The Effect of Sample Size on Rapid Bioassessment Scores and Management Efficiency
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biological Monitoring of Surface Waters in New York State, 2019
NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect. -
DNA Barcoding
Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae) -
MWRD 2010 Chicago Waterways Benthic Report
FINAL A STUDY OF THE BENTHIC MACROINVERTEBRATE COMMUNITY IN SELECTED CHICAGO METROPOLITAN AREA WATERWAYS DURING 2010 Prepared for: Metropolitan Water Reclamation District of Greater Chicago Monitoring and Research Department Prepared by: EA Engineering, Science, and Technology, Inc. 444 Lake Cook Road, Suite 18 Deerfield, IL 60015 April 2012 EA Project 61755.03 TABLE OF CONTENTS Page 1. INTRODUCTION ........................................................................................................... 1-1 2. METHODS ...................................................................................................................... 2-1 3. RESULTS AND DISCUSSION ...................................................................................... 3-1 3.1 2010 Results ......................................................................................................... 3-1 3.1.1 Calumet Watershed .................................................................................. 3-1 3.1.1.1 Calumet River .......................................................................... 3-1 3.1.1.2 Little Calumet River ................................................................ 3-2 3.1.1.3 Calumet-Sag Channel .............................................................. 3-2 3.1.2 North Branch Chicago River Watershed ................................................. 3-3 3.1.2.1 North Shore Channel ............................................................... 3-3 3.1.2.2 North Branch of the Chicago River ........................................ -
Appendices Include ICRMP? Comment Involved in the Management ….” Management the in Involved TNARNG
APPENDIX A ENVIRONMENTAL ASSESSMENT FOR THE IMPLEMENTATION OF THE REVISED INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN FOR THE VOLUNTEER TRAINING SITE – CATOOSA TENNESSEE ARMY NATIONAL GUARD CATOOSA COUNTY, GEORGIA PREPARED BY Tennessee Military Department Environmental Office February 2012 Integrated Natural Resources Management Plan A-1 VTS-Catoosa Appendix A Environmental Assessment This page intentionally left blank. Integrated Natural Resources Management Plan A-2 VTS-Catoosa Appendix A Environmental Assessment ENVIRONMENTAL ASSESSMENT FOR IMPLEMENTATION OF THE REVISED INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, VOLUNTEER TRAINING SITE CATOOSA TENNESSEE ARMY NATIONAL GUARD REVIEWED BY: DATE: __________________________________________ ________________________ TERRY M. HASTON MG, TNARNG The Adjutant General __________________________________________ ________________________ ISAAC G. OSBORNE, JR. BG, TNARNG Assistant Adjutant General, Army __________________________________________ ________________________ DARRELL D. DARNBUSH COL, TNARNG Deputy Chief of Staff, Operations __________________________________________ ________________________ GARY B. HERR LTC, TNARNG Training Site Commander _________________________________________ ________________________ STEPHEN B. LONDON COL, TNARNG Environmental Officer Integrated Natural Resources Management Plan A-3 VTS-Catoosa Appendix A Environmental Assessment Integrated Natural Resources Management Plan A-4 VTS-Catoosa Appendix A Environmental Assessment TABLE OF CONTENTS Table of Contents A-5 -
(Insecta: Diptera) in Lowland Running Waters of North-East Germany (Brandenburg) Based on 10- Year EU-Water Framework Directive Monitoring Programme
37 Lauterbornia 77: 37-62, D-86424 Dinkelscherben, 2014-07-07 Faunistic overview of Chironomidae (Insecta: Diptera) in lowland running waters of north-east Germany (Brandenburg) based on 10- year EU-Water Framework Directive monitoring programme Claus Orendt, Xavier-François Garcia, Berthold F. Janecek, Susanne Michiels, Claus-Joachim Otto and Reinhard Müller With 8 figures and 5 tables Keywords : Chironomidae, Diptera, Insecta, Brandenburg, Germany, Central European Lowlands, running water, check list, faunistics, larva, pupa, pupal exuviae, imago Schlagwörter : Chironomidae, Diptera, Insecta, Brandenburg, Deutschland, Zentrales Flachland, Fließgewässer, Checkliste, Faunistik, Larve, Puppe, Imago The results of a 10-year monitoring programme are used to provide a list of the Chironomidae taxa of running waters in Brandenburg, north-east Germany, Central European Lowlands ecoregion. The 573 taxa recorded, represent 58 % of the Chironomidae in the "Taxa list of the freshwater organisms of Germany". The 408 re- cords with a valid species status include 56 % of the species, and the 121 genera include 73 % of the genera of the German Chironomidae fauna. The records are based on collections of all developmental stages and were de- rived from about 2350 samples taken during a 10-year monitoring programme up to 2013. The study shows how monitoring programmes with a clear strategy and proper data storage and management can make a sub- stantial contribution to knowledge of the fauna of an ecoregion and provide a solid database for ecological ana- lyses. Further data evaluation indicated an affinity of certain taxa to a particular water type, but further in- depth analysis is required. 1 Introduction Until the end of the last century understanding about the distribution of Chironomidae in the northern lowlands of Germany was limited, because they were seldom included in waterbody studies. -
An Updated List of Chironomid Species from Italy with Biogeographic Considerations (Diptera, Chironomidae)
Biogeographia – The Journal of Integrative Biogeography 34 (2019): 59–85 An updated list of chironomid species from Italy with biogeographic considerations (Diptera, Chironomidae) BRUNO ROSSARO1, NICCOLÒ PIROLA1, LAURA MARZIALI2, GIULIA MAGOGA1, ANGELA BOGGERO3, MATTEO MONTAGNA1 1 Dipartimento di Scienze Agrarie e Ambientali (DiSAA), University of Milano, Via Celoria 2, 20133 Milano (Italy) 2 Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio (MB) (Italy) 3 Water Research Institute - National Research Council (IRSA-CNR), Corso Tonolli 50, 28922 Verbania Pallanza (Italy) * corresponding author: [email protected] Keywords: biodiversity, checklist, faunistics, freshwaters, non-biting midges, species list. SUMMARY In a first list of chironomid species from Italy from 1988, 359 species were recognized. The subfamilies represented were Tanypodinae, Diamesinae, Prodiamesinae, Orthocladiinae and Chironominae. Most of the species were cited as widely distributed in the Palearctic region with few Mediterranean (6), Afrotropical (19) or Panpaleotropical (3) species. The list also included five species previously considered Nearctic. An updated list was thereafter prepared and the number of species raised to 391. Species new to science were added in the following years further raising the number of known species. The list of species known to occur in Italy is now updated to 580, and supported by voucher specimens. Most species have a Palearctic distribution, but many species are distributed in other biogeographical regions; 366 species are in common with the East Palaearctic region, 281 with the Near East, 248 with North Africa, 213 with the Nearctic, 104 with the Oriental, 23 species with the Neotropical, 23 with the Afrotropical, 16 with the Australian region, and 46 species at present are known to occur only in Italy. -
A Checklist of the Aquatic Invertebrates of the Delaware River Basin, 1990-2000
A Checklist of the Aquatic Invertebrates of the Delaware River Basin, 1990-2000 By Michael D. Bilger, Karen Riva-Murray, and Gretchen L. Wall Data Series 116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to repro- duce any copyrighted materials contained within this report. Suggested citation: Bilger, M.D., Riva-Murray, Karen, and Wall, G.L., 2005, A checklist of the aquatic invertebrates of the Delaware River Basin, 1990-2000: U.S. Geological Survey Data Series 116, 29 p. iii FOREWORD The U.S. Geological Survey (USGS) is committed to providing the Nation with accurate and timely sci- entific information that helps enhance and protect the overall quality of life and that facilitates effec- tive management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Informa- tion on the quality of the Nation’s water resources is critical to assuring the long-term availability of water that is safe for drinking and recreation and suitable for industry, irrigation, and habitat for fish and wildlife. -
Methods for Collecting Macroinvertebrate Samples For
Page Intentionally Left Blank Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015 Page 2 of 122 Document Revision History Date of Revision Page(s) Revised Revision Explanation September 2015 All Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed- based Plans; original document; extracted in part from “Methods for Conducting Resource Extraction Individual Permit Intensive Surveys in Non-OSRW Streams of the Eastern Kentucky Coalfields, June 2014, Revision 2” Suggested Citation: Kentucky Division of Water (KDOW). 2015. Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans. Department for Environmental Protection. Division of Water, Frankfort, Kentucky. Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015 Page 3 of 122 Table of Contents 1. Scope and Applicability .................................................................................................. 6 2. Definitions....................................................................................................................... 6 3. Personnel Qualifications ................................................................................................. 7 4. Equipment and Supplies ................................................................................................ -
Ohio EPA Supplemental Keys to the Larval Chironomidae (Diptera) of Ohio and Ohio Chironomidae Checklist
Ohio EPA Supplemental Keys to the Larval Chironomidae (Diptera) of Ohio and Ohio Chironomidae Checklist June 2007 Michael J. Bolton Ohio Environmental Protection Agency 4675 Homer Ohio Lane Groveport, Ohio 43235 E-mail: [email protected] Ohio EPA Chironomid Larval Keys for Ohio June 2007 Introduction The following keys were developed to supplement existing keys as an aid in the identification of Chironomidae larvae collected in Ohio. They were designed to incorporate most of the taxa known from the temperate eastern North America. The bulk of the characters used in these keys were taken from existing keys. There is, however, many gaps in our understanding of the chironomid fauna. For that reason every attempt was made to positively identify larvae by associating them with their pupal and adult male stages. Therefore, some of the information presented in this guide is not available in other keys. These keys should be used in conjunction with existing keys. The standard generic level key that everyone identifying chironomid larvae should have is “Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 1 - Larvae” edited by Wiederholm (1983). In addition to keys, this work contains extremely useful diagnoses and illustrations for every genus known from the covered area at the time. Another essential publication is “Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina” by Epler (2001). This very useful manual identifies larvae to species when possible and is extensively illustrated. However, it was designed to cover the Southeastern United States. At least two genera (Doncricotopus and Synendotendipes) found in Ohio were not included. -
Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers
DRAFT REVISION—September 3, 1998 Merrimack Station AR-1164 EPA 841-B-99-002 Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish Second Edition http://www.epa.gov/OWOW/monitoring/techmon.html By: Project Officer: Michael T. Barbour Chris Faulkner Jeroen Gerritsen Office of Water Blaine D. Snyder USEPA James B. Stribling 401 M Street, NW DRAFT REVISION—September 3, 1998 Washington, DC 20460 Rapid Bioassessment Protocols for Use in Streams and Rivers 2 DRAFT REVISION—September 3, 1998 NOTICE This document has been reviewed and approved in accordance with U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Appropriate Citation: Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. This entire document, including data forms and other appendices, can be downloaded from the website of the USEPA Office of Wetlands, Oceans, and Watersheds: http://www.epa.gov/OWOW/monitoring/techmon.html DRAFT REVISION—September 3, 1998 FOREWORD In December 1986, U.S. EPA's Assistant Administrator for Water initiated a major study of the Agency's surface water monitoring activities. The resulting report, entitled "Surface Water Monitoring: A Framework for Change" (U.S. EPA 1987), emphasizes the restructuring of existing monitoring programs to better address the Agency's current priorities, e.g., toxics, nonpoint source impacts, and documentation of "environmental results." The study also provides specific recommendations on effecting the necessary changes. -
Bureau of Water Quality Annual Macroinvertebrate Community Report 2018
Indiana Scientific Purpose License Number: 18-161 Bureau of Water Quality Annual Macroinvertebrate Community Report 2018 Bureau of Water Quality 5150 W. Kilgore Ave. Muncie, IN 47304 Phone: 765-747-4896 Fax: 765-213-6444 Prepared by: www.munciesanitary.org/bwq Laura Bowley, Macroinvertebrate Biologist, BWQ March 2019 Photo description (previous page): Lampsilis fasciola showing one of its four known lure displays. All four displays were seen at a single site in 2018. 2 TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................... 3 PREFACE ................................................................................................................................... 5 INTRODUCTION ...................................................................................................................... 5 West Fork White River and the Bureau of Water Quality ..................................................... 5 Mussels as Biomonitors .............................................................................................................. 6 Figure 1.— Mussel sampling segments, 2018. ............................................................................. 6 Macroinvertebrates as Biomonitors .......................................................................................... 7 Figure 2.— Macroinvertebrates sites, 2018. ................................................................................. 7 MUSSEL METHODS................................................................................................................ -
A Comprehensive Evaluation of Benthic Invertebrate Communities in the Emory River, Watts Bar Reservoir, TN
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2015 A Comprehensive Evaluation of Benthic Invertebrate Communities in the Emory River, Watts Bar Reservoir, TN Suzanne Jane Young University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Young, Suzanne Jane, "A Comprehensive Evaluation of Benthic Invertebrate Communities in the Emory River, Watts Bar Reservoir, TN. " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3529 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Suzanne Jane Young entitled "A Comprehensive Evaluation of Benthic Invertebrate Communities in the Emory River, Watts Bar Reservoir, TN." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Jerome F. Grant, Major Professor We have read this thesis and recommend its acceptance: J. Kevin Moulton, Teresa J. Mathews Accepted