RDS - Radio Data System a Challenge and a Solution

Total Page:16

File Type:pdf, Size:1020Kb

RDS - Radio Data System a Challenge and a Solution RDS - Radio Data System A Challenge and a Solution Michael Daucher Eduard Gärtner Michael Görtler Werner Keller Hans Kuhr Abstract The launch of the FM broadcasting system in the middle of the 20th century constituted an enormous improve- ment compared to AM. Nevertheless it turned out that car radios cannot reach the performance level of stationary receivers. Therefore in Europe the RDS system has been developed. It provides among other features for increased convenience also specific functions to overcome the performance problems of car radios to a large extent. RDS is the most complex technology to receive analog broadcasting stations. To use this technology to the full extent it requires a lot of know how about the specific reception problems in the field, RDS and reception technol- ogy in general. All this leads to a large and very complex software solution. This paper describes the main reception problems of car radios. The basic features of RDS are explained short- ly. The main part of this essay deals with the software and the required tools. It is shown, based on three key issues, how these problems can be solved with high sophisticated software. The tool for monitoring the behaviour in the field, dedicated for detailed analysis and evaluation, is explained in detail. At the end the results of different test drives show the evidence that this new RDS software developed by Technical Center Nuremberg has reached a performance which is state of the art. 41 FUJITSU TEN TECHNICHAL JOURNAL 1 RDS1 RDS - Introduction. - Introduction. All these influences lead finally to a sum signal at the antenna which is continuously varying in amplitude, The launch of the FM broadcasting system in the phase and frequency. In consequence this fading signal middle of the 20th century constituted an enormous tech- has strong impact onto the quality of the audio signal nological step forward with regard to reception quality after demodulation in the receiver: and stability. The most obvious improvements of FM ・Heavy distortion due to missing parts of the FM sig- compared to AM are a considerable extension of the nal spectrum audio frequency range up to 15 kHz, a much higher S/N ・Fluctuating noise occurring each time the signal ratio, less distortion and no audio signal fluctuations as it level falls below the limiting threshold of the receiver is the case with AM fading ・Periodical noise bursts (paling fence effect) in case The FM system is very effective for stationary the fading signal is dominated by two main paths receivers. More or less directional antennas as dipole or with Doppler shift Yagi antennas outside the buildings are adjusted to the The above described problems of the FM system transmitter's site, so that mainly the signal of the direct show that FM is not suited for mobile transmission. The path is received, excluding reflected and delayed signals extension to FM stereo even increased these effects arriving from lateral paths. Therefore in Europe the RDS system has been devel- During the following decades FM-receivers in cars oped which provides among other very useful features became more and more popular. But it turned out that means for the realisation of network following. The mobile receivers cannot reach the quality level and signal receiver gets via the RDS data channel detailed informa- stability of stationary receivers. Mobile receivers are nor- tion about other frequencies of the same programme or mally operated together with omni-directonal antennas as transmitter chain. That enables a receiver to continuously the reception angle of the radio waves can adopt any check in the background all alternative frequencies and value within 360⦆degrees. Therefore car receivers have to always select and tune to frequency with the best quality. cope with all the signals arriving at the receiving anten- By implementing very sophisticated RDS strategies and na, independent of the driving direction and the speed of plausibility checks in the receiver's software the draw- the vehicle. backs of the FM system can be overcome in a very large This so-called "mobile transmission channel" suffers extent. from multipath propagation and from Doppler shift which Since the first RDS specification has been published in is caused by the movement of the receiver itself or by 1984 the RDS system experienced continuous improve- moving reflecting obstacles. ment and optimisation and was finally issued as European Standard EN 50067 in April 1998. RDS has become a real- ly success story in Europe, so that even in America a subset of RDS has even been implemented as RBDS sys- tem. 2 The Radio2. The Radio Data Data SystemSystem -RDS- -RDS- The Radio Data System, RDS, is intended for applica- tion to FM sound broadcasts in the range 87.5MHz to 108.0 MHz which may carry either stereophonic (pilot- tone system) or monophonic programs. The main objec- tives of RDS are to enable improved functionality for FM Fig.1 Multipath propagation receivers and to make them more user-friendly by using features such as Program Identification, Program Service The example of Figure 1 shows two main propagation Name and automatic tuning for portable and car radios, paths where the waves are reflected on discrete obstacles in particular. like tall buildings, hills or mountain ridges. As the aver- The radio can make use of this information by a more age length of the two paths is different, the signals will or less sophisticated software strategy for an almost non arrive at different time instants in the vicinity of the car. disturbed radio reception over a long driving distance Additionally the signals are exposed to local dispersion and period of time. due to further reflections in the immediate surrounding of The data bits are transmitted with 1187.5 bits per sec- the receiving antenna. ond (57kHz/48). The bit stream is structured in blocks. Block A Block B Block C Block D Fig.2 RDS group FUJITSU TEN TECH. J. No.30(2008) 42 RDS - Radio Data System A Challenge and a Solution A block with 26 bits consists of 16 data bits and 10 2.1 Description of important group types check bits (CRC = cyclic redundancy check). This code In all groups are available: can correct 2 random errors in a block. An RDS group PI information (block A), PTY (block B), TP (if it is a consists of 4 blocks (ABCD). traffic program and if it supports traffic announcements Every group contains a block A with the program on related stations, in block B). identification (PI) code, which is a unique identifier of a Group 0A radio station. This information is repeated 11.4 times per Alternative frequency information is transmitted, second. The PI code: either as method A (up to 25 frequencies, normally used ・uniquely identifies a program and the country in to transmit the frequency of neighbor transmitters) or which the program is broadcast method B (more than 25 frequencies, normally every fre- ・allows selection of a program independent of a fre- quency on which the current station is broadcasted). quency Program Service Name is sent in group 0A and 0B. ・allows automatic frequency changes to frequencies TA, a traffic announcement is send in 0A 0B and 15B transmitting the same or related programs. (indicates a starting or ongoing traffic announcement). PI codes must be assigned by national authorities to The same groups apply for the MS bit (music/speech). avoid that different programs share the same PI code. DI the decoder information is send in 0A 0B and 15B. The PI code delivers also information about programs It can be used to signal if a compressed or not com- belonging to the same broadcast chain, for example: pressed program is broadcasted or if the program is Bayern 1, Bayern 2, Bayern 3. Some programs split into recorded in mono, stereo or with an artificial head programs with regional content for a certain period of Group 2A, 2B time. For example: Bayern 1 split into Bayern Franken, Radio text information is transmitted here. Bayern Bamberg and Bayern Ingolstadt. Group 14A The PI code offers the possibility to group the pro- Information about a related station which broadcasts grams of a broadcaster including the regional services. traffic announcement, like the frequency, alternative fre- European customers expect the station list sorted by PI quencies if it is a network and the PI code of this station. code and not only by frequencies or field strength. Group14B Indicates the start of a traffic announcement at the Sorted acc. to field strength Sorted acc. to grouped PI other station with the traffic program code 2.2 How to perform sophisticated network following This was about the signalling which the broadcaster can add to his program. Let us have a focus on the receiver. To reduce it to one sentence: The receiver should be able to perform the best reception under any conditions. The RDS information is one part of this strategy. Another part is determined by the used hardware con- In Europe the PI-code is the key for program identifi- cept and how the signal processing of the radio is per- cation. Selection by frequency is of minor importance. formed. Block B comprises the program type (PTY code), the The radio normally has different detectors for indication for traffic program (TP flag) and the RDS ・Fieldstrength or level detector group number (group type GT) which indicates the type ・Multipath distortion of data encoded in the blocks C and D. The program type ・Ultra sonic noise detector (USN) (for detecting neigh- signals the type of music or information which is current- bour channels) ly broadcast by the tuned radio station (classical music, ・Offset detector music, news ect.).
Recommended publications
  • Digital Audio Broadcasting : Principles and Applications of Digital Radio
    Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Digital Audio Broadcasting Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Copyright ß 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (þ44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (þ44) 1243 770571. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • RDS) for Stem (RDS) Y EN 50067 April 1998 Lish, French, German)
    EN 50067 EUROPEAN STANDARD EN 50067 NORME EUROPÉENNE EUROPÄISCHE NORM April 1998 ICS 33.160.20 Supersedes EN 50067:1992 Descriptors: Broadcasting, sound broadcasting, data transmission, frequency modulation, message, specification English version Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87,5 to 108,0 MHz Spécifications du système de radiodiffusion de Spezifikation des Radio-Daten-Systems données (RDS) pour la radio à modulation de (RDS) für den VHF/FM Tonrundfunk im fréquence dans la bande de 87,5 à 108,0 MHz Frequenzbereich von 87,5 bis 108,0 MHz This CENELEC European Standard was approved by CENELEC on 1998-04-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. Specification of the radio data system (RDS) CENELEC European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Brussels © 1998 - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members and the European Broadcasting Union.
    [Show full text]
  • Field Trials and Evaluations of Radio Data System Traffic Message Channel
    TRANSPORTATION RESEARCH RECORD 1324 Field Trials and Evaluations of Radio Data System Traffic Message Channel PETER DAVIES AND GRANT KLEIN The Radio Data System Traffic Message Channel (RD~-TMC) Many RDS features have already been defined and imple­ will be introduced in Europe in the mid-1990s. RDS provides for mented in most parts of Europe. One additional feature of the transmission of a silent data channel on existing VHF-FM RDS not yet finalized is the Traffic Message Channel (TMC) radio stations. TMC is one of the remaining RDS features still for digitally encoding traffic information messages. Group to be finalized. It will enable detailed, up-to-date traffic infor­ mation to be provided to motorists in the language of their choice, Type SA, one of 32 possible RDS data groups, has been thus ensuring a truly international service. As part of the Euro­ reserved for the TMC service. It will provide continuous in­ pean DRIVE program, the RDS-ALERT project has ~arried out formation to motorists through a speech synthesizer or text field trials of RDS-TMC. Testing was undertaken pnor to and display in the vehicle. TMC will improve traffic data dissem­ during the RDS-ALERT project, and implications for the TMC ination into the vehicle by several orders of magnitude over service throughout Europe were considered. TMC offers an ex­ conventional spoken warnings on the radio. By linking with citing prospect of a practical application of information technol­ intelligent vehicle-highway system (IVHS) technologies, TMC ogy suitable for the 1990s and into.the next mi.lle~niu~.
    [Show full text]
  • USING RDS/RBDS with the Si4701/03
    AN243 USING RDS/RBDS WITH THE Si4701/03 1. Scope This document applies to the Si4701/03 firmware revision 15 and greater. Throughout this document, device refers to an Si4701 or Si4703. 2. Purpose Provide an overview of RDS/RBDS Describe the high-level differences between RDS and RBDS Show the procedure for reading RDS/RBDS data from the Si4701 Show the procedure for post-processing of RDS/RBDS data Point the reader to additional documentation 3. Additional Documentation [1] The Broadcaster's Guide to RDS, Scott Wright, Focal Press, 1997. [2] CENELEC (1998): Specification of the radio data system (RDS) for VHF/FM sound broadcasting. EN50067:1998. European Committee for Electrotechnical Standardization. Brussels Belgium. [3] National Radio Systems Committee: United States RBDS Standard, April 9, 1998 - Specification of the radio broadcast data system (RBDS), Washington D.C. [4] Si4701-B15 Data Sheet [5] Si4703-B16 Data Sheet [6] Application Note “AN230: Si4700/01/02/03 Programming Guide” [7] Traffic and Traveller Information (TTI)—TTI messages via traffic message coding (ISO 14819-1) Part 1: Coding protocol for Radio Data System—Traffic Message Channel (RDS-TMC) using ALERT-C (ISO 14819-2) Part 2: Event and information codes for Radio Data System—Traffic Message Channel (RDS-TMC) (ISO 14819-3) Part 3: Location referencing for ALERT-C (ISO 14819-6) Part 6: Encryption and conditional access for the Radio Data System— Traffic Message Channel ALERT C coding [8] Radiotext plus (RTplus) Specification 4. RDS/RBDS Overview The Radio Data System (RDS*) has been in existence since the 1980s in Europe, and since the early 1990s in North America as the Radio Broadcast Data System (RBDS).
    [Show full text]
  • General–Purpose and Application–Specific Design of a DAB Channel Decoder
    General–purpose and application–specific design of a DAB channel decoder F. van de Laar N. Philips R. Olde Dubbelink (Philips Consumer Electronics) 1. Introduction Since the introduction of the Compact Disc by Philips in 1982, people have become more and In 1988, the first public more used to the superior quality and user–friend- demonstrations of a new Digital liness of digital audio. There is every reason, there- Audio Broadcasting system were fore, to arrange for sound broadcasting to benefit given in Geneva. Although this showed the feasibility of digital also from this trend. Digital Audio Broadcasting compression and modulation for (DAB) provides the digital communication link digital radio, a lot of work needed to transfer audio signals (already in digital remained to be done in the fields form as they leave modern studios), together with of standardization, frequency additional services, to the home and mobile receiv- allocation, promotion and er without loss of quality. To give an impression of hardware cost and size reduction. the performance of the DAB system, Table 1 This article describes the compares DAB with the Digital Satellite Radio development of current DAB (DSR) system [1] which was introduced in Europe receivers, with special emphasis in 1990, and conventional VHF/FM radio ex- on the design of the digital signal tended with the Radio Data System (RDS). Al- processor–based channel though a DAB receiver is significantly more–com- decoder which has been used in plex than a conventional VHF/FM receiver, there the 3rd–generation Eureka are a large number of advantages: CD audio quali- receivers, as well as a prototype ty, even in a mobile environment [2], operational decoder based on an application– comfort and numerous possibilities for additional Original language: English specific chip–set.
    [Show full text]
  • Analysis of the Single Frequency Network Gain in Digital Audio Broadcasting Networks †
    sensors Article Analysis of the Single Frequency Network Gain in Digital Audio Broadcasting Networks † Kamil Staniec Telecommunications and Teleinformatics Department, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] † This paper is an extended version of the published conference paper “Staniec, K. SFN gain analysis in digital audio broadcasting networks. In Proceedings of the Microwave and Radar Week (MRW’20), MIKON 2020, Warsaw, Poland, 5–7 October 2020”. Abstract: The single frequency network (SFN) is a popular solution in modern digital audio and television system networks for extending effective coverage, compared to its traditional single- transmitter counterpart. As benefits of this configuration appear to be obvious, this paper focuses on the exact analysis of so-called SFN gain—a quantitative effect of advantage in terms of the received signal strength. The investigations cover a statistical analysis of SFN gain values, obtained by means of computer simulations, with respect to the factors influencing the coverage, i.e., the protection level, the reception mode (fixed, portable, mobile), and the receiver location (outdoor, indoor). The analyses conclude with an observation that the most noteworthy contribution of the SFN gain is observed on the far edges of the networks, and the least one close to the transmitters. It is also observed that the highest values of the SFN gain can be expected in the fixed mode, while the protection level has the lowest impact. Keywords: DAB+; MFN; SFN gain; coverage; protection level; portable; mobile 1. Introduction Citation: Staniec, K. Analysis of the Single Frequency Network Gain in The digitization process observed in multiple areas of information and communication Digital Audio Broadcasting Networks.
    [Show full text]
  • RDS) Usage Guideline September 2012
    NRSC GUIDELINE NATIONAL RADIO SYSTEMS COMMITTEE NRSC-G300 Radio Data System (RDS) Usage Guideline September 2012 NAB: 1771 N Street, N.W. CEA: 1919 South Eads Street Washington, DC 20036 Arlington, VA 22202 Tel: (202) 429-5356 Fax: (202) 775-4981 Tel: (703) 907-7660 Fax: (703) 907-8113 Co-sponsored by the Consumer Electronics Association and the National Association of Broadcasters http://www.nrscstandards.org NRSC-G300 NOTICE NRSC Standards, Guidelines, Reports and other technical publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards, Guidelines, Reports and other technical publications shall not in any respect preclude any member or nonmember of the Consumer Electronics Association (CEA) or the National Association of Broadcasters (NAB) from manufacturing or selling products not conforming to such Standards, Guidelines, Reports and other technical publications, nor shall the existence of such Standards, Guidelines, Reports and other technical publications preclude their voluntary use by those other than CEA or NAB members, whether to be used either domestically or internationally. Standards, Guidelines, Reports and other technical publications are adopted by the NRSC in accordance with the NRSC patent policy. By such action, CEA and NAB do not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Standard, Guideline, Report or other technical publication. Note: The user's attention is called to the possibility that compliance with this Guideline may require use of an invention covered by patent rights.
    [Show full text]
  • Digital Audio Broadcasting (DAB); Guide to DAB Standards; Guidelines and Bibliography
    ETSI TR 101 495 V1.2.1 (2005-01) Technical Report Digital Audio Broadcasting (DAB); Guide to DAB standards; Guidelines and Bibliography European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TR 101 495 V1.2.1 (2005-01) Reference DTR/JTC-DAB-20 Keywords DAB, digital, audio, broadcast, broadcasting ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
    [Show full text]
  • Recommendation ITU-R BS.643-3 (05/2011)
    Recommendation ITU-R BS.643-3 (05/2011) Radio data system for automatic tuning and other applications in FM radio receivers for use with pilot-tone system BS Series Broadcasting service (sound) ii Rec. ITU-R BS.643-3 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • DARC); System for Wireless Infotainment Forwarding and Teledistribution
    ETSI EN 300 751 V1.2.1 (2003-01) European Standard (Telecommunications series) Radio broadcasting systems; DAta Radio Channel (DARC); System for wireless infotainment forwarding and teledistribution European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI EN 300 751 V1.2.1 (2003-01) Reference REN/JTC-DARC-R1 Keywords broadcasting, FM, multimedia, radio ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • An Fm/Rds (Radio Data System) Software Radio
    07 - 10 September 2009 PROCEEDINGS 54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium Information Technology and Electrical Engineering - Devices and Systems, Materials and Technologies for the Future Faculty of Electrical Engineering and Information Technology Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 Impressum Herausgeber: Der Rektor der Technischen Universität llmenau Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff Redaktion: Referat Marketing Andrea Schneider Fakultät für Elektrotechnik und Informationstechnik Univ.-Prof. Dr.-Ing. Frank Berger Redaktionsschluss: 17. August 2009 Technische Realisierung (USB-Flash-Ausgabe): Institut für Medientechnik an der TU Ilmenau Dipl.-Ing. Christian Weigel Dipl.-Ing. Helge Drumm Technische Realisierung (Online-Ausgabe): Universitätsbibliothek Ilmenau Postfach 10 05 65 98684 Ilmenau Verlag: Verlag ISLE, Betriebsstätte des ISLE e.V. Werner-von-Siemens-Str. 16 98693 llmenau © Technische Universität llmenau (Thür.) 2009 Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. ISBN (USB-Flash-Ausgabe): 978-3-938843-45-1 ISBN (Druckausgabe der Kurzfassungen): 978-3-938843-44-4 Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 AN FM/RDS (RADIO DATA SYSTEM) SOFTWARE RADIO Carsten Roppel University of Applied Sciences Schmalkalden P. O. B. 100452, D-98564 Schmalkalden E-mail: [email protected] ABSTRACT This paper describes a software radio for the Processor Audio reception of FM (frequency modulation) and RDS (demodu- Multi-standard (radio data system) signals. Both the FM and RDS lation, Video receiver use quadrature sampling and simple RF tuner decoding, baseband signal processing. After FM demodulation Data the signal is further processed by the RDS receiver control) using matched filtering and feedforward phase estimation.
    [Show full text]
  • Downloaded to the Control Unit for Testing
    OFDM/FM FOR MOBILE RADIO DATA COMMUNICATION By Eduardo F. Casas B. A. Sc., The University of Ottawa, 1981 M. Eng., McMaster University, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF ELECTRICAL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1989 © Eduardo F. Casas, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of c TVC3-/ £<\a\^e* y The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract The use of Orthogonal Frequency Division Multiplexing (OFDM) for digital communica• tions over Rayleigh-fading mobile radio channels was proposed by Cimini [1]. OFDM transmits blocks of bits in parallel and reduces the bit error rate (BER) by averaging the effects of fading over the bits in the block. This thesis studies the performance of OFDM/FM, a new modulation technique in which the OFDM baseband signal is used to modulate an FM transmitter. OFDM/FM can be implemented simply and inexpensively by retrofitting existing FM communication systems.
    [Show full text]