Hdlplanner: Design Development Environment for HDL-Based FPGA Designs

Total Page:16

File Type:pdf, Size:1020Kb

Hdlplanner: Design Development Environment for HDL-Based FPGA Designs HDLPlanner®: Design Development Environment for HDL-based FPGA Designs Design Abstract design cycle involving simulation, syn- thesis and testing. Development Rapid prototyping of designs using From a synthesis perspective, the most FPGAs requires HDL-based design appealing benefits of using HDLs are the for HDL-based entry which leverages upon highly ability to parameterize modules and the parameterized components in conjunc- technology independent manner in FPGA Designs tion with an ability to translate these which designs can be created. Module components to layouts. Designs that are parameterization encourages reusing developed with layout related consider- existing design effort and offers a conve- ations more often tend to become Application nient and powerful method for technology specific. This has a direct customizing modules in the environment consequence in migrating designs to Note in which they are used. Another impor- ASICs and may require a design to go tant advantage of using anHDL centric through an additional design cycle. approach is to leverage upon the design HDLPlanner solves this problem by pro- optimization support that is built into all viding an environment for creating HDL tools. This optimization support technology independent HDL designs, allows rapid searching for a design solu- which when translated to Atmel FPGAs, tion that meets user’s constraints in an are guaranteed to produce performance automated, correct by construction fash- delivering layouts. The primary contribu- ion. All these benefits make HDLs a tion of the HDLPlanner is its ability to preferred choice for designers involved address layout considerations up front in in rapidly prototyping digital systems the design process without compromis- using FPGAs. ing the technology independence of the design. In doing so, the planner parti- HDL centric approach, on the other tions the design creation process hand, can result in severe penalty if the between itself and the synthesis soft- synthesis and optimization support that ware in the following way. It manages is built into it is used without giving a due layout related considerations by itself consideration to underlying technology. and delegates the task of random logic This is particularly true in the case of optimization to synthesis software. The FPGAs because synthesis tools cannot planner is tightly integrated with MGL incorporate FPGA technology specific Parameterized Layout Synthesis Soft- issues such as logic cell, RAMs, tri-state ware [1] which produces highly efficient resources, clock and reset scheme etc. layouts of the components. during synthesis, to produce good qual- ity designs (these issues are dealt in the later part of this section) . The outcome Motivation can be a large netlist which may not be Hardware description languages (HDL) placed and routed in an optimum are increasingly replacing schematic ori- fashion. ented design entry methods because Some recent improvements in synthesis they offer a very short and efficient technology have partially overcome Rev. 1444A–10/99 these shortcomings. A notable improve- 1 ment called operator inferencing, identifies operator gate level representations. In many cases, however, opera- functions from HDL expressions and links them to their pre- tor inferencing does not guarantee optimal results, a case ferred layout implementation instead of constructing their for which is given in Figure 1. Figure 1. (a) VHDL template of registered adder. (b) Optimized implementation and (c) preferred implementation. PROCESS (CLOCK, RESET) BEGIN A B A B IF (RESET = 'B0) THEN SUM <= "00000000"; ELSE IF (CLOCK = '1' AND CLOCK EVENT) SUM <= A + B; END IF; REGISTER BANK REGISTER BANK END PROCESS; (A) (B) (C) The operator inferencing has one more limitation- only and a search for an optimal solution often requires manual operators that are supported in the language can be intervention in the design process. inferred. Simple building blocks such as counters and decoders cannot be inferenced and must be explicitly used Limitations in Languages and Software Tools in the design. Explicit references to cells can cause design portability problem. Some limitations in HDLs, as described below can have a significant bearing on the quality of the synthesis results. In addition to the shortcomings in synthesis technology as An example of these limitations is the inability to parame- discussed above, issues that are specific to FPGA technol- terize design modules with respect to clock, set and reset ogy and limitations that are inherent to HDL languages and schemes (i.e., according to active edges and polarities, synthesis systems are discussed below. respectively). In the absence of this capability, re-using modules can be a difficulty to achieve. In some cases, lack FPGA Technology Specific of the provision is also likely to create designs which may indiscriminately use limited numbers of clock and reset Considerations resources available on FPGAs. Synthesis tools perform an architecture specific optimiza- Besides the problem outlined above, CAE vendors do not tion, without giving due consideration to the technology seem to have a consistent method for supporting parame- contents of the FPGA device (1). terization in Verilog. For example Synopsys recommends Note: 1. The term FGPA architecture is broadly used to iden- using the parameter construct and Exemplar recommends tify architecture of the basic logic cell in it. using the defparam construct to define the parameters. What is really desired from the performance standpoint is This difference can cause design migration problems to accommodate technology specific resources in the between synthesis platforms. design synthesis. Examples of such resources are clock and reset resources, tri-state resources, wired logic Proposed Solution resources, I/O buffers, on-chip configurable memory Atmel Corporation has developed a design planning envi- resources and their address decoding circuitry etc. A cost ronment called HDLPlanner that encourages users to driven optimization of these resources is important to follow meet-in-the-middle methodology for creating HDL uncover optimum performance from an underlying technol- designs. HDLPlanner can be considered as a design man- ogy. We are not aware of any synthesis system which can ager tool which enforces design partitioning and generates fully understand and utilize technology specific information instructions to synthesis and placement software towards to perform constraint driven synthesis. an objective of creating highly regular and efficient imple- The limiting factors described above leave designers very mentations. It does so by encouraging designers to limited options for maintaining technology independence partition the system into a set of basic building blocks. It 2 FPGAs FPGAs then provides highly parameterized behavioral HDL The remainder of this paper is organized as follows. Sec- descriptions for them and a seamless link to generating lay- tion II describes the Graphical User Interfaces of out descriptions via MGL Parameterized Layout Synthesis HDLPlanner. Section III describes the central ideas in plan- software. MGL generates layouts that are highly optimized ning HDL designs using the planner. Section IV presents to architecture and technology. In this fashion, layout-spe- the features and benefits of using HDLPlanner. Section V cific issues can be addressed much earlier in the design discuss future work and presents the conclusion. process in a technology independent fashion, resulting in a simplified and shortened design cycle. HDLPlanner: An Environment for HDLPlanner has special code generation support with which modules can be parameterized with respect to clock Design Planning and reset pins. It is also tightly integrated with the target The HDLPlanner Graphical User Interface is described synthesis tool and knows the inner workings of each tool briefly. such as the parameterization and elaboration mechanisms. Figure 2. HDLPlanner Graphical User Interface DESIGN EDITOR: The built-in editor contains buttons for parameterized behavioral description of the module can be project creation, saving and supports basic text editing inserted into text view by pressing the Define button. The operations such as cut, copy, paste, search, find etc. These Instantiate button can be used to instantiate a component. buttons are located on the tool bar. The instantiation statement conforms to the parameteriza- MODULE DEFINITION AND INSTANTIATION PANES: tion mechanism recommended by the synthesis software Special list panes and buttons are provided to select, being used. define and instantiate modules (Refer to Figure 2). A fully 3 Figure 3. Options window for parameterizing designs for clock and reset polarities. OPTIONS: The Options user interface (UI) in Figure 3 can • Top level design: Specify the name of the top level be invoked by selecting the Tools > Options sub menu. design. It is used in the synthesis script to set the top The important options are listed below. level design name. • Clock trigger: Specify clock trigger for the component • VHDL package name: Specify the name of the package being defined/instantiated. in which all defined components will be declared. This • Clock signal: Specify global signals to be used in buffer package is saved in the specified file name. This option insertion. is specific to VHDL only. • Set or reset polarity: Specify polarity of the set or reset LAYOUT SYNTHESIS: A menu button Tools > Invoke pin for the component
Recommended publications
  • GS40 0.11-Μm CMOS Standard Cell/Gate Array
    GS40 0.11-µm CMOS Standard Cell/Gate Array Version 1.0 January 29, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
    [Show full text]
  • High-Level Synthesis Tools for Xilinx Fpgas
    An Independent Evaluation of: High-Level Synthesis Tools for Xilinx FPGAs By the staff of Berkeley Design Technology, Inc. Executive Summary In 2009, Berkeley Design Technology Inc. (BDTI), an HLSTs provided roughly 40X better performance than a independent benchmarking and analysis firm, launched mainstream DSP processor, and that the high-level syn- the BDTI High-Level Synthesis Tool Certification Pro- thesis tools were able to achieve FPGA resource utiliza- gram™ to evaluate high-level synthesis tools for tion levels comparable to hand-written RTL code. FPGAs. Such tools take as their input a high-level repre- Furthermore, as we will discuss in this white paper, sentation of an application (written in C or MATLAB, for implementing our video application using the HLSTs example) and generate a register-transfer-level (RTL) along with Xilinx FPGA tools required a similar level of implementation for an FPGA. Thus far, two high-level effort as that required for the DSP processor. This find- synthesis tools, AutoESL’s AutoPilot and the Synopsys ing will no doubt be surprising to many, as FPGAs have Synphony C Compiler, have been certified under the historically required much more development time than program. DSPs. BDTI’s evaluation program uses two example appli- Based on our analysis, we believe that HLSTs can sig- cations, a video motion analysis application and a wireless nificantly increase the productivity of current FPGA receiver, to evaluate high-level synthesis tools (HLSTs) users. For those using DSP processors in highly demand- on a number of quantitative and qualitative metrics. As ing applications, we believe that FPGAs used with shown in Figure 1 and Figure 2, we found that the Xilinx HLSTs are worthy of serious consideration.
    [Show full text]
  • Introduction to Intel® FPGA IP Cores
    Introduction to Intel® FPGA IP Cores Updated for Intel® Quartus® Prime Design Suite: 20.3 Subscribe UG-01056 | 2020.11.09 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction to Intel® FPGA IP Cores..............................................................................3 1.1. IP Catalog and Parameter Editor.............................................................................. 4 1.1.1. The Parameter Editor................................................................................. 5 1.2. Installing and Licensing Intel FPGA IP Cores.............................................................. 5 1.2.1. Intel FPGA IP Evaluation Mode.....................................................................6 1.2.2. Checking the IP License Status.................................................................... 8 1.2.3. Intel FPGA IP Versioning............................................................................. 9 1.2.4. Adding IP to IP Catalog...............................................................................9 1.3. Best Practices for Intel FPGA IP..............................................................................10 1.4. IP General Settings.............................................................................................. 11 1.5. Generating IP Cores (Intel Quartus Prime Pro Edition)...............................................12 1.5.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)..........................13 1.5.2. Scripting IP Core Generation....................................................................
    [Show full text]
  • NOTICE of ANNUAL MEETING of STOCKHOLDERS April 23, 2001 ______
    NOTICE OF ANNUAL MEETING OF STOCKHOLDERS April 23, 2001 ________________ To the Stockholders of Synopsys, Inc.: NOTICE IS HEREBY GIVEN that the Annual Meeting of Stockholders of Synopsys, Inc., a Delaware corporation (the “Company”), will be held on Monday, April 23, 2001, at 4:00 p.m., local time, at the Company’s principal executive offices at 700 East Middlefield Road, Mountain View, California 94043, for the following purposes: 1. To elect eight directors to serve for the ensuing year or until their successors are elected. 2. To approve an amendment to the Company’s Employee Stock Purchase Plan and International Employee Stock Purchase Plan to increase the number of shares of Common Stock reserved for issuance thereunder by 1,200,000 shares. 3. To approve an amendment to the 1992 Stock Option Plan to extend the term of the Plan from January 2002 to January 2007. 4. To ratify the appointment of KPMG LLP as independent auditors of the Company for fiscal year 2001. 5. To transact such other business as may properly come before the meeting or any adjournment or adjournments thereof. The foregoing items of business are more fully described in the Proxy Statement accompanying this Notice. Only stockholders of record at the close of business on February 26, 2001 are entitled to notice of and to vote at the meeting. All stockholders are cordially invited to attend the meeting in person. However, to assure your representation at the meeting, you are urged to sign and return the enclosed proxy (the “Proxy”) as promptly as possible in the envelope enclosed.
    [Show full text]
  • IEEE 802.3Da SPMD TF Meeting May 19, 2021 Prepared by Peter Jones
    IEEE 802.3da SPMD TF meeting May 19, 2021 Prepared by Peter Jones Presentations posted at: https://www.ieee802.org/3/da/index.html Agenda/Admin - Chad Jones All times in Pacific Time (PT) 7:01am: The Chair reviewed the agenda in https://www.ieee802.org/3/da/public/051921/8023da_agenda_051921.pdf. The Chair asked if there were any corrections or additions to the agenda. There being no corrections or additions, the agenda stands approved. The Chair asked if anyone hasn’t had a chance to review the minutes for April 21, 2021. None responded. The Chair asked if there were any change to be made to the April 21, 2021 minutes. None responded. The April 21, 2021 minutes were approved by unanimous consent. 7:09am: Call for patents was made, no one responded. 7:14am: opening agenda slides complete. The meeting moves on to presentations. Presentations/Discussion. 7:14am: LTspice Model Validation Chris DiMinico, MC Communications/PHY-SI LLC/SenTekse/Panduit Bob Voss, Panduit Paul Wachtel, Panduit 7:21am: presentation done, start of Q&A. 7:30am: Q&A done. 7:30am: Startup sequence Michael Paul, ADI 8.05am: presentation & Q&A done. 8:05am: Editors comments George Zimmerman, CME Consulting/various 8:28am: Closing remarks Next meeting: May 26, 2021 , 7:00am PT. Meeting closed – 8:31am PT Attendees (from Webex + emails) Name Employer Affiliation Attended 05/19 Alessandro Ingrassia Canova Tech Canova Tech y Anthony New Prysmian Group Prysmian Group y Bernd Horrmeyer Phoenix Contact Phoenix Contact y Bob Voss Panduit Corp. Panduit Corp. y Brian Murray Analog Devices Inc.
    [Show full text]
  • Microchip Technology Inc
    Microchip Technology Inc. Watchdog Report ™ MCHP (NASDAQ Global) | CIK:827054 | United States | SEC llings The new model for duciary analysis Sep 24, 2021 Jan 1, 2020 Jan 1, 2016 RECENT PERIOD HISTORICAL PERIOD Key Facts 10-Q led on Aug 3, 2021 for period ending Jun 2021 Business address: Chandler, Arizona, United States Reporting Irregularities RECENT HISTORICAL Industry: Semiconductor and Related Device Manufacturing (NAICS Financial Restatements 334413) SEC ler status: Large Accelerated Filer as of Jun 2021 Revisions Index member: S&P 500, Russell 1000 Out of Period Adjustments Market Cap: $45.3b as of Sep 24, 2021 Late Filings Annual revenue: $5.44b as of Mar 31, 2021 Impairments Corporate Governance Changes in Accounting Estimates CEO: Ganesh Moorthy since 2021 Disclosure Controls CFO: Eric J. Bjornholt since 2009 1st level Internal Controls Board Chairman: Steve Sanghi since 1993 Critical / Key Audit Matters Audit Committee Chair: NOT AVAILABLE Anomalies in the Numbers 2nd level RECENT HISTORICAL Benford's Law Auditor: Ernst & Young LLP since 2001 Outside Counsel (most recent): Wilson Sonsini Goodrich & Rosati Beneish M-Score Osborn Maledon PA Accounting Disclosure Complexity 3rd level Securities & Exchange Commission Concerns RECENT HISTORICAL SEC Reviewer: (unknown) 4th level SEC Oversight SEC Letters to Management Revenue Recognition Non-GAAP Measures Litigation & External Pressures RECENT HISTORICAL Signicant Litigation Securities Class Actions Shareholder Activism Watchdog Research, Inc., offers both individual and group subscriptions, Cybersecurity data feeds and/or custom company reports to our subscribers. Management Review Subscribe: We have delivered 300,000 public company reports to over RECENT HISTORICAL 27,000 individuals, from over 9,000 investment rms and to 4,000+ public CEO Changes company corporate board members.
    [Show full text]
  • Xilinx XAPP107: Synopsys/Xilinx High Density Design Methodology Using
    Product Obsolete/Under Obsolescence Application Note 3 0 Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™ XAPP107 August 6, 1998 (Version 1.0) 03*Written by: Bernardo Elayda & Ramine Roane Summary This paper describes design practices to synthesize high density designs (i.e. over 100k gates), composed of large functional blocks, for today’s larger Xilinx FPGA devices using the Synopsys FPGA Compiler. The Synopsys FPGA Compiler version 1998.02, Alliance Series 1.5, and the XC4000X family were used in preparing the material for this application note. Introduction designs preserving some levels of hierarchy will lead to better placement routing results and shorter compile times. For smaller designs, optimal quality of results can often be achieved by ungrouping hierarchical boundaries (compile The designer must determine which trade-offs to make to -ungroup_all). For high density designs, designers tra- meet his design goals and timing requirements. ditionally partition their circuits into small 5-10k gate mod- High density designs require greater selectivity on which ules. With todays version of FPGA Compiler (1998.02) and hierarchical boundaries to eliminate for synthesis. Flatten- currently available workstation hardware it is no longer nec- ing a 150k gate design can lead to long compile times, and essary to partition a design into small 5K to 10K blocks for compromise results. The following guidelines will help in efficient synthesis. In fact, artificial partitioning the design choosing which blocks to flatten in a large design: can worsen optimization results by breaking paths into sep- 1. Eliminating boundaries between combinatorial blocks arate partitions and preventing FPGA Compiler from being allows the synthesis tool to optimize glue logic across able to optimize the entire path.
    [Show full text]
  • 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
    Case 5:19-cv-02082-LHK Document 48 Filed 06/26/19 Page 1 of 9 1 2 3 4 5 6 7 8 UNITED STATES DISTRICT COURT 9 NORTHERN DISTRICT OF CALIFORNIA 10 SAN JOSE DIVISION 11 12 SYNOPSYS, INC., Case No. 19-CV-02082-LHK 13 Plaintiff, ORDER GRANTING PRELIMINARY INJUNCTION 14 v. 15 INNOGRIT, CORP., 16 Defendant. 17 United States District Court District United States Northern District of California District Northern 18 On April 23, 2019, the Court denied Plaintiff’s ex parte application for a temporary 19 restraining order. ECF No. 16 at 6. However, the Court also ordered Defendant to show cause why 20 a preliminary injunction should not issue. Id. The Court permitted the parties to brief whether a 21 preliminary injunction is appropriate here. Before the Court is the question of whether to impose a 22 preliminary injunction in the instant case. Having considered the parties’ submissions, the relevant 23 law, and the record in this case, the Court GRANTS a preliminary injunction. 24 I. BACKGROUND 25 Factual Background 26 Plaintiff is a provider of electronic design automation (“EDA”). ECF No. 39 (first 27 amended complaint, or “FAC”) at ¶ 8. EDA refers to “using computers to design, verify, and 28 1 Case No. 19-CV-02082-LHK ORDER GRANTING PRELIMINARY INJUNCTION Case 5:19-cv-02082-LHK Document 48 Filed 06/26/19 Page 2 of 9 1 simulate the performance of electronic circuits.” Id. Plaintiff has invested substantial sums of 2 money in designing EDA software, and offers a variety of software applications to purchasers.
    [Show full text]
  • GS30 Product Overview
    GS30 0.15-µm CMOS Standard Cell/Gate Array Version 1.0 February, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
    [Show full text]
  • Gpu-Accelerated Applications
    GPU-ACCELERATED APPLICATIONS Test Drive the World’s Fastest Accelerator – Free! Take the GPU Test Drive, a free and easy way to experience accelerated computing on GPUs. You can run your own application or try one of the preloaded ones, all running on a remote cluster. Try it today. www.nvidia.com/gputestdrive GPU-ACCELERATED APPLICATIONS Accelerated computing has revolutionized a broad range of industries with over five hundred applications optimized for GPUs to help you accelerate your work. CONTENTS 1 Computational Finance 2 Climate, Weather and Ocean Modeling 2 Data Science and Analytics 4 Deep Learning and Machine Learning 7 Federal, Defense and Intelligence 8 Manufacturing/AEC: CAD and CAE COMPUTATIONAL FLUID DYNAMICS COMPUTATIONAL STRUCTURAL MECHANICS DESIGN AND VISUALIZATION ELECTRONIC DESIGN AUTOMATION 15 Media and Entertainment ANIMATION, MODELING AND RENDERING COLOR CORRECTION AND GRAIN MANAGEMENT COMPOSITING, FINISHING AND EFFECTS EDITING ENCODING AND DIGITAL DISTRIBUTION ON-AIR GRAPHICS ON-SET, REVIEW AND STEREO TOOLS WEATHER GRAPHICS 22 Medical Imaging 22 Oil and Gas 23 Research: Higher Education and Supercomputing COMPUTATIONAL CHEMISTRY AND BIOLOGY NUMERICAL ANALYTICS PHYSICS SCIENTIFIC VISUALIZATION 33 Safety & Security 35 Tools and Management Computational Finance APPLICATION NAME COMPANY/DEVELOPER PRODUCT DESCRIPTION SUPPORTED FEATURES GPU SCALING Accelerated Elsen Secure, accessible, and accelerated back- * Web-like API with Native bindings for Multi-GPU Computing Engine testing, scenario analysis, risk analytics Python, R, Scala, C Single Node and real-time trading designed for easy * Custom models and data streams are integration and rapid development. easy to add Adaptiv Analytics SunGard A flexible and extensible engine for fast * Existing models code in C# supported Multi-GPU calculations of a wide variety of pricing transparently, with minimal code Single Node and risk measures on a broad range of changes asset classes and derivatives.
    [Show full text]
  • Libero Soc Design Flow User Guide
    SmartFusion®2, IGLOO®2, RTG4™ Libero® SoC Design Flow User Guide Introduction Microchip Libero System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to learn, easy to adopt development tools for designing with Microchip’s power efficient flash FPGAs, SoC FPGAs, and Rad- Tolerant FPGAs. To access datasheets and silicon user guides, visit www.microsemi.com, select the relevant product family and click the Documentation tab. Tutorials, Application Notes, Development Kits & Boards are listed in the Design Resources tab. Click the following links for additional information: • Libero SoC– Learn more about Libero SoC including Release Notes, a complete list of devices/packages, and timing and power versions supported in this release. • Programming – Learn more about Programming Solutions. • Power Calculators – Find XLS-based estimators for device families. • Licensing – Learn more about Libero licensing. © 2020 Microchip Technology Inc. User Guide DS00003765A-page 1 SmartFusion®2, IGLOO®2, RTG4™ Table of Contents Introduction.....................................................................................................................................................1 1. Libero SoC v12.6 Overview.................................................................................................................... 6 1.1. Welcome to Microchip Libero SoC v12.6..................................................................................... 6 1.2. Libero SoC Design Flow - SmartFusion2, IGLOO2, and RTG4................................................
    [Show full text]
  • EDA Software Support
    EDA Software Support ® January 1998, ver. 7 Introduction Seamless design flow and high-quality integration of third party EDA tools are essential to the continued success of programmable logic devices (PLDs). Thus, Altera has established the Altera Commitment to Cooperative Engineering Solutions (ACCESSSM) program. Through the ACCESS program, Altera and key EDA vendors jointly develop and market next-generation high-level design tools and methodologies. Altera provides EDA partners with critical technical information and assistance, and ACCESS partners dedicate resources to ensure the best quality design results for Altera architectures. The ACCESS program provides a total solution that allows designers to generate and verify multiple design revisions in a single day, greatly reducing the product development cycle. Altera has been a leader in support of industry standards, such as EDIF, VHDL, Verilog HDL, VITAL, and the library of parameterized modules (LPM). Altera has also made a commitment to support current ACCESS partner design flows. f For more information on software support provided by Altera, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet in this data book. This document identifies the type of product(s) available from each ACCESS partner, i.e., design entry, compilation/synthesis, and simulation/verification. These products either support Altera devices directly or provide an interface to the MAX+PLUS II development software. In addition, the MAX+PLUS® II software contains the necessary interfaces and libraries to support many EDA tools. Altera recommends contacting EDA software manufacturers directly for details on product features, specific device support, and product availability. Table 1 lists third-party tool support for Altera devices.
    [Show full text]