Digital Audio Broadcasting (DAB); Guide to DAB Standards; Guidelines and Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Digital Audio Broadcasting (DAB); Guide to DAB Standards; Guidelines and Bibliography ETSI TR 101 495 V1.2.1 (2005-01) Technical Report Digital Audio Broadcasting (DAB); Guide to DAB standards; Guidelines and Bibliography European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TR 101 495 V1.2.1 (2005-01) Reference DTR/JTC-DAB-20 Keywords DAB, digital, audio, broadcast, broadcasting ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification Reproduction is only permitted for the purpose of standardization work undertaken within ETSI. The copyright and the foregoing restrictions extend to reproduction in all media. © European Telecommunications Standards Institute 2005. © European Broadcasting Union 2005. All rights reserved. DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. ETSI 3 ETSI TR 101 495 V1.2.1 (2005-01) Contents Intellectual Property Rights................................................................................................................................4 Foreword.............................................................................................................................................................4 1 Scope ........................................................................................................................................................5 2 References ................................................................................................................................................5 3 Abbreviations ...........................................................................................................................................6 4 DAB system standards and guidelines .....................................................................................................7 4.1 EN 300 401.........................................................................................................................................................7 4.2 TR 101 496.........................................................................................................................................................7 4.3 TS 101 756 .........................................................................................................................................................7 4.4 TS 102 367 .........................................................................................................................................................7 4.5 TS 101 757 .........................................................................................................................................................8 4.6 EN 301 700.........................................................................................................................................................8 5 DAB receiver standards and documents...................................................................................................8 5.1 General ...............................................................................................................................................................8 5.2 EN 50248............................................................................................................................................................9 5.3 EACEM TR-004 ................................................................................................................................................9 5.4 EN 50255............................................................................................................................................................9 5.5 EN 50320..........................................................................................................................................................10 5.6 TR 101 758.......................................................................................................................................................10 6 DAB transmission and network standards and documents ....................................................................10 6.1 General .............................................................................................................................................................10 6.2 EN 300 797.......................................................................................................................................................10 6.2.1 TS 101 860..................................................................................................................................................11 6.3 EN 300 798.......................................................................................................................................................11 6.4 ETS 300 799.....................................................................................................................................................11 6.5 Minimum Transmitter Requirements ...............................................................................................................11 6.6 EBU BPN 003 ..................................................................................................................................................12 7 Additional DAB standards and documents for data transmission..........................................................12 7.1 General .............................................................................................................................................................12 7.2 EN 301 234.......................................................................................................................................................12 7.3 TR 101 497.......................................................................................................................................................12 7.4 TS 101 498 .......................................................................................................................................................12 7.5 TS 101 499 .......................................................................................................................................................13 7.6 TS 101 759 .......................................................................................................................................................13 7.7 ES 201 735 .......................................................................................................................................................13 7.8 ES 201 736 .......................................................................................................................................................13 7.9 ES 201 737 .......................................................................................................................................................13 7.10 TS 101 993 .......................................................................................................................................................13 7.11 TS 102 818 .......................................................................................................................................................14 7.12 TS 102 371 .......................................................................................................................................................14 7.13 TS 102 368 .......................................................................................................................................................14 Annex A: DAB Bibliography .........................................................................................................................15 A.1 General descriptions on DAB topics......................................................................................................15 A.2 Some documents related to DAB ...........................................................................................................15 A.3 Some papers on Audio Coding...............................................................................................................15 A.4 Some papers on OFDM and channel coding..........................................................................................16 History ..............................................................................................................................................................17
Recommended publications
  • History of the DVB Project
    History of the DVB Project (This article was written by David Wood around 2013.) Introduction The DVB Project is an Alliance of about 200 companies, originally of European origin but now worldwide. Its objective is to agree specifications for digital media delivery systems, including broadcasting. It is an open, private sector initiative with an annual membership fee, governed by a Memorandum of Understanding (MoU). Until late 1990, digital television broadcasting to the home was thought to be impractical and costly to implement. During 1991, broadcasters and consumer equipment manufacturers discussed how to form a concerted pan-European platform to develop digital terrestrial TV. Towards the end of that year, broadcasters, consumer electronics manufacturers and regulatory bodies came together to discuss the formation of a group that would oversee the development of digital television in Europe. This so-called European Launching Group (ELG) expanded to include the major European media interest groups, both public and private, the consumer electronics manufacturers, common carriers and regulators. It drafted the MoU establishing the rules by which this new and challenging game of collective action would be played. The concept of the MoU was a departure into unexplored territory and meant that commercial competitors needed to appreciate their common requirements and agendas. Trust and mutual respect had to be established. The MoU was signed by all ELG participants in September 1993, and the Launching Group renamed itself as the Digital Video Broadcasting Project (DVB). Development work in digital television, already underway in Europe, moved into top gear. Around this time a separate group, the Working Group on Digital Television, prepared a study of the prospects and possibilities for digital terrestrial television in Europe.
    [Show full text]
  • Replacing Digital Terrestrial Television with Internet Protocol?
    This is a repository copy of The short future of public broadcasting: Replacing digital terrestrial television with internet protocol?. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94851/ Version: Accepted Version Article: Ala-Fossi, M and Lax, S orcid.org/0000-0003-3469-1594 (2016) The short future of public broadcasting: Replacing digital terrestrial television with internet protocol? International Communication Gazette, 78 (4). pp. 365-382. ISSN 1748-0485 https://doi.org/10.1177/1748048516632171 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Short Future of Public Broadcasting: Replacing DTT with IP? Marko Ala-Fossi & Stephen Lax School of Communication, School of Media and Communication Media and Theatre (CMT) University of Leeds 33014 University of Tampere Leeds LS2 9JT Finland UK [email protected] [email protected] Keywords: Public broadcasting, terrestrial television, switch-off, internet protocol, convergence, universal service, data traffic, spectrum scarcity, capacity crunch.
    [Show full text]
  • Spread Spectrum and Wi-Fi Basics Syed Masud Mahmud, Ph.D
    Spread Spectrum and Wi-Fi Basics Syed Masud Mahmud, Ph.D. Electrical and Computer Engineering Dept. Wayne State University Detroit MI 48202 Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 1 Spread Spectrum Spread Spectrum techniques are used to deliberately spread the frequency domain of a signal from its narrow band domain. These techniques are used for a variety of reasons such as: establishment of secure communications, increasing resistance to natural interference and jamming Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 2 Spread Spectrum Techniques Frequency Hopping Spread Spectrum (FHSS) Direct -Sequence Spread Spectrum (DSSS) Orthogonal Frequency-Division Multiplexing (OFDM) Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 3 The FHSS Technology FHSS is a method of transmitting signals by rapidly switching channels, using a pseudorandom sequence known to both the transmitter and receiver. FHSS offers three main advantages over a fixed- frequency transmission: Resistant to narrowband interference. Difficult to intercept. An eavesdropper would only be able to intercept the transmission if they knew the pseudorandom sequence. Can share a frequency band with many types of conventional transmissions with minimal interference. Spread Spectrum and Wi-Fi Basics by Syed M. Mahmud 4 The FHSS Technology If the hop sequence of two transmitters are different and never transmit the same frequency at the same time, then there will be no interference among them. A hopping code determines the frequencies the radio will transmit and in which order. A set of hopping codes that never use the same frequencies at the same time are considered orthogonal .
    [Show full text]
  • AM / FM / DAB / XM Tuner
    ENGLISH FRANÇAIS Owner’s Manual Owner’s ESPAÑOL ® ITALIANO AM / FM / DAB / XM Tuner /XM /DAB /FM AM M4 DEUTSCH NEDERLANDS SVENSKA РУССКИЙ IMPORTANT SAFETY INSTRUCTIONS ENGLISH 1. Read instructions - All the safety and operating instructions should be NOTE TO CATV SYSTEM INSTALLER read before the product is operated. This reminder is provided to call the CATV system installer’s attention to Section 820-40 of 2. Retain instructions - The safety and operating instructions should be the NEC which provides guidelines for proper grounding and, in particular, specifies that retained for future reference. the cable ground shall be connected to the grounding system of the building, as close 3. Heed Warnings - All warnings on the product and in the operating to the point of cable entry as practical. instructions should be adhered to. 4. Follow Instructions - All operating and use instructions should be FRANÇAIS followed. 5. Cleaning - Unplug this product from the wall outlet before cleaning. Do not use liquid cleaners or aerosol cleaners. Use a damp cloth for cleaning. 6. Attachments - Do not use attachments not recommended by the product manufacturer as they may cause hazards. 7. Water and Moisture - Do not use this product near water-for example, near a bath tub, wash bowl, kitchen sink, or laundry tub; in a wet basement; or near a swimming pool; and the like. ESPAÑOL 8. Accessories - Do not place this product on an unstable cart, stand, tripod, bracket, or table. The product may fall, causing serious injury to a child or adult and serious damage to the product. Use only with a cart, stand, tripod, bracket, or table recommended by the manufacturer, or sold with the product.
    [Show full text]
  • Digital Audio Broadcasting : Principles and Applications of Digital Radio
    Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Digital Audio Broadcasting Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Copyright ß 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (þ44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (þ44) 1243 770571. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • Development of a Digital Terrestrial Front End
    DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END J D Mitchell (BBC) and P Sadot (LSI Logic, France) ABSTRACT BBC Research and Development and LSI Logic are jointly developing a front end for digital terrestrial television transmitted according to the DVB-T specification. The front end consists of two separate components. First, an analogue down-converter that converts the input signal from UHF to a low IF. Second, an integrated circuit that accepts the analogue signal from the down-converter and performs the required DSP operations, which include synchronisation and demodulation, to form a stream of soft decisions suitable for presentation to an FEC decoder. The development process began by agreeing a set of requirements to which the two components must conform. This paper begins by outlining these requirements. During the development of the components, many issues have been considered and resolved. A selection of the key issues and the decisions that were reached is given and, finally, a discussion of the architecture that results from these decisions is presented. INTRODUCTION BBC Research and Development and LSI Logic are working together on the development of a digital terrestrial front end which is capable of decoding transmissions compliant with the European DVB-T specification (1). This development unites the BBC's system expertise in COFDM, see Nokes et al. (2), Stott (3) and (4), and LSI Logic's long-established chip design capability. As part of the front end development, LSI Logic and the BBC are working together on two distinct, but related, development projects: a single CMOS chip implementing a complete OFDM demodulator, and a new terrestrial down-converter designed for use with the digital chip.
    [Show full text]
  • F. Circuit Switching
    CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g.
    [Show full text]
  • RDS) for Stem (RDS) Y EN 50067 April 1998 Lish, French, German)
    EN 50067 EUROPEAN STANDARD EN 50067 NORME EUROPÉENNE EUROPÄISCHE NORM April 1998 ICS 33.160.20 Supersedes EN 50067:1992 Descriptors: Broadcasting, sound broadcasting, data transmission, frequency modulation, message, specification English version Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87,5 to 108,0 MHz Spécifications du système de radiodiffusion de Spezifikation des Radio-Daten-Systems données (RDS) pour la radio à modulation de (RDS) für den VHF/FM Tonrundfunk im fréquence dans la bande de 87,5 à 108,0 MHz Frequenzbereich von 87,5 bis 108,0 MHz This CENELEC European Standard was approved by CENELEC on 1998-04-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. Specification of the radio data system (RDS) CENELEC European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Brussels © 1998 - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members and the European Broadcasting Union.
    [Show full text]
  • En 300 720 V2.1.0 (2015-12)
    Draft ETSI EN 300 720 V2.1.0 (2015-12) HARMONISED EUROPEAN STANDARD Ultra-High Frequency (UHF) on-board vessels communications systems and equipment; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 300 720 V2.1.0 (2015-12) Reference REN/ERM-TG26-136 Keywords Harmonised Standard, maritime, radio, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Digital Multi–Programme TV/HDTV by Satellite
    Digital multi–programme TV/HDTV by satellite M. Cominetti (RAI) A. Morello (RAI) M. Visintin (RAI) The progress of digital technology 1. Introduction since the WARC’77 is considered and the perspectives of future The significant progress of digital techniques in applications via satellite channels production, transmission and emission of radio are identified. Among these, digital and television programmes is rapidly changing the established concepts of broadcasting. multi–programme television systems, with different quality levels (EDTV, SDTV) and possible The latest developments in VLSI (very–large scale evolution to HDTV, are evaluated in integration) technology have significantly contrib- uted to the rapid emergence of digital image/video terms of picture quality and service compression techniques in broadcast and informa- availability on the satellite channels tion–oriented applications; optical fibre technolo- of the BSS bands (12 GHz and gy allows broadband end–to–end connectivity at 22 GHz) and of the FSS band (11 very high bit–rates including digital video capabil- GHz) in Europe. A usable channel ities; even the narrow–band terrestrial broadcast capacity of 45 Mbit/s is assumed, as channels in the VHF/UHF bands (6–7 MHz and 8 well as the adoption of advanced MHz) are under investigation, in the USA [1] and channel coding techniques with in Europe [2], for the future introduction of digital QPSK and 8PSK modulations. For television services. high and medium–power satellites, in operation or planned, the The interest for digital television in broadcasting receiving antenna diameters and multimedia communications is a clear exam- required for correct reception are ple of the current evolution from the analogue to reported.
    [Show full text]
  • Implementation Considerations for the Introduction and Transition to Digital Terrestrial Sound and Multimedia Broadcasting
    Report ITU-R BS.2384-0 (07/2015) Implementation considerations for the introduction and transition to digital terrestrial sound and multimedia broadcasting BS Series Broadcasting service (sound) ii Rep. ITU-R BS.2384-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Field Trials and Evaluations of Radio Data System Traffic Message Channel
    TRANSPORTATION RESEARCH RECORD 1324 Field Trials and Evaluations of Radio Data System Traffic Message Channel PETER DAVIES AND GRANT KLEIN The Radio Data System Traffic Message Channel (RD~-TMC) Many RDS features have already been defined and imple­ will be introduced in Europe in the mid-1990s. RDS provides for mented in most parts of Europe. One additional feature of the transmission of a silent data channel on existing VHF-FM RDS not yet finalized is the Traffic Message Channel (TMC) radio stations. TMC is one of the remaining RDS features still for digitally encoding traffic information messages. Group to be finalized. It will enable detailed, up-to-date traffic infor­ mation to be provided to motorists in the language of their choice, Type SA, one of 32 possible RDS data groups, has been thus ensuring a truly international service. As part of the Euro­ reserved for the TMC service. It will provide continuous in­ pean DRIVE program, the RDS-ALERT project has ~arried out formation to motorists through a speech synthesizer or text field trials of RDS-TMC. Testing was undertaken pnor to and display in the vehicle. TMC will improve traffic data dissem­ during the RDS-ALERT project, and implications for the TMC ination into the vehicle by several orders of magnitude over service throughout Europe were considered. TMC offers an ex­ conventional spoken warnings on the radio. By linking with citing prospect of a practical application of information technol­ intelligent vehicle-highway system (IVHS) technologies, TMC ogy suitable for the 1990s and into.the next mi.lle~niu~.
    [Show full text]