Quality Assurance Project Plan: Water Quality and Sediment Chemistry, and Bioassessment Monitoring of the North Branch Chicago River Watershed

Total Page:16

File Type:pdf, Size:1020Kb

Quality Assurance Project Plan: Water Quality and Sediment Chemistry, and Bioassessment Monitoring of the North Branch Chicago River Watershed Quality Assurance Project Plan: Water Quality and Sediment Chemistry, and Bioassessment Monitoring of the North Branch Chicago River Watershed Lake County and Cook County, Illinois North Branch Chicago River Watershed Workgroup 500 W. Winchester Rd. Libertyville, IL 60048 Quality Assurance Project Plan North Branch Chicago River Monitoring Program April 3, 2019 Table of Contents Group A: Project Management Elements A1. Title and Approval Page ...................................................................................................... 1 Chris O. Yoder, Principal Investigator, Midwest Biodiversity Institute..................................... 1 Peter A. Precario, Executive Director, Midwest Biodiversity Institute ...................................... 1 Michelle Rousey, Illinois EPA, Quality Assurance Officer ....................................................... 1 Brandon Janes, President, North Branch Chicago River Watershed Workgroup (NBWW) ...... 1 Table of Contents ........................................................................................................................ 2 Introduction .................................................................................................................................... 7 Group A: Project Management Elements .................................................................................... 7 A.3: Distribution List ................................................................................................................. 7 A.4: Project/Task Organization ................................................................................................. 8 A.5: Problem Definition and Background ................................................................................. 9 A.6: Project Description............................................................................................................. 9 A.7: Quality Objectives and Criteria ....................................................................................... 11 Data Attributes - Fish Assemblage: ...................................................................................... 11 Data Attributes - Macroinvertebrate Assemblage: ................................................................ 11 Data Attributes – Field Water Quality: ................................................................................. 12 Data Attributes – Water Column and Sediment Chemistry: ................................................. 12 Representativeness:............................................................................................................... 28 Precision and Accuracy: ....................................................................................................... 29 Measurement Range and Comparability: ............................................................................. 31 Bias: ...................................................................................................................................... 31 Completeness: ....................................................................................................................... 31 Sensitivity: ............................................................................................................................. 32 A.8: Training and Certification ................................................................................................ 34 A.9: Documents and Records .................................................................................................. 34 Field Data Recording: .......................................................................................................... 35 Reporting: ............................................................................................................................. 41 Group B: Data Generation and Acquisition .............................................................................. 41 B.1: Sampling Process Design ................................................................................................. 41 B.2: Sampling Methods ........................................................................................................... 41 Fish Assemblage Methods: ................................................................................................... 41 2 Quality Assurance Project Plan North Branch Chicago River Monitoring Program April 3, 2019 Macroinvertebrate Assemblage Methods: ............................................................................ 47 Water Column Chemistry Methods:...................................................................................... 49 Benthic Periphyton Sampling: .............................................................................................. 51 Sediment Chemistry Methods: .............................................................................................. 51 B.3: Sample Handling and Custody ......................................................................................... 52 B.4: Analytical Methods .......................................................................................................... 53 B.5: Quality Control................................................................................................................. 53 Laboratory Quality Control:................................................................................................. 55 B.6: Instrument/Equipment Testing, Inspection, and Maintenance ......................................... 56 B.7: Instrument/Equipment Calibration and Frequency .......................................................... 56 B.8: Inspection/Acceptance of Supplies and Consumables ..................................................... 56 B.9: Non-direct Measurements ................................................................................................ 56 B.10: Data Management .......................................................................................................... 56 Group C: Assessment and Oversight .......................................................................................... 57 C.1: Assessments and Response Actions ................................................................................. 57 C.2: Reports to Management ................................................................................................... 57 Group D: Data Validation and Usability ................................................................................... 57 D.1: Data Review, Validation, and Verification ...................................................................... 57 D.2: Verification and Validation of Methods .......................................................................... 58 D.3: Reconciliation with User Requirements .......................................................................... 58 References .................................................................................................................................... 59 Figures and Tables Table 1: NBWW Monitoring Contact Information Table 2: Precision, accuracy, and measurement range for field parameters Table 3: Precision, accuracy, and limit of sensitivity for water column chemistry parameters Table 4: Precision, accuracy, and limit of sensitivity for sediment chemistry parameters Table 5: Minimum measurement criteria, minimum measurement objectives, method MDLs, and laboratory RLs for selected parameters Table 6: Fish assemblage sampling method and gear specifications for the North Branch Chicago River biological assessment Table 7: Macroinvertebrate assemblage sampling method and gear specifications for the North Branch Chicago River biological assessment Table 8: Water column sampling containers, parameters, preservation, and holding time 3 Quality Assurance Project Plan North Branch Chicago River Monitoring Program April 3, 2019 Table 9: Sediment sampling containers, parameters, preservation, and holding time Table 10: North Shore Water Reclamation District reportable qualifiers for water column and sediment samples Figure 1: Functional organization for project implementation and management Figure 2: Field data sheet for recording electrofishing collection data and for entry into the database Figure 3: QHEI field sheet Figure 4: Water column chemistry field data sheet Appendices Appendix A: Monitoring Strategy for the North Branch Chicago River Watershed Appendix B: Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI) Appendix C: IDNR Fisheries Stream Sampling Guidelines (2001) Appendix D: Methods of Collecting Macroinvertebrates in Stream Appendix E: Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized Biological Field and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities Appendix F: Sediment and Surface Water Sample Collection SOP (2018) Appendix G: Continuous DO Monitoring SOP Appendix H: Benthic Periphyton Sampling SOP Appendix I: Stream Nutrient Assessment Procedure 4 Quality Assurance Project Plan North Branch Chicago River Monitoring Program April 3, 2019 List of Acronyms BCG – biological condition gradient CFR – Code of Federal Regulations CPUE – catch per unit effort CV – coefficient of variation CWA – Clean Water Act DC – direct current DELT – deformities, eroded fins and body parts, lesions, and tumors DO – dissolved oxygen EB – Executive Board EDD – Electronic Data Deliverable GPP – Generator Powered Pulsator
Recommended publications
  • Download The
    AN ECOLOGICAL STUDY OF SOME OF THE CHIRONOMIDAE INHABITING A SERIES OF SALINE LAKES IN CENTRAL BRITISH COLUMBIA WITH SPECIAL REFERENCE TO CHIRONOMUS TENTANS FABRICIUS by Robert Alexander Cannings BSc. Hons., University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Zoology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1973 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada Date ii ABSTRACT This thesis is concerned with a study of the Chironomidae occuring in a saline lake series in central British Columbia. It describes the ecological distribution of species, their abundance, phenology and interaction, with particular attention being paid to Chironomus tentans. Emphasis is placed on the species of Chironomus that coexist in these lakes and a further analysis is made of the chromo• some inversion frequencies in C. tentans. Of the thirty-four species represented by identifiable adults in the study, eleven species have not been previously reported in British Columbia, five are new records for Canada and seven species are new to science.
    [Show full text]
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • Viewed Erature to Ensure the Most Up-To-Date Treatment with Caution, P~Rticularlyamong Older Literature
    PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Vol. 50, No. 3, pp. 39-114. December 9, 1997 SPECIES CATALOG OF THE NEUROPTERA, MEGALOPTERA, AND RAPHIDIOPTERA OF AMERlCA NORTH OF MEXICO Norman D. Penny Department ofE~ztorizolog)~,Caldornla Acndony oJ'Sc~erzces, San Fmnc~sco,CA 941 18 Phillip A. Adams Ccllg'rnia State Utzivet-sity, F~lllet-ton,CA 92634 and Lionel A. Stange Florida Depat>tnzen/oj'Agt.~czi/trrre, Gr~~nesv~/le, FL 32602 Thc 399 currently recognized valid species of the orders Neuroptera, Megaloptera, and Raphidioptera that are known to occur in America north of Mexico are listed and full synonymies given. Geographical distributions are listed by states and province\. Complete bibliographic references are given for all namcs and nomenclatural acts. Included are two new Junior homonyms indicated, seven new taxonomic cornbinations, two new changes of rank, fourteen new synonymies, three new lectotype de\ignations, and onc new name. Received March 20,1996. Accepted June 3, 1997. The recent publication of Nomina Insecta been consulted whenever possible, as well as Nearctica, A Check List of the Insects of North Zoological Record, and appropriate mono- America (Poole 1996) has given us a listing of graphic revisions publishedup to 1 January 1997. North American Neuropterida (Neuroptera + A number of taxonomic changes are incorpo- Megaloptera + Raphidioptera) species for the rated into this catalog: there are two new Junior first tlme in more than a century. However, for homonyms indicated, seven new taxonomic anyone trying to identify these species, the litera- combinations, two new changes of rank. fourteen ture is scattered and obscure.
    [Show full text]
  • Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia)
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 619127, 11 pages http://dx.doi.org/10.1155/2014/619127 Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia) Irina A. Kaygorodova,1 Nadezhda Mandzyak,1 Ekaterina Petryaeva,1,2 and Nikolay M. Pronin3 1 Limnological Institute, 3 Ulan-Batorskaja Street, Irkutsk 664033, Russia 2 Irkutsk State University, 5 Sukhe-Bator Street, Irkutsk 664003, Russia 3 Institute of General and Experimental Biology, 6 Sakhyanova Street, Ulan-Ude 670047, Russia Correspondence should be addressed to Irina A. Kaygorodova; [email protected] Received 30 July 2014; Revised 7 November 2014; Accepted 7 November 2014; Published 27 November 2014 Academic Editor: Rafael Toledo Copyright © 2014 Irina A. Kaygorodova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The study of leeches from Lake Gusinoe and its adjacent area offered us the possibility to determine species diversity. Asa result, an updated species list of the Gusinoe Hirudinea fauna (Annelida, Clitellata) has been compiled. There are two orders and three families of leeches in the Gusinoe area: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (family Erpobdellidae). In total, 6 leech species belonging to 6 genera have been identified. Of these, 3 taxa belonging to the family Glossiphoniidae (Alboglossiphonia heteroclita f. papillosa, Hemiclepsis marginata,andHelobdella stagnalis) and representatives of 3 unidentified species (Glossiphonia sp., Piscicola sp., and Erpobdella sp.) have been recorded. The checklist gives a contemporary overview of the species composition of leeches and information on their hosts or substrates.
    [Show full text]
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Chapter XXV —Class Oligochaeta
    Chapter XXV —Class Oligochaeta (Aquatic Worms)- Phylum Annelida Oligochaetes are common in most freshwater habitats, but they are often ignored by freshwater biologists because they are thought to be extraordinarily difficult to identify. The extensive taxo- nomic work done since 1960 by Brinkhurst and others, however, has enabled routine identifica- tion of most of our freshwater oligochaetes from simple whole mounts. Some aquatic worms closely resemble terrestrial earthworms while others can be much narrower or thread-like. Many aquatic worms can tolerate low dissolved oxygen and may be found in large numbers in organi- cally polluted habitats. Aquatic worms can be distinguished by: (Peckarsky et al., 1990) • Body colour may be red, tan, brown or black. • Cylindrical, thin (some are very thin), segmented body may be upto 5 inches. • May have short bristles or hairs (setae) that help with movement (usually not visible). • Moves by stretching and pulling its body along in a worm-like fashion. Four families in the orders Tubificida and Lumbriculida are common in freshwater in northeastern North America: the Tubificidae, Naididae, Lumbriculidae, and Enchytraeidae. In addition, fresh- water biologists sometimes encounter lumbricine oligochaetes (order Lumbricina; the familiar earthworms), haplotaxid oligochaetes (order Haplotaxida; rare inhabitants of groundwater), Aeolosoma (class Aphanoneura; small worms once classified with the oligochaetes), and Manayunkia speciosa (class Polychaeta) in waters of northeastern North America. (Peckarsky et al., 1990). The two families, Naididae and Tubificidae form 80 to 100% of the annelid communi- ties in the benthos of most streams and lakes at all trophic levels. They range in size from 0.1 cm in Naididae to 3 or 4 cm in relaxed length in Lumbricidae, the family that contains the earth- worms.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Waterbody: Northeast Black Creek Basin: Bird Sink
    Waterbody: Northeast Black Creek Background Healthy, well-balanced stream communities may be maintained with some level of human activity, but ex- cessive human disturbance may result in waterbody degradation. Human stressors may include increased inputs of nutrients, sediments, and/or other contam- inants from watershed runoff, adverse hydrologic al- terations, undesirable removal of habitat or riparian buffer vegetation, and introduction of exotic plants and animals. Water quality standards are designed to protect designated uses of the waters of the state (e.g., recreation, aquatic life, fish consumption), and exceedances of these standards are associated with interference of the designated use. Basin: Bird Sink Due to ongoing beaver activity, station BC1 is no Northeast Black Creek is a tannic, acidic, predomi- longer sampled. Leon County staff continue to nantly nitrogen-limited stream located in northeast- evaluate the hydrological and plant community ern Leon County. The stream forms near Centerville changes that are occurring in this section. Road and the Chemonie Plantation subdivision and Methods flows southeast through the Miccosukee Land Coop- erative before crossing under Capitola Road. The Surface water samples were collected to determine creek then turns northeast to join Still Creek and then the health of Northeast Black Creek and met the re- flows into Bird Sink. quirements of the Florida Department of Environ- mental Protection (FDEP). As shown in the following pie chart, approximately 31% of the 15,783-acre watershed is comprised of Results urban, agriculture/rangeland, transportation and utilities land uses. Increases in stormwater runoff and Nutrients waterbody nutrient loads can often be attributed to According to FDEP requirements, four temporally in- these types of land uses.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Phylum: Annelida
    www.nature.com/scientificreports OPEN Behavioral variation according to feeding organ diversifcation in glossiphoniid leeches (Phylum: Annelida) Hee‑Jin Kwak1,7, Jung‑Hyeuk Kim1,2,7, Joo‑Young Kim3, Donggu Jeon4, Doo‑Hyung Lee3, Shinja Yoo5, Jung Kim6, Seong‑il Eyun4, Soon Cheol Park4* & Sung‑Jin Cho1* Adaptive radiation is a phenomenon in which various organs are diversifed morphologically or functionally as animals adapt to environmental inputs. Leeches exhibit a variety of ingestion behaviors and morphologically diverse ingestion organs. In this study, we investigated the correlation between behavioral pattern and feeding organ structure of leech species. Among them, we found that Alboglossiphonia sp. swallows prey whole using its proboscis, whereas other leeches exhibit typical fuid‑sucking behavior. To address whether the diferent feeding behaviors are intrinsic, we investigated the behavioral patterns and muscle arrangements in the earlier developmental stage of glossiphoniid leeches. Juvenile Glossiphoniidae including the Alboglossiphonia sp. exhibit the fuid ingestion behavior and have the proboscis with the compartmentalized muscle layers. This study provides the characteristics of leeches with specifc ingestion behaviors, and a comparison of structural diferences that serves as the frst evidence of the proboscis diversifcation. Diverse animals have evolved a great variety of ways to obtain the energy needed for their survival and reproduc- tion. Some invertebrates and vertebrates use potent jaws to swallow the entire prey (macrophagous)1–5, while others use organs such as proboscises or stylets to penetrate the body wall of the prey and suck out fuid (fuid ingestion)6–11. Leeches (Phylum Annelida), are within the class Clitellata, superorder Euhirndinea. Te group of Clitellata consists of Euhirudinea, Acanthobdellida, Branchiobdellida, and Oligochaeta, all of which are her- maphroditic and deposit cocoons through a special organ called clitellum 12.
    [Show full text]
  • CHAPTER 4: EPHEMEROPTERA (Mayflies)
    Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families.
    [Show full text]