The Isolation and Genetic Characterisation of a Novel Alphabaculovirus for the Microbial Control of Cryptophlebia Peltastica and Closely Related Tortricid Pests

Total Page:16

File Type:pdf, Size:1020Kb

The Isolation and Genetic Characterisation of a Novel Alphabaculovirus for the Microbial Control of Cryptophlebia Peltastica and Closely Related Tortricid Pests RHODES UNIVERSITY Where leaders learn The isolation and genetic characterisation of a novel alphabaculovirus for the microbial control of Cryptophlebia peltastica and closely related tortricid pests Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY At RHODES UNIVERSITY By TAMRYN MARSBERG December 2016 ABSTRACT Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae) is an economically damaging pest of litchis and macadamias in South Africa. Cryptophlebia peltastica causes both pre- and post-harvest damage to litchis, reducing overall yields and thus classifying the pest as a phytosanitary risk. Various control methods have been implemented against C. peltastica in an integrated pest management programme. These control methods include chemical control, cultural control and biological control. However, these methods have not yet provided satisfactory control as of yet. As a result, an alternative control option needs to be identified and implemented into the IPM programme. An alternative method of control that has proved successful in other agricultural sectors and not yet implemented in the control of C. peltastica is that of microbial control, specifically the use of baculovirus biopesticides. This study aimed to isolate and characterise a novel baculovirus from a laboratory culture of C. peltastica that could be used as a commercially available baculovirus biopesticide. In order to isolate a baculovirus a laboratory culture of C. peltastica was successfully established at Rhodes University, Grahamstown, South Africa. This is the first time a laboratory culture of C. peltastica has been established. This allowed for various biological aspects of the pest to be determined, which included: length of the life cycle, fecundity and time to oviposition, egg and larval development and percentage hatch. The results obtained from these studies found that the biology of C. peltastica was similar to that of Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae). Once the laboratory culture had reached high densities, larvae showing symptoms of baculovirus infection were observed. Symptomatic larvae were collected and examined for the presence of a baculovirus. An alphabaculovirus (NPV) was successfully isolated and morphologically identified using purified OBs that were sectioned and observed by transmission electron microscopy. This was then confirmed by amplifying the polyhedrin gene region using degenerate primers. A BLAST analysis found a 93% similarity to a partial polyhedrin gene sequence to be that of Epinotia granitalis (Butler) (Lepidoptera: Tortricidae). The alphabaculovirus was then genetically characterised by generating restriction profiles and sequencing the whole genome. Due to the novelty of the virus, no comparison could be made. i The biological activity of the alphabaculovirus was then tested against C. peltastica and two closely related Tortricidae pests: T. leucotreta and Cydiapomonella (Linnaeous) (Lepidoptera: Tortricidae). The alphabaculovirus was highly virulent against all three species. The lethal concentrations (LC50 and LC90) for the virus against C. peltastica was 8.19 x 103 and 3.33 x 105 OBs/ml. The LC50 and LC90 for T. leucotreta was 2.29 x 103 and 9.97 x 104 OBs/ml, respectively and C. pomonella had a LC50 of 1.43 x 103 OBs/ml and LC90 1.26 x 104 OBs/ml. The virus was particularly virulent against T. leucotreta and C. pomonella as compared to C. peltastica. The biological activity of the alphabaculovirus was also tested against CpGV resistant European C. pomonella. From the results it was observed that the virus had the ability to overcome the resistance in C. pomonella and could potentially be used in the resistance management of C. pomonella. With the successful biological activity results obtained from this study, preliminary investigation were made into the mass production of the alphabaculovirus using both the in vivo and in vitro production methods. For in vivo production both the homologous host (C. peltastica) and a heterologous host (T leucotreta) were investigated. Preliminary studies focused on determining the biological activity in fifth instars of both hosts. Fifth instar LC50 and LC90 values for C. peltastica were 3.43 x 103 and 1.11 x 107 OBs/ml and for T. leucotreta the LC50 and LC90 values were 2.53 x 1 0 3 and 8.82 x 1 0 6 OBs/ml, respectively. The average yield of virus produced in each species was also determined. Cryptophlebia peltastica had the highest viral yield of 5.37 x 1010 OBs/larva and 2.93 x 1010 OBs/larva for T. leucotreta. The results obtained, from the preliminary investigation concluded that the virus could be produced in vivo in both C. peltastica and T. leucotreta, however further research is required into the mass production in both hosts. The in vitro production of the virus was also considered and the susceptibility of the virus was tested against the C. pomonella cell line, Cp14R. After infection of the Cp14R cells with budded virus collected from fifth instar C. peltastica larvae, OBs could be observed after three days. Thus, the alphabaculovirus is susceptible to the Cp14R cell line, thus has the potential to be produced in vitro and further characterised. This study is the first to report of the identification and characterisation of a novel alphabaculovirus isolated from a laboratory reared culture of C. peltastica and the potential for it to be commercially developed into a bipoesticide and used against Tortricidae pests. ii TABLE OF CONTENTS ABSTRACT.......................................................................................................................................i TABLE OF CONTENTS.............................................................................................................. iii LIST OF TA BLES........................................................................................................................... x LIST OF FIG URES......................................................................................................................xiv ABBREVIATIONS....................................................................................................................... xxi ACKNOWLEDGEMENTS............................................................. xxv CHAPTER 1: GENERAL INTRODUCTION......................................................................... 1 1.1 Introduction................................................................................................................................. 1 1.1.1 The host plant................................................................................................................1 1.1.2 The pest: Cryptophlebia peltastica............................................................................6 1.1.2.1 Pest Description.......................................................................................... 7 1.1.2.2 Life C ycle......................................................................................................7 1.1.2.3 Damage and control techniques of Cryptophlebia peltastica................8 1.1.3 Microbial Control..................................................................................................... 10 1.1.4 Baculoviruses........................................................................................................... 13 1.1.4.1 Identification and characterisation of a baculovirus.............................. 17 1.1.4.2 Biological activity.................................................................................... 19 1.1.4.3 Mass production....................................................................................... 19 1.2 Research A im s.............................................................................................................................20 CHAPTER 2: LABORATORY REARING AND STUDY OF THE BIOLOGY OF CRYPTOPHLEBIA PELTASTICA....................................................................21 iii 2.1 Introduction.................................................................................................................................21 2.2 Materials and M ethods.............................................................................................................. 23 2.2.1 Culture rearing............................................................................................................ 23 2.2.2 Fecundity and time to oviposition............................................................................25 2.2.3 Egg development........................................................................................................25 2.2.4 Percentage hatch.........................................................................................................26 2.2.5 Larval development....................................................................................................26 2.2.6 Pupal development.................................................................................................... 27 2.3 Results..........................................................................................................................................27 2.3.1 Culture rearing, sex ratio and difference between male and female pupae and adults..................................................................................................................................... 27 2.3.2 Fecundity and time to oviposition............................................................................29 2.3.3
Recommended publications
  • (Aegle Marmelos Correa.) Fruit
    Advances in Plants & Agriculture Research Research Article Open Access Physico-chemical changes and pest incidence associated with development of bael (Aegle marmelos Correa.) fruit Abstract Volume 7 Issue 6 - 2017 This study investigated the nutritional changes and the effects of pests on the quality BR Jana, Md Idris, Madhumita Singh and development of Bael (Aegle marmelos Correa.) fruit. It has been found in the ICAR-RCER, Research Centre, Makhana, Darbhanga Bihar, India present study that there was a numbers of biochemical changes occurred during fruit development. Even, pest incidence in tender fruits on external surface and Correspondence: Bakul Ranjan Jana, Scientist and research their subsequent infestation are also noted which resulted in economic loss in crop fellow of bael project, ICAR-RCER, Research Center Ranchi, production system. The objectives of this study were to quantify different nutraceuticals Jharkhand-834010, India, Email [email protected] compound, their origin and pest incidence in hard fruits like bael. Results revealed that fruit weight, fruit volume, fruit length and fruit diameter, seed weight and rind weight Received: July 24, 2017 | Published: November 10, 2017 gradually increased from fruit set to maturity. Total soluble solid content (26.00B) and total sugars (14.07%) were maximum at maturity. Carbohydrates and carotene contents gradually increased up to November. Due to development in mucilage (carotene dilution) and other soluble solids, carbohydrates slightly decreased in November after that it was gradually increased at harvest time. These nutraceuticals reflected double sigmoid growth curve in bael. There was no carotene development in first two months of fruit growth and it’s development follows the trend as that of carbohydrates.
    [Show full text]
  • Baculovirus Nuclear Import: Open, Nuclear Pore Complex (NPC) Sesame
    Viruses 2013, 5, 1885-1900; doi:10.3390/v5071885 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Baculovirus Nuclear Import: Open, Nuclear Pore Complex (NPC) Sesame Shelly Au, Wei Wu and Nelly Panté * Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada; E-Mails: [email protected] (S.A.); [email protected] (W.W.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-604-822-3369; Fax: +1-604-822-2416. Received: 30 May 2013; in revised form: 17 July 2013 / Accepted: 17 July 2013 / Published: 23 July 2013 Abstract: Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During infection, the rod-shape, 250-nm long nucleocapsid delivers its genome into the nucleus. Electron microscopy evidence suggests that baculoviruses, specifically the Alphabaculoviruses (nucleopolyhedroviruses) and the Betabaculoviruses (granuloviruses), have evolved two very distinct modes for doing this. Here we review historical and current experimental results of baculovirus nuclear import studies, with an emphasis on electron microscopy studies employing the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus infecting cultured cells. We also discuss the implications of recent studies towards theories of nuclear transport mechanisms. Keywords: baculovirus; AcMNPV; nuclear import; nuclear pore complex; viruses 1. Introduction Baculoviruses are a large and diverse group of rod-shaped, enveloped, double-stranded DNA viruses that replicate in the nucleus of their host cells. They are pathogenic to arthropods, mainly insects, and are ubiquitously found in the environment. Members of the Baculoviridae family have been isolated from more than 700 host species.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • UG ETD Template
    Characterization of Autographa californica nucleopolyhedrovirus immediate early protein ME53: The role of conserved domains in BV production, viral gene transcription, and evidence for ME53 presence at the ribosome by Robyn Ralph A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Robyn Ralph, December, 2018 ABSTRACT CHARACTERIZATION OF AUTOGRAPHA CALIFORNICA NUCLEOPOLYHEDROVIRUS IMMEDIATE EARLY PROTEIN ME53: THE ROLE OF CONSERVED DOMAINS IN BV PRODUCTION, VIRAL GENE TRANSCRIPTION, AND EVIDENCE FOR ME53 PRESENCE AT THE RIBOSOME Robyn Ralph Advisors: University of Guelph, 2018 Dr. Peter Krell Dr. Sarah Wooton The baculovirus AcMNPV early/late gene me53 is required for efficient BV production and is conserved in all alpha and betabaculoviruses. The 449-amino acid protein contains several highly conserved functionally important domains including two putative C4 zinc finger domains (ZnF-N and ZnF-C) whose cysteine residues are 100% conserved. One purpose of this study is to confirm the presence of two zinc binding domains in ME53, as well as determine their role in virus infection and viral gene transcription. Interestingly, deletion of ZnF-C results in an early delay of BV production from 12 to 18 hours post transfection correlating to ME53's cytoplasmic localization. Cytoplasmic functions at early times post-transfection may include translational regulation, which is supported by yeast-2-hybrid data that ME53 interacts with the host 40S ribosomal subunit protein RACK1. In this study the association of ME53 with the ribosomes of virus infected cells was also investigated. iii DEDICATION I dedicate this thesis to my father, Ronald James Ralph.
    [Show full text]
  • Thaumatotibia Leucotreta
    Thaumatotibia leucotreta Scientific Name Thaumatotibia leucotreta (Meyrick) Synonyms: Cryptophlebia leucotreta (Meyrick), Cryptophlebia roerigii Zacher Olethreutes leucotreta Meyrick Thaumatotibia roerigii Zacher Common Name(s) False codling moth, citrus codling moth, orange moth, and orange codling moth Type of Pest Moth Figure 1. Larva of Thaumatotibia leucotreta (T. Grove Taxonomic Position and W. Styn, bugwood.org). Class: Insecta, Order: Lepidoptera, Family: Tortricidae Reason for Inclusion CAPS Target: AHP Prioritized Pest List - 2003 through 2014 Pest Description Eggs: Eggs are flat, oval (0.77 mm long by 0.60 mm wide) shaped discs with a granulated surface. The eggs are white to cream colored when initially laid. They change to a reddish color before the black head capsule of the larvae becomes visible under the chorion prior to hatching (Daiber, 1979a). 1 Larvae: First instar (neonate) larvae approximately 1 to 1.2 mm (< /16 in) in length with dark pinacula giving a spotted appearance, fifth instar larvae are orangey-pink, 1 becoming more pale on sides and yellow in ventral region, 12 to 18 mm (approx. /2 to 11 /16 in) long, with a brown head capsule and prothoracic shield (Fig. 1). [Note this coloration is only present in live specimens.] The last abdominal segment bears an anal comb with two to ten “teeth.” The mean head capsule width for the first through fifth instar larvae has been recorded as: 0.22, 0.37, 0.61, 0.94 and 1.37 mm, respectively (Daiber, 1979b). Diagnostic characters would include the anal comb with two to ten teeth in addition to: L pinaculum on T1 enlarged and extending beneath and beyond (posterad of) the spiracle; spiracle on A8 displaced posterad of SD pinaculum; crochets unevenly triordinal, 36-42; L-group on A9 usually trisetose (all setae usually on same pinaulum) (Brown, 2011).
    [Show full text]
  • Professor Catriona Macleod
    RRR | Cover 2015 v2 11/9/16 10:17 AM Page 1 C M Y CM MY CY CMY K Composite RRR 2015 | Features 11/12/16 1:36 PM Page 1 C M Y CM MY CY CMY K RHODES UNIVERSITY RESEARCH REPORT A publication of the Rhodes University Research Office, compiled and edited by Tarryn Gillitt, Busi Goba, Patricia Jacob, Jill Macgregor and Jaine Roberts Design & Layout: Sally Dore Research Office Director: Jaine Roberts [email protected] Tel: +27 (46) 603 8756/7572 www.ru.ac.za Cover: Rhodes University researchers Pam Maseko, Nomalanga Mkhize, Heila Lotz-Sisitka, Ruth Simbao, Anthea Garman and Catriona Macleod Cover Photos: Paul Greenway/www.3pphotography.com RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:36 PM Page 2 C M Y CM MY CY CMY K CONTENTS 01 FOREWORD Dr Sizwe Mabizela, Vice-Chancellor 03 INTRODUCTION Dr Peter Clayton, Deputy Vice-Chancellor: Research & Development 05 TOP 30 RESEARCHERS 06 PHD GRADUATES 11 VICE-CHANCELLOR’S BOOK AWARD Professor Anthea Garman 13 VICE-CHANCELLOR’S DISTINGUISHED SENIOR RESEARCH AWARD Professor Catriona Macleod 15 VICE-CHANCELLOR’S DISTINGUISHED RESEARCH AWARD Dr Adrienne Edkins 17 SARChI CHAIRS Professor Heila Lotz-Sisitka, Professor Ruth Simbao and Dr Adrienne Edkins 23 AFRICAN LANGUAGES, SCHOOL OF LANGUAGES AND LITERATURE Associate Professor Pamela Maseko 25 DEPARTMENT OF HISTORY Dr Nomalanga Mkhize RESEARCH REPORT 2015 Composite RRR 2015 | Features 11/12/16 1:34 PM Page 3 C M Y CM MY CY CMY K RHODES RESEARCH 2015 RESEARCH REPORT DEPARTMENT PUBLICATIONS AFFILIATES, INSTITUTES AND 28 Publications from the Vice-Chancellorate
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • Baculoviruses and Nucleosome Management
    Virology 476 (2015) 257–263 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Baculoviruses and nucleosome management Loy E. Volkman 1,2 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA article info abstract Article history: Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap Received 5 November 2014 around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome Returned to author for revisions management should be essential for baculovirus genome replication and temporal regulation of transcrip- 9 December 2014 tion, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent Accepted 10 December 2014 chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time Keywords: course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate Baculovirus actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host AcMNPV transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated Autographa californica M nuclear localization of actin early during infection may contribute to nucleosome management. nucleopolyhedrovirus & Nucleosomes 2014 The Authors. Published by Elsevier Inc.
    [Show full text]
  • Table of Contents
    Table of Contents Table of Contents ............................................................................................................ 1 Authors, Reviewers, Draft Log ........................................................................................ 3 Introduction to Reference ................................................................................................ 5 Introduction to Stone Fruit ............................................................................................. 10 Arthropods ................................................................................................................... 16 Primary Pests of Stone Fruit (Full Pest Datasheet) ....................................................... 16 Adoxophyes orana ................................................................................................. 16 Bactrocera zonata .................................................................................................. 27 Enarmonia formosana ............................................................................................ 39 Epiphyas postvittana .............................................................................................. 47 Grapholita funebrana ............................................................................................. 62 Leucoptera malifoliella ........................................................................................... 72 Lobesia botrana ....................................................................................................
    [Show full text]
  • Thaumatotibia Leucotreta (Meyrick)
    Keys About Fact Sheets Glossary Larval Morphology References << Previous fact sheet Next fact sheet >> TORTRICIDAE - Thaumatotibia leucotreta (Meyrick) Taxonomy Click here to download this Fact Sheet as a printable PDF Tortricoidea: Tortricidae: Olethreutinae: Grapholitini: Thaumatotibia leucotreta (Meyrick) Common names: false codling moth Synonyms: Thaumatotibia roerigii The false codling moth is incorrectly referred to as Cryptophlebia leucotreta in many publications (Brown 2006). Fig. 1: Late instar, lateral view Larval diagnosis (Summary) L pinaculum on T1 enlarged and extending beneath and beyond (posterad of) the spiracle Anal comb present with 2-10 teeth D1 and SD1 on the same pinaculum on A9 Fig. 2: Early instar, lateral view Spiracle on A8 displaced posterad of SD pinaculum Crochets unevenly triordinal, 36-42 L group on A9 usually trisetose (all setae usually on same pinaulum) Host/origin information Nearly half of all T. leucotreta interceptions come from South Africa on Citrus. This species is also one of the most commonly intercepted tortricids on pepper (Capsicum annuum) and eggplant (Solanum melongena). Other common origin/host combinations are listed below: Fig. 3: L group on T1 Fig. 4: Anal comb Origin Host(s) [Africa] Capsicum annuum, Solanum melongena, Citrus Cape Verde Ziziphus Ghana Capsicum Nigeria Capsicum South Africa Citrus Recorded distribution Fig. 5: A9, anal shield Fig. 6: A8 spiracle Thaumatotibia leucotreta is widely distributed across Africa and has been reported from approximately 40 countries on the African continent. It is occasionally reported from Europe and is considered locally present in Israel (EPPO 2013). Identifcation authority (Summary) Positive identifications of T. leucotreta should be restricted to larvae intercepted from Africa (or Europe, and especially the Netherlands, if transshipment is suspected) with the L pinaculum on T1 enlarged and extending beneath and beyond (posterad of) the spiracle and an anal comb present.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • USDA's Operational Experience in the Growing Use of Irradiation As A
    USDA’s Operational Experience in the Growing Use of Irradiation as a Plant Quarantine Treatment AlanAlan GreenGreen Executive Director USDA, APHIS, PPQ Riverdale, MD, USA IrradiationIrradiation asas aa CommodityCommodity TreatmentTreatment Background: • Over 60 countries using food irradiation • Hawaii irradiating fruit and vegetables since 1995 • Increased interest to find Methyl Bromide alternative IrradiationIrradiation asas aa CommodityCommodity TreatmentTreatment International Standard : Endorsed by International Standards: – International Plant Protection Convention (ISPM 18) USDA Regulations : October 23, 2002: Overall requirements for irradiation as a quarantine treatment (Closely followed ISPM 18) January 27, 2006: Establishes generic doses for insects and specifically for fruit flies ObjectiveObjective ofof IrradiationIrradiation • Prevent establishment of pests Mortality is NOT necessary Preventing reproduction or completion of life cycle IS necessary USDA Rule and ISPM 18 Require: • Establish dose to neutralize pest • Ensure minimum dose is delivered • Establish safeguards to identify treated product and prevent infestation Why Irradiation was different Manages a very wide range of pests Objective of treatment is not death of pest Concerns about consumer acceptance ApprovedApproved dosesdoses -- ApprovedApproved forfor pestpest speciesspecies Pest _ Common name Dose ( Gy ) Bactrocera dorsalis Oriental FF 250 Ceratitis capitata Mediterranean FF 225 B. cucurbitae Melon fly 210 Anastrepha fraterculus South American FF
    [Show full text]