Regulation of Bosmina Longirostris by Leptodora Kindtii

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Bosmina Longirostris by Leptodora Kindtii Limnol. Oceanogr., 36(3), 199 1, 483-495 0 199 1, by the American Society of Limnology and Oceanography, Inc Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris by Leptodora kindtii Donn K. Branstrator and John T. Lehman Department of Biology, Natural Science Building, University of Michigan, Ann Arbor 48 109 Abstract The density of Bosmina longirostris (0. F. Mueller) declined loo-fold between 25 June and 20 August 1985 in Lake Michigan; a similar pattern of changing abundances was observed in 1986 but not in 1987 or 1988. Bosmina collected from periods before and during the decline in 1985 and 1986 were examined for size at maturity and clutch size. Population size-frequency distributions suggest that some animals began to mature at smaller sizes during the decline in 1985. In some cases, the average clutch size for Bosmina of similar body lengths was significantly reduced during the decline in 1985 and 1986. These data suggest that food limitation was a factor in the species decline in both years. Gut content analyses indicate that of seven potential predators, Leptodora kindtii (Focke) was probably most responsible for Bosmina mortality. There is ample evidence that Leptodora does not consume strictly fluid from its prey: juvenile Leptodoru ate mainly smaller prey that included Bosmina and the rotifer Conochilus; adults ate a broader size range of prey that included mainly Bosmina, Daphnia, and copepods. In 1987 and 1988, Bythotrephes cederstroemii Schoedler was abundant in Lake Michigan and was contemporaneous with collapse ofthe Leptodora population and concurrent increase of the Bosmina population in August and September. Predation by the large copepods Epischuru lucustris S. A. Forbes and Limnoculanus macrurus Sars did not appear to have any significant effect on the population dynamics of Bosmina. Lake Michigan has long been regarded as food resources or from reduced planktivory an ecosystem in which visual planktivory by invertebrates. That planktivory played a by fish exerts a dominant structuring influ- role in Bosmina’s dynamics seems plausible ence. The exposition by Wells (1970) doc- but because several putative predators de- umenting changes in zooplankton popula- clined simultaneously the relative impor- tions in response to predation by alewife, tance of each is indecipherable from his data. Alosa pseudoharengus (Wilson), helped to Recent changes of Lake Michigan’s zoo- establish size-selective predation as one of plankton community, wrought by a new in- the paradigms of plankton community ecol- vading species, provide an opportunity to ogy. Wells observed that the successful in- further understand factors controlling Bos- vasion of alewife into Lake Michigan was mina dynamics there. In summers 1985 and associated with depressed densities of 1986, Bosmina populations in offshore Lake Daphnia, Leptodora, Limnocalanus, Epi- Michigan experienced similar abundance schura, and other large-bodied crustacean cycles. Populations quickly reached peak taxa and with increased densities of smaller densities in late June of 3 1,000 m-2 (1985) taxa, particularly Bosmina longirostris. and early July of 70,000 me2 (1986), and Although Wells (1970) argued convinc- then decreased steadily to densities of 600 ingly that the large plankton were removed m-2 (1985) and 9,000 rnw2 (1986) by mid- by selective planktivory, no rationale was August. In 1987, however, major changes advanced for the numerical increase in Bos- occurred in the composition of the offshore mina. In retrospect, the taxon’s success may zooplankton community; they were attrib- have stemmed from relaxed competition for uted in part to predation by the invading cladoceran, Bythotrephes cederstroemii Acknowledgments (Lehman 1988). That summer, and in 1988, We thank James Bowers, Douglass Burdette, Robert Bosmina did not decline in August and Sep- Gensemer, Robert Dorazio, Glenn Warren, and the tember as it had in 1985 and 1986 during captain and crew of the RV Laurentian for assistance those months. In this report we use the pop- with field sampling. Robert Black and Patricia Chow- Fraser provided suggestions for the manuscript. ulation changes associated with this event This research was supported by NSF grants OCE 84- to investigate the controls on Bosmina in 15970, OCE 86-13880, and OCE 87-16187. Lake Michigan. 483 I J 484 Branstrator and Lehman General approach at 0.5-l m s-l. Large- and small-bodied Factors responsible for the seasonal de- zooplankton were collected by submersible clines of Bosmina in Lake Michigan in 198 5 pump discharged through either 63- or 130- and 1986 were hypothesized to be resource pm mesh (Dorazio et al. 1987; Lehman et limitation, predation, or a combination of al. 1990). Pump collections were integrated the two. Because populations in 1985 and over 10-m intervals. Temperatures were 1986 declined at summer epilimnetic water measured by mechanical bathythermo- temperatures that permitted continued graph (1985 and 1986) and by electronic growth in 1987 and 1988, ambient temper- bathythermograph(l987 and 1988). In 1987 ature was not considered to ‘be a cause. Bos- and 1988, zooplankton were collected ex- mina size-frequency distributions and size- clusively by closing nets fitted with 130-pm specific egg ratios (average clutch size per mesh. Zooplankton were immediately nar- body-length class) were examined for cotized with carbonated water and pre- changes that would suggest food limitation served in a sugar-Formalin solution (Haney as a factor. Gut analyses were performed on and Hall 1973). Samples collected by the the potential predators to determine if any trawl and closing nets were split by volume were eating Bosmina. On the basis of phys- with a Folsom plankton splitter. Represen- ical presence and potential for carnivory, tative fractioned samples were counted to these predators were young-of-the-year determine population densities of species (YOY) Coregonus hoyi (Gill), and the crus- by date and depth. Pump samples were sub- tacean zooplankton Mysis relicta (Loven), sampled by pipette and counted. Leptodora kindtii, Epischura lacustris, Lim- Bosmina-The potential effects of re- nocalanus macrurus, Senecella calanoides source limitation on Bosmina were deter- Juday, and cyclopoids [mainly Diacyclops mined by examining the animals for changes bicz.qidatus thomasi (S. A. Forbes)]. Plank- in size at maturity and clutch size. Goulden tivory on Bosmina by YOY C. hoyi was et al. (1982) reported that Bosmina grown immediately rejected based on results of gut under low-food conditions matures at a analyses from 1985 (Warren and Lehman smaller size than better fed individuals. The 1988), which showed that these vertebrates smallest sizes at which Lake Michigan Bos- consumed cyclopoid copepodids and Daph- mina reached second and third (primapa- nia pulicaria Forbes almost exclusively dur- rous) instars were determined from popu- ing the time when Bosmina declined. Evi- lation size-frequency distributions. Instars dence for the potential carnivory of M. were identified from modes of the distri- relicta (Bowers and Vanderploeg 1982), L. butions and numbers of barren vs. fecund kindtii (Mordukhai-Boltovskaia 1958), E. females in individual frequency cells. We lacustris (Chow-Fraser and Wong 1986), L. hypothesized that declining resources would macrurus, and S. calanoides (Nero and have caused Bosmina to mature at a smaller Sprules 1986) and cyclopoids (Fryer 19 5 7) size. made these species candidates for study. Somatic growth in Bosmina continues af- ter primaparity; thus later adult instars have Methods larger brood chambers and can carry more eggs. Kerfoot (1974) found that Bosmina Zooplankton collections -Zooplankton grown under low-food conditions carries were collected during summer 198 5-l 988 fewer eggs per clutch than well-fed individ- in Lake Michigan at a reference station uals; this relationship held over a range of (43ON, 86”4O’W), 36 km offshore from carapace lengths. We hypothesized that de- Grand Haven, Michigan (Lehman et al. clining resources would have forced Bos- 1990). In 1985 and 1986, large crustacean mina to decrease clutch size. zooplankton were collected by Tucker trawl To test both hypotheses, we measured with a mouth opening of 1 m* and a .net Bosmina for body length and clutch size. aperture of 300 pm and by l-m-diameter Plankton samples were filtered on 50-pm Puget Sound vertical closing nets with 130- mesh and rinsed with filtered tapwater (50 or 300-pm mesh. Trawl and nets were towed pm) to remove excess Formalin. After re- Bosmina in Lake Michigan 485 suspension, random subsamples of 5 ml were density in that stratum for each period. x2 extracted with a widebore Finn injection pi- homogeneity tests showed that E was not pette and discharged into a zooplankton significantly different by stratum on any date counting chamber. Animals were viewed on (P > 0.05). Values for the dependency of a Wild M5A stereo dissecting microscope egg development rate on temperature were at 25 x magnification. As encountered, in- taken from Vijverberg (1980). The popu- dividuals were removed to and mounted on lation egg development time was then com- glass microscope slides in 50% glycerin. puted as an average, weighted to account Coverslips were sealed with Permount his- for the time that different percentages of tological mounting medium (Fisher SO-P- eggs experienced different temperatures over 15). Individuals were measured for total 24 h. The instantaneous population growth body length (Kerfoot 1980) with the aid of rate (r) was taken as an ocular micrometer under 190 x magni- r = (In N, - In NJ/t fication on an Olympus BHA compound (3) stereo microscope. Clutch size was record- where A$ and No are the population densi- ed. ties at time t and 0, and t is the time between Bosmina egg volume was also estimated sample dates. The instantaneous death rate to determine whether egg size could explain (d) was taken as differences in clutch size across dates. For d=b-r. individuals carrying eggs in an early stage (4) of embryonic growth, dimensions of one egg Daily death rate (DR) was then taken as per clutch were measured.
Recommended publications
  • Trophic Interactions Among Sympatric Zooplanktivorous Fish Species in Volume Change Conditions in a Large, Shallow, Tropical Lake
    Neotropical Ichthyology, 9(1):169-176, 2011 Copyright © 2011 Sociedade Brasileira de Ictiologia Trophic interactions among sympatric zooplanktivorous fish species in volume change conditions in a large, shallow, tropical lake Rodrigo Moncayo-Estrada1, Owen T. Lind2 and Carlos Escalera-Gallardo1 Significant reductions in the water volume of shallow lakes impose a restriction on species segregation promoting more interactions in the trophic relationships. The diets of three closely related zooplanktivorous silversides belonging to the Atherinopsidae species flock of lake Chapala, Mexico, were analyzed at two sites (Chirostoma jordani, C. labarcae, and C. consocium). Diets were described in critical shallow (August 2000) and volume recovery conditions (August 2005). Diets included mainly cladocerans (Bosmina, Ceriodaphnia, and Daphnia) and copepods (Cyclops). A significant difference in diets was detected when comparing years (MRPP analysis, A = 0.22, p < 0.0001) and sites at different years (MRPP analysis, A = 0.17, p = 0.004). According to niche breadth mean values, species were classified as specialized and intermediate feeders. In shallow conditions, the small range of niche breadth (1.72 to 3.64) and high diet overlap values (D = 0.64, L = 8.62) indicated a high potential for interspecific exploitative interaction. When the lake volume recovered, an increase in the niche breadth range (1.04 to 4.96) and low niche overlap values (D = 0.53, L = 2.32) indicated a reduction of the species interaction. The Mann- Whitney U-test supported this pattern by showing a significant difference between years for niche overlap (p = 0.006). The increased interaction during the low volume suggests alternative segregation in life-history variations and other niche dimensions such as spatial or temporal distribution.
    [Show full text]
  • Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
    Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002).
    [Show full text]
  • The Benthic Feeding Ecology of Round Goby Fry Dylan Samuel Olson University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2016 The Benthic Feeding Ecology of Round Goby Fry Dylan Samuel Olson University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Olson, Dylan Samuel, "The Benthic Feeding Ecology of Round Goby Fry" (2016). Theses and Dissertations. 1397. https://dc.uwm.edu/etd/1397 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE BENTHIC FEEDING ECOLOGY OF ROUND GOBY FRY by Dylan S. Olson A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Freshwater Sciences and Technology at The University of Wisconsin-Milwaukee August 2016 ABSTRACT THE BENTHIC FEEDING ECOLOGY OF ROUND GOBY FRY by Dylan S. Olson The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor John Janssen Larval and juvenile stage events play a dominant role in regulating the ultimate recruitment strength of fish populations. As such, the feeding ecology of early life stages are useful for interpreting the proximate causes of recruitment variability. This study provides the first targeted study of the early juvenile (“fry”) diet of the round goby (Neogobius melanostomus, Pallas 1814), a prominent Great Lakes invasive fish. Previous accounts of the diets of round goby fry in the Great Lakes have been based upon by-catch from nocturnal, pelagic studies.
    [Show full text]
  • Freshwater Crustaceans As an Aboriginal Food Resource in the Northern Great Basin
    UC Merced Journal of California and Great Basin Anthropology Title Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin Permalink https://escholarship.org/uc/item/3w8765rq Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Henrikson, Lael S Yohe, Robert M, II Newman, Margaret E et al. Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Joumal of Califomia and Great Basin Anthropology Vol. 20, No. 1, pp. 72-87 (1998). Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin LAEL SUZANN HENRIKSON, Bureau of Land Management, Shoshone District, 400 W. F Street, Shoshone, ID 83352. ROBERT M. YOHE II, Archaeological Survey of Idaho, Idaho State Historical Society, 210 Main Street, Boise, ID 83702. MARGARET E. NEWMAN, Dept. of Archaeology, University of Calgary, Alberta, Canada T2N 1N4. MARK DRUSS, Idaho Power Company, 1409 West Main Street, P.O. Box 70. Boise, ID 83707. Phyllopods of the genera Triops, Lepidums, and Branchinecta are common inhabitants of many ephemeral lakes in the American West. Tadpole shrimp (Triops spp. and Lepidums spp.) are known to have been a food source in Mexico, and fairy shrimp fBranchinecta spp.) were eaten by the aborigi­ nal occupants of the Great Basin. Where found, these crustaceans generally occur in numbers large enough to supply abundant calories and nutrients to humans. Several ephemeral lakes studied in the Mojave Desert arul northern Great Basin currently sustain large seasonal populations of these crusta­ ceans and also are surrounded by numerous small prehistoric camp sites that typically contain small artifactual assemblages consisting largely of milling implements.
    [Show full text]
  • A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
    Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Fagutredning, Prosjekt Nr
    Müller - Sars Selskapet – Drøbak Daphnia lacustris (v.ø.), D. l. alpina (h.ø.): store, lavpredasjonsdaphnier og Lough Slieveaneena, Irland; oceanisk lavpredasjoninnsjø med bare ørret og store D. longispina Vedvarende menneskeindusert spredning av bredspektret ferskvannsfisk til og internt i Norge: et holarktisk, økologisk perspektiv Rapport nr. 10-2009 Drøbak 2009 ISBN: 978-82-8030-003-4 Ekstrakt Menneskeindusert spredning av fisk med bredspektret fødevalg, som karpefisk og gjedde, påvirker nå følsomme økosystemer i store deler av Norge. Mens en pest-art som ørekyte (Phoxinus phoxinus) kan leve over et meget bredt temperaturområde, og finnes like vanlig i høyfjellet som i karpefiskområder i lavlandet og på kontinentet, har andre karpefisk og nordlig gjedde (Esox lucius) vanligvis et trangere temperaturområde, slik som de siste spredningsartene i Norge: sørv (Scardinius erythrophthalmus), suter (Tinca tinca) og regnlaue (Leucaspius delineatus). Arter som karpe, mort, karuss, gullvederbuk og stingsild kan og også spres med menneskers hjelp. I tillegg ble mataukfisk som kanadisk bekkerøye spredd under perioden med forsuring i Norge og regnbueørret er satt ut ulike steder i landet gjennom flere tiår. Spredning av ørekyte og de tidligere utsettingene av faunafremmede laksefisk blir gitt stor oppmerksomhet i forvaltning og forskning, mens spredning av øvrige karpefisk og gjedde til ekstremt sjeldne økosystemer i norsk lavland får utvikle seg relativt fritt i det ”oppvirvlede støvet” rundt ørekyte og laksefiskene. På grunn av landets steile topografi og lange, sammenhengende fjellkjeder mot invasjonssentre, og -regioner, var det alltid problematisk for ferskvannsfisk å spre seg over hele Norge, før menneskene ankom. Etter siste istid har imidlertid menneskene båret fisk over det meste av landet.
    [Show full text]
  • Lake Superior Food Web MENT of C
    ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans.
    [Show full text]
  • Non-Native Freshwater Cladoceran Bosmina Coregoni (Baird, 1857) Established on the Pacific Coast of North America
    BioInvasions Records (2013) Volume 2, Issue 4: 281–286 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.4.03 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Non-native freshwater cladoceran Bosmina coregoni (Baird, 1857) established on the Pacific coast of North America Adrianne P. Smits1*, Arni Litt1, Jeffery R. Cordell1, Olga Kalata1,2 and Stephen M. Bollens2 1 School of Aquatic and Fisheries Science, University of Washington, Seattle, Washington 98195, USA 2 School of the Environment, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA 98686-9600, USA E-mail: [email protected] (APS), [email protected] (AL), [email protected] (JRC), [email protected] (OK), [email protected] (SMB) *Corresponding author Received: 26 July 2013 / Accepted: 10 October 2013 / Published online: 30 October 2013 Handling editor: Ian Duggan Abstract The freshwater cladoceran Bosmina coregoni (Baird, 1857), native to Eurasia, has established and spread in the Great Lakes region of North America since the 1960s. Here we report the first detection of B. coregoni on the Pacific coast of North America, in three geographically distinct locations: the Lower Columbia River Estuary (LCRE), Lake Washington in western Washington state, and the Columbia River Basin in south eastern Washington state. Bosmina coregoni was detected on multiple sampling dates in Lake Washington and the LCRE between 2008 and 2012. Key words: zooplankton; invasive; Washington; freshwater; range expansion Introduction and Hebert 1994). Until now this species has not been reported on the Pacific coast of North Non-indigenous zooplankton have successfully America, but has been detected as far west as invaded coastal and inland freshwater bodies Lake Winnipeg and Missouri (Suchy et al.
    [Show full text]
  • The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan)
    water Article The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan) Moldir Aubakirova 1,2,*, Elena Krupa 3 , Zhanara Mazhibayeva 2, Kuanysh Isbekov 2 and Saule Assylbekova 2 1 Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan 2 Fisheries Research and Production Center, Almaty 050016, Kazakhstan; mazhibayeva@fishrpc.kz (Z.M.); isbekov@fishrpc.kz (K.I.); assylbekova@fishrpc.kz (S.A.) 3 Institute of Zoology, Almaty 050060, Kazakhstan; [email protected] * Correspondence: [email protected]; Tel.: +7-27-3831715 Abstract: The variability of hydrochemical parameters, the heterogeneity of the habitat, and a low level of anthropogenic impact, create the premises for conserving the high biodiversity of aquatic communities of small water bodies. The study of small water bodies contributes to understanding aquatic organisms’ adaptation to sharp fluctuations in external factors. Studies of biological com- munities’ response to fluctuations in external factors can be used for bioindication of the ecological state of small water bodies. In this regard, the purpose of the research is to study the structure of zooplankton of small lakes in South-East Kazakhstan in connection with various physicochemical parameters to understand the role of biological variables in assessing the ecological state of aquatic Citation: Aubakirova, M.; Krupa, E.; ecosystems. According to hydrochemical data in summer 2019, the nutrient content was relatively Mazhibayeva, Z.; Isbekov, K.; high in all studied lakes. A total of 74 species were recorded in phytoplankton. The phytoplankton Assylbekova, S. The Role of External abundance varied significantly, from 8.5 × 107 to 2.71667 × 109 cells/m3, with a biomass from 0.4 Factors in the Variability of the to 15.81 g/m3.
    [Show full text]
  • Volume 2, Chapter 10-1: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ...............................................................................................................................................
    [Show full text]
  • Feeding Ecology of the Invasive Round Goby
    Aquatic Invasions (2015) Volume 10, Issue 4: 463–474 doi: http://dx.doi.org/10.3391/ai.2015.10.4.09 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie 1,4 1,2 1,2 1,3 Melanie M. Perello , Thomas P. Simon *, Hilary A. Thompson and Douglas D. Kane 1F.T. Stone Laboratory, The Ohio State University, Put-in-Bay, OH 43456, USA 2School of Public and Environmental Affairs, Indiana University, 1315 E. Tenth Street, Bloomington, IN 47405, USA 3Natural Science, Applied Science, and Mathematics Division, Defiance College, Defiance, OH 43512, USA 4Center for the Environment, Plymouth State University, Plymouth, NH 03264, USA E-mail: [email protected] (MMP), [email protected] (TPS), [email protected] (DDK) *Corresponding author Received: 17 May 2014 / Accepted: 21 July 2015 / Published online: 5 August 2015 Handling editor: Vadim Panov Abstract The round goby, Neogobius melanostomus, is an invasive benthic fish species in the Laurentian Great Lakes that is threatening native fish populations through competition, predation, and trophic dynamic change. This study examined the trophic dynamic plasticity of round goby along a depth gradient based on laboratory and field observations to determine prey species consumed and mussel prey size selection. Prey size selection in the laboratory was assessed by presenting individual round goby with quagga mussels ( Dreissena rostriformis bugensis) of various class sizes (i.e., 6.0– 9.9 mm, 10.0– 12.9 mm, 13.0– 15.9 mm, and 16.0– 18.9 mm in length).
    [Show full text]