Lake Tanganyika Research: Summary of the Scientific Programme 1992-98

Total Page:16

File Type:pdf, Size:1020Kb

Lake Tanganyika Research: Summary of the Scientific Programme 1992-98 RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE TANGANYIKA GCP/RAF/271/FIN-TD/94(En) GCP/RAF/271/FIN-TD/94(En) June 1999 LAKE TANGANYIKA RESEARCH: SUMMARY OF THE SCIENTIFIC PROGRAMME 1992-98 Edited By: O.V. Lindqvist, H. Mölsä & J. Sarvala FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, June 1999 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on the Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (LTR) became fully operational in January 1992. It is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA) and the Arab Gulf Program for the United Nations Development Organization (AGFUND). LTR's objective is the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Democratic Republic of Congo, Tanzania, and Zambia). Particular attention is given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the build-up of effective coordination mechanisms to ensure full collaboration between the Governments concerned. Prof. O.V. LINDQVIST Dr. George HANEK LTR Scientific Coordinator LTR Coordinator LAKE TANGANYIKA RESEARCH (LTR) FAO B.P. 1250 BUJUMBURA BURUNDI Telex: FOODAGRI BDI 5092 Tel: (257) 22.97.60 Fax: (257) 22.97.61 E-mail: [email protected] GCP/RAF/271/FIN-TD/94 (En) iii GCP/RAF/271/FIN PUBLICATIONS Publications of the project are issued in two series: * a series of technical documents (GCP/RAF/271/FIN-TD) related to meetings, missions and research organized by the project; * a series of manuals and field guides (GCP/RAF/271/FIN-FM) related to training and field work activities conducted in the framework of the project. For both series, reference is further made to the document number (01), and the language in which the document is issued: English (En) and/or French (Fr). F or bibliographic purposes this document s hould be cited as follows : Lindqvist, O.V., H. Mölsä & J. Sarvala (Eds.) ‘Lake 1999 Tanganyika Research: Summary of the Scientific Programme 1992-98.’ FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/94(En): 102p. GCP/RAF/271/FIN-TD/94 (En) iv TABLE OF CONTENTS ACKNOWLEDGMENTS..................................................................................................................viii CHAPTER 1. GENERAL INTRODUCTION........................................................................................1 Mölsä, H., J.E. Reynolds & O.V. Lindqvist 1.1 LTR SCIENTIFIC SUMMARY...............................................................................................................................................1 1.2 LAKE TANGANYIKA OVERVIEW..................................................................................................................................1 1.1.1 General features................................................................................................................................................................2 1.1.2 Ecosystem and fisheries..................................................................................................................................................2 1.1.2 Ecosystem and fisheries..................................................................................................................................................3 1.2 LTR SCIENTIFIC PROGRAMME........................................................................................................................................5 1.2.1 Objectives...........................................................................................................................................................................5 1.2.2 Implementation..................................................................................................................................................................6 1.2.3 Outcomes.............................................................................................................................................................................7 CHAPTER 2. HYDRODYNAMICS AND HYDRODYNAMIC MODELLING.........................................10 Huttula, T., Peltonen, A. Podsetchine, V. & P, Kotilainen, B. Kakogozo, L. Makasa, S. Muhoza and J-M. Tumba 2.1 INTRODUCTION.....................................................................................................................................................................10 2.2. MATERIALS AND METHODS..........................................................................................................................................11 2.3 RESULTS....................................................................................................................................................................................12 2.3.1 Water level........................................................................................................................................................................12 2.3.2 Thermal regime.................................................................................................................................................................12 2.3.4 Water circulation............................................................................................................................................................13 2.3.5 Modelling.........................................................................................................................................................................14 2.4. CONCLUSIONS.......................................................................................................................................................................15 CHAPTER 3. REMOTE SENSING....................................................................................................26 Tuomainen, V. J. Parkkinen, H. Mölsä & O.V.Lindqvist 3.1. INTRODUCTION.....................................................................................................................................................................26 3.2 MATERIALS AND METHODS..........................................................................................................................................27 3.3. RESULTS....................................................................................................................................................................................28 3.3.1 Satellite data and processing scheme........................................................................................................................28 3.3.2 Vegetation index.............................................................................................................................................................29 3.3.3 Surface temperature.........................................................................................................................................................29 3.3.4 Upwelling.........................................................................................................................................................................29 3.3.5 Thermal changes..............................................................................................................................................................30 3.4. CONCLUSIONS.......................................................................................................................................................................30 CHAPTER 4. LIMNOLOGY AND PHYTOPLANKTON PRIMARY PRODUCTION.............................33 Sarvala, J., K.Salonen, P-D, Plisnier, V. Langenberg, L. Mwape, D. Chitamwebwa, K.Tshibangu and E. Coenen 4.1 INTRODUCTION.....................................................................................................................................................................33 4.2. MATERIALS AND METHODS..........................................................................................................................................34 4.3. RESULTS....................................................................................................................................................................................35 4.3.1 Bacterioplankton production......................................................................................................................................37 4.3.2 DOC determinations and total community respiration........................................................................................38 4.4 CONCLUSIONS.......................................................................................................................................................................38
Recommended publications
  • Philippine Species of Mesocyclops (Crustacea: Copepoda) As a Biological Control Agent of Aedes Aegypti (Linnaeus)
    Philippine Species of Mesocyclops (Crustacea: Copepoda) as a Biological Control Agent of Aedes aegypti (Linnaeus) Cecilia Mejica Panogadia-Reyes*#, Estrella Irlandez Cruz** and Soledad Lopez Bautista*** *Department of Biology, Emilio Aguinaldo College, Ermita, Manila, MM, Philippines **Research Institute for Tropical Medicine, Alabang, Muntinlupa, MM, Philippines ***Department of Medical Technology, Emilio Aguinaldo College, Ermita, Manila, MM, Philippines Abstract The predatory capacity of two local populations of Mesocyclops aspericornis (Daday) and Mesocyclops ogunnus species were evaluated, for the first time in the Philippines, as a biological control agent for Aedes aegypti (L) mosquitoes. Under laboratory conditions, Mesocyclops attacked the mosquito first instar larvae by the tail, side and head. The mean of first instar larvae consumed by M. aspericornis and M. ogunnus were 23.96 and 15.00, respectively. An analysis of the variance showed that there was a highly significant difference between the mean number of first instar mosquito larvae consumed by M. aspericornis and by M. ogunnus, which indicated that the former is a more efficient predator of dengue mosquito larvae. The results of the small-scale field trials showed that the mean number of surviving larvae in experimental drums was 63.10 and in control drums was 202.95. The Student t-test of means indicated that there was a significant difference between the mean number of surviving larvae in the drums with and without M. aspericornis. The findings indicated that M. aspericornis females were good biological control agents, for they destroyed/consumed about two-thirds of the wild dengue mosquito larvae population. Keywords: Mesocyclops aspericornis, Mesocyclops ogunnus, biological control agent, Aedes aegypti, Aedes albopictus, Philippines.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Copepoda: Crustacea) in the Neotropics Silva, WM.* Departamento Ciências Do Ambiente, Campus Pantanal, Universidade Federal De Mato Grosso Do Sul – UFMS, Av
    Diversity and distribution of the free-living freshwater Cyclopoida (Copepoda: Crustacea) in the Neotropics Silva, WM.* Departamento Ciências do Ambiente, Campus Pantanal, Universidade Federal de Mato Grosso do Sul – UFMS, Av. Rio Branco, 1270, CEP 79304-020, Corumbá, MS, Brazil *e-mail: [email protected] Received March 26, 2008 – Accepted March 26, 2008 – Distributed November 30, 2008 (With 1 figure) Abstract Cyclopoida species from the Neotropics are listed and their distributions are commented. The results showed 148 spe- cies in the Neotropics, where 83 species were recorded in the northern region (above upon Equator) and 110 species in the southern region (below the Equator). Species richness and endemism are related more to the number of specialists than to environmental complexity. New researcher should be made on to the Copepod taxonomy and the and new skills utilized to solve the main questions on the true distributions and Cyclopoida diversity patterns in the Neotropics. Keywords: Cyclopoida diversity, Copepoda, Neotropics, Americas, latitudinal distribution. Diversidade e distribuição dos Cyclopoida (Copepoda:Crustacea) de vida livre de água doce nos Neotrópicos Resumo Foram listadas as espécies de Cyclopoida dos Neotrópicos e sua distribuição comentada. Os resultados mostram um número de 148 espécies, sendo que 83 espécies registradas na Região Norte (acima da linha do Equador) e 110 na Região Sul (abaixo da linha do Equador). A riqueza de espécies e o endemismo estiveram relacionados mais com o número de especialistas do que com a complexidade ambiental. Novos especialistas devem ser formados em taxo- nomia de Copepoda e utilizar novas ferramentas para resolver as questões sobre a real distribuição e os padrões de diversidade dos Copepoda Cyclopoida nos Neotrópicos.
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • The Use of the Copepod Mesocyclops Longisezus As a Biological Control
    Journal of the American Mosquito Contol Association, 2O(4):4O1-404,2OO4 Copyright A 2OO4 by the American Mosquito Control Association, Inc. THE USE OF THE COPEPOD MESOCYCLOPSLONGISEZUS AS A BIOLOGICAL CONTROL AGENT FOR AEDES AEGYPTI IN CALI, COLOMBIA MARCELA SUAREZ-RUBIOI,z EIIU MARCO E SUAREZ3 ABSTRACT. We present data on the efficacy of Mesocyclops longisetus as a biocontrol agent in controlling Aedes aegypti larvae in catch basins in Cali, Colombia. Additionally, we determined some of the features that facilitated the establishment ofthe copepods in catch basins. Between June 1999 and February 200O,201 catch basins were treated with an average of 500 adult copepods. The copepods had established in 49.2Vo of all the basins and they maintained Ae. aegypti larvae at low densities until the end of the 8-month study. The corrected efficacy percent was 9O.44o. The copepods established in basins located in a flat area as opposed to those in steep areas, exposed to sunlight and with 0-7ovo of floating organic matter. when the catch basins were con- taminated with synthetic washing agents, like detergents, the copepods did not survive. The copepod M. lon- gisetus cottld be incorporated as a biological control agent in an integrated Ae. aegypti control program. KEY WORDS Biological control, Aedes aegypti, copepods, Mesocyclops longisetus, Colombia INTRODUCTION vae (Su6rez et al. 1991) and can suppress larval populations to very low levels (Marten et al. 1994). Many strategies, such as vector eradication pro- Some cyclopoid copepods have been observed grams, chemical control measures, environmental to control Ae. aegypti larvae in domestic and peri- sanitation with community participation, and bio- domestic containers (Marten 1990, Marten logical control agents, have been used to prevent or et al.
    [Show full text]
  • A New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Sydney: Sydney eScholarship Journals online A New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia N.M. KOROVCHINSKY1 AND B.V. TIMMS2 1A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russian Federation, e-mail: [email protected]; 2Honorary Research Associate, Australian Museum, 6 College St, Sydney, NSW 2010, Australia, email: [email protected] Published on 1 October 2011 at www.eScholarship/Linnean Society NSW Korovchinsky, N.M. and Timms, B.V. (2011). New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia. Proceedings of the Linnean Society of New South Wales 133, 1-10. Diaphanosoma hamatum sp. nov. is described from material from claypans of a restricted area near Onslow in the north-west of Western Australia. It is characterized by some peculiar features, such as presence of well developed rostrum, small reduced eye, and large hooked spine on the apical end of upper two- segmented antennal branch, which distinguish it from other known species of the genus. The new species is probably closely related to the Australian D. unguiculatum and may be considered as the additional member of the Australian endemic fauna. The ecological signifi cance of morphological features of the species is discussed. Manuscript received 29 March 2010, accepted for publication 19 July 2011. KEYWORDS: Cladocera, claypans, Diaphanosoma hamatum, morphological adaptations, new species, Onslow, Western Australia INTRODUCTION which is described herein.
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • Diaphanosoma Fluviatile Hansen, 1899 in the Great Lakes Basin
    BioInvasions Records (2019) Volume 8, Issue 3: 614–622 CORRECTED PROOF Rapid Communication First record of the Neotropical cladoceran Diaphanosoma fluviatile Hansen, 1899 in the Great Lakes basin Elizabeth A. Whitmore1,*, Joseph K. Connolly1, Kay Van Damme2, James M. Watkins1, Elizabeth K. Hinchey3 and Lars G. Rudstam1 1Cornell University, Department of Natural Resources, Cornell Biological Field Station, Bridgeport, NY 13030, USA 2Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 3U.S. Environmental Protection Agency, Great Lakes National Program Office (US EPA GLNPO) 77 W. Jackson Blvd., Chicago, IL 60604, USA *Corresponding author E-mail: [email protected] Citation: Whitmore EA, Connolly JK, Van Damme K, Watkins JM, Hinchey EK, Abstract Rudstam LG (2019) First record of the Neotropical cladoceran Diaphanosoma The ctenopod Diaphanosoma fluviatile has been reported primarily from the fluviatile Hansen, 1899 in the Great Lakes Neotropical region and occasionally from the southern United States. D. fluviatile basin. BioInvasions Records 8(3): 614–622, was collected in the Great Lakes basin (the Maumee River, Western Lake Erie, and https://doi.org/10.3391/bir.2019.8.3.18 Lake Michigan) in 2015 and 2018, far north from its previously known distribution. Received: 22 October 2018 The occurrence of this southern species in the Maumee River and Great Lakes may Accepted: 6 March 2019 be the result of an anthropogenic introduction, although a natural range expansion Published: 5 July 2019 cannot be excluded. This report documents the northernmost record of D. fluviatile in the Nearctic region, extending the known distribution of the species to 42°N, Handling editor: Demetrio Boltovskoy which is a notable increase of 11 degrees latitude.
    [Show full text]
  • Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
    FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.
    [Show full text]
  • A Revision of the Australian Cladocera (Crustacea)
    Records of the Australian Must;u m (1983) Suppl. 1. 1.~SN-0067 -1975. A Revision of the Australian Cladocera (Crustacea) N.N. SMIRNOV' and B.V. TIMMSb "Institute of Evolutionary Morphology and Ecology of Animals, U.S.S.R. Academy of Sciences, Leninski Prospect 33, Moscow V-71, 117071, U.S.S.R. bSciences Department, Avondale College, Cooranbong, N.S.W., Australia, 2265 ABSTRACT. The Australian Cladocera are revised on the basis of numerous samples, collections in the Australian Museum and a critical consideration of the literature. Six families are represented in inland waters of Australia: Sididae, Chydoridae, Macrothricidae, Moinidae, Bosminidae, and Daphniidae. Altogether 125 species in 40 genera were found, 15 species being new: Pseudosida australiensis n.sp., Archepleuroxus baylyi n. gen., n.sp., Rak obtusus n. gen., n.sp., Rak labrosus n. gen., n.sp., Australochydorus aporus n. gen., n.sp., Rhynchochydorus australiensis n. gen., n.sp., Alona macracantha n.sp., Alona investis n.sp., Alona setuloides n.sp., Biapertura rusticoides n.sp., Monospilus diporus n.sp., Monospi/us elongatus n.sp., Echinisca williamsi n.sp., Echiniscaflagellata n.sp., and Simocephalus victoriensis n.sp. One new subspecies is recognized: Alona davidi vermiculata n.subsp. Some 49 species (including the new species) are recorded in Australia for the first time. In addition, the presence of a further 6 species of marine Cladocera in the families Podonidae and Sididae is noted. The cladoceran fauna of Australia, besides including many cosmopolitan and pantropical forms, also has some species widely distributed in the Holarctic, some Gondwanaland species, and a large number (46) of endemics.
    [Show full text]
  • (See Walker, Ann. and Mag. Nat. Hist., May, 1891, P. 418). Cullercoats (J
    crustacea of northumberland and durham APHERUSA JURINII (H. Milne-Edwards). This is Amphithoe norvegica Rathke and Pherusa fucicola Bate partly (see Walker, Ann. and Mag. Nat. Hist., May, 1891, p. 418). Cullercoats (J. Alder); 5-6 miles off Souter Point, 30 fathoms (A. Mk.); four miles off Tynemouth in 27 fathoms (G. S. B.) N.D. CALLIOPIUS RATHKEI (Zaddach). Common between tidemarks. N.D. CALLIOPIUS L^EVIUSCULUS (Kroyer). Occasionally taken between tidemarks. We cannot regard the last as distinct from the present species (A. M. N.) N.D. FAM. 16.—ATYLID^ NOTOTROPIS SWAMMERDAMII (H. Milne-Edwards). Abundant between tidemarks. N.D. NOTOTROPIS FALCATUS (Metzger). Alnmouth, 1899 (G. S. B.); not uncommon on the sand outside of the rocks at Cullercoats and Druridge Bay (A. Mk.) Mr. Meek makes the following interesting statement, " The modified first pair of perasopoda are used to grasp fragments of shell. Most frequently two pieces of shell are taken and grasped by the modified appendages. Tl;e animal has then the appearance of lying in a bivalve shell—the fragments of shell coming pretty close together dorsally. The active movements of the apparent bivalves betray, however, their crustacean occupant to the observer." N. NOTOTROPIS VEDLOMENSIS (Bate). Near Holy Island, 35-50 fathoms; 40-50 miles E. by N. from Tynemouth, 40 fathoms (A. M. N.). Two miles off Cullercoats (A. Mk.); off Souter Point, 1904(0. S. B.) N.D. FAM. 17.—DEXAMINID^ DEXAMINE SPINOSA (Montagu). This species seems to be rare on the east coast, while it is common on all the other shores of Great Britain.
    [Show full text]
  • From Meghalaya
    OFZOO~OG.lCAl INDIA SURVEY .. Itl' :~~r~,"J.:.. .~ ~ ,- :.~ ~ Rec. zool. Surv. India: l08(Part-2) : 111-122,2008 NOTES ON SOME RARE AND INTERESTING CLADOCERANS (CRUSTACEA: BRANCHIOPODA) FROM MEGHALAYA SUMITA SHARMA Eastern Regional Station, Zoological Survey of India, Fruit Gardens, Risa Colony, Shillong-793 003, Meghalaya INTRODUCTION The systematic studies on Freshwater Cladocera of India were initiated by Baird (1860). Since then these micro-crustaceans have been recorded from various localities in different states of the country (Sharma and Michael, 1987; Michael and Sharma, 1988; Sharma, 1991). Investigations on Cladoceran fauna of Meghalaya began in the last quarter of twentieth century and the related contributions are those of Patil (1976), Biswas (1980), Michael and Sharma (1988) and Sharma and Sharma (1999). While working on zooplankton samples collected from the state of Megha1aya, the author came across seven interesting species of Cladocera including two new records from India, four new records from North-Eastern region and one new record from Meghalaya. The present report provides descriptions and illustrations of the recorded cladocerans and remarks are made on their distribution. METE RIALS AND METHODS The present observations are based on plankton samples collected during 2003-2005, and also those collected earlier (during 1988-1990) for the "State Fauna of Meghalaya : Zooplankton Survey", from localities in different districts of Meghalaya state. The examined material include samples deposited in Freshwater Biology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong and those in the holdings of the Eastern Regional Station, Zoological Survey of India, Shillong. The examined samples were collected with an nylobolt plankton net (No.
    [Show full text]