm CMOS Transmitter for the 2.4-to-2.7GHz WiFi/WiMAX Bands using 5.4GHz DS RF DACs," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, vol. 51, pp. 360-361, Feb. 2008. [107] Coilcraft_Inc., "Coilcraft ceramic chip inductors: http://www.coilcraft.com/0805hq.cfm," 2007. [108] H. Calleja and J. Pacheco, "Power Distribution in Pulse-Density Modulated Waveforms," Power Electronics Specialists Conference (PESC), vol. 3, pp. 1457-1462, 18-23 June 2000. [109] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, "A high-voltage output driver in a 2.5V 0.25um CMOS technology," IEEE Journal of Solid State Circuits, vol. 40, pp. 576- 583, March 2005. [110] Gelb, A. and Vander Velde, W.E., “Multiple-Input Describing Functions and Non-Linear System Design,” McGraw-Hill, New York. 1968.