Cladocera) in a Shallow Tropical Reservoir
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trophic Interactions Among Sympatric Zooplanktivorous Fish Species in Volume Change Conditions in a Large, Shallow, Tropical Lake
Neotropical Ichthyology, 9(1):169-176, 2011 Copyright © 2011 Sociedade Brasileira de Ictiologia Trophic interactions among sympatric zooplanktivorous fish species in volume change conditions in a large, shallow, tropical lake Rodrigo Moncayo-Estrada1, Owen T. Lind2 and Carlos Escalera-Gallardo1 Significant reductions in the water volume of shallow lakes impose a restriction on species segregation promoting more interactions in the trophic relationships. The diets of three closely related zooplanktivorous silversides belonging to the Atherinopsidae species flock of lake Chapala, Mexico, were analyzed at two sites (Chirostoma jordani, C. labarcae, and C. consocium). Diets were described in critical shallow (August 2000) and volume recovery conditions (August 2005). Diets included mainly cladocerans (Bosmina, Ceriodaphnia, and Daphnia) and copepods (Cyclops). A significant difference in diets was detected when comparing years (MRPP analysis, A = 0.22, p < 0.0001) and sites at different years (MRPP analysis, A = 0.17, p = 0.004). According to niche breadth mean values, species were classified as specialized and intermediate feeders. In shallow conditions, the small range of niche breadth (1.72 to 3.64) and high diet overlap values (D = 0.64, L = 8.62) indicated a high potential for interspecific exploitative interaction. When the lake volume recovered, an increase in the niche breadth range (1.04 to 4.96) and low niche overlap values (D = 0.53, L = 2.32) indicated a reduction of the species interaction. The Mann- Whitney U-test supported this pattern by showing a significant difference between years for niche overlap (p = 0.006). The increased interaction during the low volume suggests alternative segregation in life-history variations and other niche dimensions such as spatial or temporal distribution. -
106Th Annual Meeting of the German Zoological Society Abstracts
September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416 -
Reversibility of Inducible Defenses in Daphnia
REVERSIBILITY OF INDUCIBLE DEFENSES IN DAPHNIA Q UIRIN H ERZOG DISSERTATION DER FAKULTÄT FÜR BIOLOGIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN VORGELEGT VON QUIRIN HERZOG AM 1. JUNI 2016 1. Gutachter: Prof. Dr. Chris an Laforsch 2. Gutachter: Prof. Dr. Herwig S bor Eingereicht: 1. Juni 2016 Tag der mündlichen Prüfung: 12. Dezember 2016 1 TABLE OF CONTENTS Zusammenfassung 3 Summary 5 Chapter 1 – Introduc on 7 Chapter 2 – Ar cle: “Modality ma ers for the expression of inducible 15 defenses: Introducing a concept of predator modality”, Herzog, Q., and C. Laforsch. 2013, BMC Biology, (11) 113 Chapter 3 – Ar cle: “Inducible Defenses with a “Twist“: Daphnia barbata 27 Abandons Bilateral Symmetry in Response to an Ancient Predator”, Herzog, Q., Rabus, M., Wolfschoon Ribeiro, B. and C. Laforsch. 2016, PLOS one, 11 (2) Chapter 4 – Ar cle: “Predator specifi c reversibility of morphological 34 defenses in Daphnia barbata”, Herzog, Q., Ti gen, C. and C. Laforsch. 2016, Journal of Plankton Research, 38 (4) Chapter 5 – Ar cle: “Plas city of defensive traits in adult Daphnia 45 magna in response to Triops cancriformis”, Herzog, Q., Rabus, M. and C. Laforsch. Manuscipt to be submi ed to Journal of Plankton Research Chapter 6 – Ar cle: “Eff ects of inducible defenses in Daphnia magna on 60 sinking and swimming effi ciency“, Herzog, Q., Immler, R., Sternhardt, M. and C. Laforsch. Manuscipt to be submi ed to Journal of Plankton Research Chapter 7 – Discussion 79 References 86 Author Contribu ons 98 Acknowledgements 99 Curriculum Vitae 101 Statutory Declara on and Statement 102 2 ZUSAMMENFASSUNG Nahezu jeder Organismus ist im engeren oder weiteren Sinne Präda on ausgesetzt, sei es durch Prädatoren sensu strictu, Weidegänger, Parasiten oder Parasitoiden. -
A Comparison Regarding the Physico- Chemical Variables and Zooplankton Community Characteristics of Two Ethiopian Rift Valley Lakes: Lake Chamo and Lake Abaya
FACULTY OF SCIENCE A comparison regarding the physico- chemical variables and zooplankton community characteristics of two Ethiopian Rift Valley Lakes: Lake Chamo and Lake Abaya Arne DERIEMAECKER Supervisor: Prof. L. De Meester Thesis presented in fulfillment of the requirements Co-supervisor: P. Lemmens for the degree of Master of Science Mentor: F. Eshetu Teferra in Biology Academic year 2012-2013 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. I Acknowledgements I am in large debt of gratitude to Fassil Eshetu Teferra as he let me participate in his doctorate study. In all sorts of circumstances, he remained calm and kind, and when I had questions, he was always there to answer them. In addition, he and his family were very hospitable and they taught me a lot about Ethiopian culture. The second person I want to express my appreciation for is my supervisor Pieter Lemmens. His experience was a great help during the sampling campaign and he was very patient with me. I am also very grateful to the people of Arba Minch who helped us during our sampling campaign, without their help the campaign would have been less fun and we might not have finished it before the start of the rain season (Tariku Anjamo, Communist Asemamawe, Selamnesh Tesfaye and Sebla). -
The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan)
water Article The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan) Moldir Aubakirova 1,2,*, Elena Krupa 3 , Zhanara Mazhibayeva 2, Kuanysh Isbekov 2 and Saule Assylbekova 2 1 Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan 2 Fisheries Research and Production Center, Almaty 050016, Kazakhstan; mazhibayeva@fishrpc.kz (Z.M.); isbekov@fishrpc.kz (K.I.); assylbekova@fishrpc.kz (S.A.) 3 Institute of Zoology, Almaty 050060, Kazakhstan; [email protected] * Correspondence: [email protected]; Tel.: +7-27-3831715 Abstract: The variability of hydrochemical parameters, the heterogeneity of the habitat, and a low level of anthropogenic impact, create the premises for conserving the high biodiversity of aquatic communities of small water bodies. The study of small water bodies contributes to understanding aquatic organisms’ adaptation to sharp fluctuations in external factors. Studies of biological com- munities’ response to fluctuations in external factors can be used for bioindication of the ecological state of small water bodies. In this regard, the purpose of the research is to study the structure of zooplankton of small lakes in South-East Kazakhstan in connection with various physicochemical parameters to understand the role of biological variables in assessing the ecological state of aquatic Citation: Aubakirova, M.; Krupa, E.; ecosystems. According to hydrochemical data in summer 2019, the nutrient content was relatively Mazhibayeva, Z.; Isbekov, K.; high in all studied lakes. A total of 74 species were recorded in phytoplankton. The phytoplankton Assylbekova, S. The Role of External abundance varied significantly, from 8.5 × 107 to 2.71667 × 109 cells/m3, with a biomass from 0.4 Factors in the Variability of the to 15.81 g/m3. -
Cladocera (Crustacea: Branchiopoda) of the South-East of the Korean Peninsula, with Twenty New Records for Korea*
Zootaxa 3368: 50–90 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Cladocera (Crustacea: Branchiopoda) of the south-east of the Korean Peninsula, with twenty new records for Korea* ALEXEY A. KOTOV1,2, HYUN GI JEONG2 & WONCHOEL LEE2 1 A. N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia E-mail: [email protected] 2 Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract We studied the cladocerans from 15 different freshwater bodies in south-east of the Korean Peninsula. Twenty species are first records for Korea, viz. 1. Sida ortiva Korovchinsky, 1979; 2. Pseudosida cf. szalayi (Daday, 1898); 3. Scapholeberis kingi Sars, 1888; 4. Simocephalus congener (Koch, 1841); 5. Moinodaphnia macleayi (King, 1853); 6. Ilyocryptus cune- atus Štifter, 1988; 7. Ilyocryptus cf. raridentatus Smirnov, 1989; 8. Ilyocryptus spinifer Herrick, 1882; 9. Macrothrix pen- nigera Shen, Sung & Chen, 1961; 10. Macrothrix triserialis Brady, 1886; 11. Bosmina (Sinobosmina) fatalis Burckhardt, 1924; 12. Chydorus irinae Smirnov & Sheveleva, 2010; 13. Disparalona ikarus Kotov & Sinev, 2011; 14. Ephemeroporus cf. barroisi (Richard, 1894); 15. Camptocercus uncinatus Smirnov, 1971; 16. Camptocercus vietnamensis Than, 1980; 17. Kurzia (Rostrokurzia) longirostris (Daday, 1898); 18. Leydigia (Neoleydigia) acanthocercoides (Fischer, 1854); 19. Monospilus daedalus Kotov & Sinev, 2011; 20. Nedorchynchotalona chiangi Kotov & Sinev, 2011. Most of them are il- lustrated and briefly redescribed from newly collected material. We also provide illustrations of four taxa previously re- corded from Korea: Sida crystallina (O.F. -
A New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Sydney: Sydney eScholarship Journals online A New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia N.M. KOROVCHINSKY1 AND B.V. TIMMS2 1A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russian Federation, e-mail: [email protected]; 2Honorary Research Associate, Australian Museum, 6 College St, Sydney, NSW 2010, Australia, email: [email protected] Published on 1 October 2011 at www.eScholarship/Linnean Society NSW Korovchinsky, N.M. and Timms, B.V. (2011). New Species of the Genus Diaphanosoma Fischer (Crustacea: Cladocera: Sididae) from Claypans in Western Australia. Proceedings of the Linnean Society of New South Wales 133, 1-10. Diaphanosoma hamatum sp. nov. is described from material from claypans of a restricted area near Onslow in the north-west of Western Australia. It is characterized by some peculiar features, such as presence of well developed rostrum, small reduced eye, and large hooked spine on the apical end of upper two- segmented antennal branch, which distinguish it from other known species of the genus. The new species is probably closely related to the Australian D. unguiculatum and may be considered as the additional member of the Australian endemic fauna. The ecological signifi cance of morphological features of the species is discussed. Manuscript received 29 March 2010, accepted for publication 19 July 2011. KEYWORDS: Cladocera, claypans, Diaphanosoma hamatum, morphological adaptations, new species, Onslow, Western Australia INTRODUCTION which is described herein. -
Food Web Topology and Parasites in the Pelagic Zone of a Subarctic Lake
Journal of Animal Ecology 2009, 78, 563–572 doi: 10.1111/j.1365-2656.2008.01518.x FoodBlackwell Publishing Ltd web topology and parasites in the pelagic zone of a subarctic lake Per-Arne Amundsen1*, Kevin D. Lafferty2, Rune Knudsen1, Raul Primicerio1, Anders Klemetsen1 and Armand M. Kuris3 1Department of Aquatic BioSciences, Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway; 2US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, UC Santa Barbara, CA 93106, USA; and 3Department of Ecology, Evolution and Marine Biology, UC Santa Barbara, CA 93106, USA Summary 1. Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite–host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. -
Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study .......................................... -
Regulation of Bosmina Longirostris by Leptodora Kindtii
Limnol. Oceanogr., 36(3), 199 1, 483-495 0 199 1, by the American Society of Limnology and Oceanography, Inc Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris by Leptodora kindtii Donn K. Branstrator and John T. Lehman Department of Biology, Natural Science Building, University of Michigan, Ann Arbor 48 109 Abstract The density of Bosmina longirostris (0. F. Mueller) declined loo-fold between 25 June and 20 August 1985 in Lake Michigan; a similar pattern of changing abundances was observed in 1986 but not in 1987 or 1988. Bosmina collected from periods before and during the decline in 1985 and 1986 were examined for size at maturity and clutch size. Population size-frequency distributions suggest that some animals began to mature at smaller sizes during the decline in 1985. In some cases, the average clutch size for Bosmina of similar body lengths was significantly reduced during the decline in 1985 and 1986. These data suggest that food limitation was a factor in the species decline in both years. Gut content analyses indicate that of seven potential predators, Leptodora kindtii (Focke) was probably most responsible for Bosmina mortality. There is ample evidence that Leptodora does not consume strictly fluid from its prey: juvenile Leptodoru ate mainly smaller prey that included Bosmina and the rotifer Conochilus; adults ate a broader size range of prey that included mainly Bosmina, Daphnia, and copepods. In 1987 and 1988, Bythotrephes cederstroemii Schoedler was abundant in Lake Michigan and was contemporaneous with collapse ofthe Leptodora population and concurrent increase of the Bosmina population in August and September. -
Diaphanosoma Fluviatile Hansen, 1899 in the Great Lakes Basin
BioInvasions Records (2019) Volume 8, Issue 3: 614–622 CORRECTED PROOF Rapid Communication First record of the Neotropical cladoceran Diaphanosoma fluviatile Hansen, 1899 in the Great Lakes basin Elizabeth A. Whitmore1,*, Joseph K. Connolly1, Kay Van Damme2, James M. Watkins1, Elizabeth K. Hinchey3 and Lars G. Rudstam1 1Cornell University, Department of Natural Resources, Cornell Biological Field Station, Bridgeport, NY 13030, USA 2Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 3U.S. Environmental Protection Agency, Great Lakes National Program Office (US EPA GLNPO) 77 W. Jackson Blvd., Chicago, IL 60604, USA *Corresponding author E-mail: [email protected] Citation: Whitmore EA, Connolly JK, Van Damme K, Watkins JM, Hinchey EK, Abstract Rudstam LG (2019) First record of the Neotropical cladoceran Diaphanosoma The ctenopod Diaphanosoma fluviatile has been reported primarily from the fluviatile Hansen, 1899 in the Great Lakes Neotropical region and occasionally from the southern United States. D. fluviatile basin. BioInvasions Records 8(3): 614–622, was collected in the Great Lakes basin (the Maumee River, Western Lake Erie, and https://doi.org/10.3391/bir.2019.8.3.18 Lake Michigan) in 2015 and 2018, far north from its previously known distribution. Received: 22 October 2018 The occurrence of this southern species in the Maumee River and Great Lakes may Accepted: 6 March 2019 be the result of an anthropogenic introduction, although a natural range expansion Published: 5 July 2019 cannot be excluded. This report documents the northernmost record of D. fluviatile in the Nearctic region, extending the known distribution of the species to 42°N, Handling editor: Demetrio Boltovskoy which is a notable increase of 11 degrees latitude. -
Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.