Secretion by Fibronectin and Type I Collagen of Human Airway Smooth

Total Page:16

File Type:pdf, Size:1020Kb

Secretion by Fibronectin and Type I Collagen of Human Airway Smooth Multiple β1 Integrins Mediate Enhancement of Human Airway Smooth Muscle Cytokine Secretion by Fibronectin and Type I Collagen This information is current as Qi Peng, Dilys Lai, Trang T.-B. Nguyen, Vivien Chan, of September 27, 2021. Takeshi Matsuda and Stuart J. Hirst J Immunol 2005; 174:2258-2264; ; doi: 10.4049/jimmunol.174.4.2258 http://www.jimmunol.org/content/174/4/2258 Downloaded from References This article cites 33 articles, 6 of which you can access for free at: http://www.jimmunol.org/content/174/4/2258.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ␤ Multiple 1 Integrins Mediate Enhancement of Human Airway Smooth Muscle Cytokine Secretion by Fibronectin and Type I Collagen1 Qi Peng,2 Dilys Lai,2 Trang T.-B. Nguyen, Vivien Chan, Takeshi Matsuda, and Stuart J. Hirst3 Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with interstitial collagen and fibronectin are major pathological features of airway remodeling in asthma. We have previously shown that these ECM compo- nents confer enhanced ASM proliferation in vitro, but their action on its newly characterized secretory function is unknown. Here, we examined the effects of fibronectin and collagen types I, III, and V on IL-1␤-dependent secretory responses of human ASM cells, and characterized the involvement of specific integrins. Cytokine production (eotaxin, RANTES, and GM-CSF) was eval- uated by ELISA, RT-PCR, and flow cytometry. Function-blocking integrin mAbs and RGD (Arg-Gly-Asp)-blocking peptides were Downloaded from used to identify integrin involvement. IL-1␤-dependent release of eotaxin, RANTES, and GM-CSF was enhanced by fibronectin and by fibrillar and monomeric type I collagen, with similar changes in mRNA abundance. Collagen types III and V had no effect on eotaxin or RANTES release but did modulate GM-CSF. Analogous changes in intracellular cytokine accumulation were found, ␣ ␤ ␣ ␤ ␣ ␤ but in <25% of the total ASM cell population. Function-blocking Ab and RGD peptide studies revealed that 2 1, 5 1, v 1, ␣ ␤ ␤ ␣ ␤ and v 3 integrins were required for up-regulation of IL-1 -dependent ASM secretory responses by fibronectin, while 2 1 was ␤ an important transducer for type I collagen. Thus, fibronectin and type I collagen enhance IL-1 -dependent ASM secretory http://www.jimmunol.org/ ␤ responses through a 1 integrin-dependent mechanism. Enhancement of cytokine release from ASM by these ECM components may contribute to airway wall inflammation and remodeling in asthma. The Journal of Immunology, 2005, 174: 2258–2264. hronic asthma is characterized by poorly reversible air- logic studies of asthmatic airways have revealed abnormalities in way obstruction and airway hyperresponsiveness that is both the quantity and composition of ECM proteins. Collagen C associated with intense persistent inflammation and types I, III, and V; fibronectin; tenascin; hyaluronan; versican; and ␣ ␤ structural remodeling of the airway wall (1, 2). Two prominent laminin 2/ 2 chains are increased, whereas other major ECM features of the remodeling process that may underlie or contribute components including collagen type IV and elastin are decreased to the development of airways hyperresponsiveness in asthmatics (5–9). Increased type I collagen, hyaluronan, and versican have by guest on September 27, 2021 4 include accumulation of airway smooth muscle (ASM), possibly been found localized within and surrounding ASM bundles from due to hyperplastic and/or hypertrophic changes (3, 4) and alter- asthmatics (9, 15). In the bronchoalveolar lavage fluid of asthmat- ations in the amount and composition extracellular matrix (ECM) ics, increased levels of fibronectin, hyaluronan, and laminin prod- proteins (5–9). In addition to ASM accumulation in asthma, evi- ucts are found (reflecting increased ECM turnover), which corre- dence suggests that ASM may contribute to airway wall inflam- late with asthma severity (16). These studies support marked ECM matory events by expressing cell adhesion receptors and costimu- changes in the airway wall in asthma. However, little is known of latory molecules, and by releasing multiple cytokines and the impact of enrichment of the airway wall with collagen and chemokines including those which activate eosinophils such as fibronectin on airway cell function. eotaxin, RANTES, and GM-CSF (10–13). Previously, we have reported that both fibronectin and type I ECM proteins ligating via cell surface integrin ECM receptors collagen enhance responses of cultured human ASM cells to mi- regulate diverse cellular functions including growth, migration, ␣ survival, and the maintenance of differentiated status (14). Histo- togens such as PDGF-BB and -thrombin (17). Bonacci et al. (18) report similar findings with fibroblast growth factor-2-dependent proliferation of bovine tracheal smooth muscle cultured on type I Department of Asthma, Allergy and Respiratory Science, The Guy’s, King’s and St. collagen; and Freyer et al. (19) have shown that both type I col- Thomas’ School of Medicine, King’s College London, Guy’s Hospital Campus, Lon- don, United Kingdom lagen and fibronectin increase survival of human ASM cells. More- Received for publication August 18, 2004. Accepted for publication November over, ASM cells cultured from asthmatic individuals or grown on 16, 2004. homologous ECM from asthmatic ASM cells proliferate more rapidly The costs of publication of this article were defrayed in part by the payment of page (20). Collectively, these observations affirm that ASM in situ likely is charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. subjected to the influences of signaling through ECM/integrin inter- 1 This study was supported by Asthma U.K. (no. 00/44), the Special Trustees of Guy’s actions, and have led to the suggestion that alterations in airway wall and St. Thomas’ Hospitals, and the Wellcome Trust (no. 051435). ECM microenvironment in remodeling in asthma may favor en- 2 Q.P. and D.L. contributed equally to this work. hanced survival and growth responses of ASM during inflammation 3 Address correspondence and reprint requests to Dr. Stuart J. Hirst, Department of (17–19). However, it is unknown whether the ECM has analogous Asthma, Allergy and Respiratory Science, The Guy’s, King’s and St. Thomas’ School effects on ASM secretory responses. of Medicine, Thomas Guy House, Guy’s Hospital Campus, London, U.K. SE1 9RT. E-mail address: [email protected] In the present study, we hypothesized that enrichment of the 4 Abbreviations used in this paper: ASM, airway smooth muscle; ECM, extracellular airway wall ECM environment with fibronectin and type I colla- matrix; Pl, plastic. gen, as occurs in asthma, confers increased secretory properties of Copyright © 2005 by The American Association of Immunologists, Inc. 0022-1767/05/$02.00 The Journal of Immunology 2259 ASM. We compared IL-1␤/TNF-␣-dependent eosinophil-activat- sciences) (22). After analysis, cells were confirmed microscopically to be ing cytokine release from human ASM cells that were cultured intact. either on plastic (Pl) or fibronectin or on varying forms of collagen. Measurement of cytokine levels by ELISA Moreover, we characterized the integrin heterodimer subunits ex- pressed by ASM and their involvement in modulating secretory Levels of eotaxin, RANTES, and GM-CSF were determined in duplicate in responses. the same samples of cell-conditioned medium by specific sandwich ELISA as described previously (13). Manual cell counts were repeated after col- lection of cell-conditioned medium to confirm numbers were unchanged Materials and Methods after stimulation, and to allow cytokine levels to be expressed initially in Isolation and culture of human ASM cells nanograms per milliliter per million cells before normalization for stimu- lation on Pl to correct for small variations in release between cell lines. Human ASM cells were obtained in accordance with procedures approved by the Guy’s and St. Thomas’ Hospitals’ Research Ethics Committee from RT-PCR the lobar or main bronchus of 45 nonasthmatic patients (mean age, 64 Ϯ 4 years; range, 28–78 years; 24 male, 21 female) undergoing lung resection Total RNA was isolated using the RNeasy mini kit (Qiagen), and its con- for carcinoma of the bronchus using methods described previously (13). centration was determined using the RiboGreen RNA quantification kit Fluorescent immunocytochemical and flow cytometric techniques con- (Molecular Probes). Full-length first-strand cDNA was synthesized using 2 ␮ ␮ firmed that near-confluent, FBS-deprived human ASM cells (passage 2) g of total RNA in a 33- l reverse transcriptase reaction mixture with stained (Ͼ95%) for smooth muscle-specific ␣-actin and calponin (17). Ready-To-Go You-Prime beads and random hexamer primers (Amersham Cells at passages 3–5 were used in all experiments. Biosciences) as previously described (22). To confirm PCR were per- formed within the linear for amplification, the number of cycles was ini- tially varied from 20 to 28. The size of the amplicons corresponded to Surface coating with ECM proteins Downloaded from predicted sizes (eotaxin, 182 bp; RANTES, 332 bp; GM-CSF, 277 bp), Lyophilized human plasma fibronectin (Sigma-Aldrich), rat monomeric confirmed by sequencing.
Recommended publications
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • Evaluation of Elastin/Collagen Content in Human Dermis In-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging
    Cosmetics 2014, 1, 211-221; doi:10.3390/cosmetics1030211 OPEN ACCESS cosmetics ISSN 2079-9284 www.mdpi.com/journal/cosmetics Article Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging Jean-Christophe Pittet 1,*, Olga Freis 2,†, Marie-Danielle Vazquez-Duchêne 2,†, Gilles Périé 2,† and Gilles Pauly 2,† 1 Orion Concept, 100 Rue de Suède, 37100 Tours, France 2 BASF Beauty Care Solutions France SAS, 3 Rue de Seichamps, CS 71040 Pulnoy, 54272 Essey-lès-Nancy Cedex, France; E-Mails: [email protected] (O.F.); [email protected] (M.-D.V.-D.); [email protected] (G.Pé.); [email protected] (G.Pa.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-247-052-316; Fax: +33-610-786-695. Received: 14 March 2014; in revised form: 31 July 2014 / Accepted: 1 August 2014 / Published: 20 August 2014 Abstract: The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM) components and age. Multiphoton Microscopy (MPM) that measures the autofluorescence (AF) and second harmonic generation (SHG) was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis) at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB).
    [Show full text]
  • Blood Vitronectin Is a Major Activator of LIF and IL-6 in the Brain Through Integrin–FAK and Upar Signaling Matthew P
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs202580. doi:10.1242/jcs.202580 RESEARCH ARTICLE Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin–FAK and uPAR signaling Matthew P. Keasey1, Cuihong Jia1, Lylyan F. Pimentel1,2, Richard R. Sante1, Chiharu Lovins1 and Theo Hagg1,* ABSTRACT Microglia and astrocytes express the VTN receptors αvβ3 and α β We defined how blood-derived vitronectin (VTN) rapidly and potently v 5 integrin (Herrera-Molina et al., 2012; Kang et al., 2008; activates leukemia inhibitory factor (LIF) and pro-inflammatory Milner, 2009; Welser-Alves et al., 2011). Microglia and astrocytes, interleukin 6 (IL-6) in vitro and after vascular injury in the brain. as well as endothelial cells, are major producers of pro- α in vitro Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or inflammatory cytokines, such as IL-6 and TNF , and collagen-I) substantially increased LIF and IL-6 within 4 h in after traumatic or ischemic injury to the brain (Banner et al., 1997; C6-astroglioma cells, while VTN−/− mouse plasma was less effective Erta et al., 2012; Lau and Yu, 2001) or upon self-induction by IL-6 than that from wild-type mice. LIF and IL-6 were induced by (Van Wagoner and Benveniste, 1999). IL-6 is a major regulator of a intracerebral injection of recombinant human (rh)VTN in mice, but variety of inflammatory disorders and a target for therapies (Hunter induction seen upon intracerebral hemorrhage was less in VTN−/− and Jones, 2015).
    [Show full text]
  • With Caviar, Keratin & Collagen
    WITH CAVIAR, KERATIN & COLLAGEN Professional treatments for colour, bleaching, care and maintenance with CAVIAR, KERATIN and COLLAGEN Professional styling products with CAVIAR, KERATIN and COLLAGEN Technical professional products with CAVIAR, KERATIN and COLLAGEN 2 Professional products by Very high technology professional products to colour, treat and protect hair from the continuous chemical and environmental stress caused on a daily basis. Formulas based on: Caviar Keratin Collagen 3 WITH CAVIAR, KERATIN & COLLAGEN Colouring permanentCream professional ammonia PPD • Respects the hair structure thanks to an exposure free free time of 12 minutes • Non-progressive • Ammonia free • Paraphenylenediamine free • Unleashes all the EFFICANCY of its active principles and maximum COLOURING POWER Mix 1 : 1 4 WITH CAVIAR, KERATIN & COLLAGEN 1. Respect for scalp and hair thanks to a shorter processing time 2. Maximum grey hair coverage 3. Lightens up to 4 tones 4. Ammonia free and Paraphenylenediamine free 5. Safe application even on customers with a sensitive scalp 6. Extreme colour brilliancy and uniformity 7. Very easy and practical to use 8. Long lasting reflections 9. High colour fastness 10. Great protection action 11. Effective restructuring action benefits 12. Maximum conditioning 5 WITH CAVIAR, KERATIN & COLLAGEN Benefits 1 2 3 Respect for scalp and hair thanks to a shorter processing Lightens up to Maximum grey hair 4 tones time coverage 6 WITH CAVIAR, KERATIN & COLLAGEN has been developed according Cosmetic colour pDT BASE Be Colour 12 Minute Dpe DIAMINOPHENOXYETHANOL to the rules of the “molar stoichiometry,” a technique creamy gel with RESORCINOL m-AMINOPHENOL of colouring clear and uncompromising. It is based on CAVIAR, a mathematical principle according to which the molar concentration of the dye base is equal to the molar KERATIN and concentration of the sum of the other colouring couplers.
    [Show full text]
  • What Is Collagen?
    What is Collagen? Collagen is the most abundant protein in the human body and is as diverse as it is multifunctional (1). It is found throughout the body in a variety of forms and functions making up 30 percent of your body tissue and 70 % of your skin tissue. Specifically, collagen is the protein in connective tissue that is in bone marrow, tendons, cartilage, ligaments, and linings of your body organs. It is often referred to as the glue of the body. (1) Hydrolyzed collagen means the protein has been broken down into individual amino acids which are easier for the body to absorb. Collagen serves to help repair tissue and also functions in various roles throughout the body. Collagen and the Body Locations of Collagen: What Does Collagen Do? Collagen has numerous structural properties but also plays a vital role in the repair of almost all the body’s tissues. Some diseases are directly linked to lacking this essential protein. Depending on which part of the body it is located, collagen serves different purposes. In skin: Found in the inner layer, this connective tissue gives the skin its structure and strength and also functions in the replacement of dead skin cells. A lack of collagen in the skin can contribute to a decrease in skin health leading to stretch marks, dark spots, and infections as well as affecting the skin’s ability to maintain moisture. In internal organs and blood vessels: In the lining of your organs like in the stomach, kidneys, blood vessels and spleen, collagen functions as a protective covering and a fibrous barrier.
    [Show full text]
  • Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues
    veterinary sciences Article Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues Luis Gabriel Rivera Calderón 1, Priscila Emiko Kobayashi 2, Rosemeri Oliveira Vasconcelos 1, Carlos Eduardo Fonseca-Alves 3 and Renée Laufer-Amorim 2,* 1 Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil; [email protected] (L.G.R.C.); [email protected] (R.O.V.) 2 Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] 3 Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-14-3880-2076 Received: 7 January 2019; Accepted: 25 February 2019; Published: 2 March 2019 Abstract: This study aimed to investigate collagen (Coll-I, III, IV) and elastin in canine normal prostate and prostate cancer (PC) using Picrosirius red (PSR) and Immunohistochemical (IHC) analysis. Eight normal prostates and 10 PC from formalin-fixed, paraffin-embedded samples were used. Collagen fibers area was analyzed with ImageJ software. The distribution of Coll-I and Coll-III was approximately 80% around prostatic ducts and acini, 15% among smooth muscle, and 5% surrounding blood vessels, in both normal prostate and PC. There was a higher median area of Coll-III in PC when compared to normal prostatic tissue (p = 0.001 for PSR and p = 0.05 for IHC).
    [Show full text]
  • Empowering Collagen Targeting for Diagnosis and Treatment of Human Conditions
    EmpoweringEmpowering collagen collagen targetingtargeting for for diagnosis prognosis of fibrotic and treatment of Manka,SW. 2012 conditions.human conditions. 1 3Helix as a platform diagnostic company 2020 2022 2030 Innovative research reagent for Clinic histopathology providing Platform fibrotic prognostic detection of collagen damage best in class prognostic ability in within multi-disease states liver fibrosis (NAFLD, NASH) Strengthening IP portfolio with market Clinical histopathology AND Non-Invasive approaches serum testing and medical disrupting products while subsequently Analytic specific reagent to allow for fast imaging developing strong partnerships with world market access leading companies for commercialization Targeting impactful markets of IPF, kidney Focused on paired biopsy research and fibrosis, AMD, Keloids and cardiac fibrosis collaboration with clinical laboratories. in addition to fibrotic liver diseases. 2 Liver Fibrosis market is GROWING Fatty Liver Fibrotic Liver Healthy Liver Cirrhosis NAFLD NASH USA Epidemiology 328 Million 83 Million 16 Million 1.5 Million (2015) Predicted USA Epidemiology 360 Million 101 Million 27 Million 3.4 Million (2030) Estes,C. 2018 3 NASH Therapeutics are finishing clinical trials and are coming to market. • VK2809 Phase II • OCALIVA (OCA) • NDA Filed • $78,000/year current cost • $20,000 predicted • Resmetirom Phase III • 23% respond to treatment 16 Million NASH patients in the USA * $20,000 • $320 Billion Annual Cost for treatable market Aramchol Phase III/IV 4 Stratification of patient population is needed to reduce unnecessary therapeutic intervention. • Progression of NAFL and 100% NASH is variable patient to NAFLD patient. 33% • Prediction of the progression can modify the Fibrosis Progression 20% disease intervention and treatment. Rapid Fibrosis • No product on the market Progression (stage 0 to stage today is equipped for 3/4 over 5.9 years) prognosis of liver fibrosis Singh, S.
    [Show full text]
  • Collagen Type I and Decorin Expression in Tenocytes Depend On
    Wagenhäuser et al. BMC Musculoskeletal Disorders 2012, 13:140 http://www.biomedcentral.com/1471-2474/13/140 RESEARCH ARTICLE Open Access Collagen type I and decorin expression in tenocytes depend on the cell isolation method Markus U Wagenhäuser1†, Matthias F Pietschmann1*†, Birte Sievers1, Denitsa Docheva2, Matthias Schieker2, Volkmar Jansson1 and Peter E Müller1 Abstract Backround: The treatment of rotator cuff tears is still challenging. Tendon tissue engineering (TTE) might be an alternative in future. Tenocytes seem to be the most suitable cell type as they are easy to obtain and no differentiation in vitro is necessary. The aim of this study was to examine, if the long head of the biceps tendon (LHB) can deliver viable tenocytes for TTE. In this context, different isolation methods, such as enzymatic digestion (ED) and cell migration (CM), are investigated on differences in gene expression and cell morphology. Methods: Samples of the LHB were obtained from patients, who underwent surgery for primary shoulder arthroplasty. Using ED as isolation method, 0.2% collagenase I solution was used. Using CM as isolation method, small pieces of minced tendon were put into petri-dishes. After cell cultivation, RT-PCR was performed for collagen type I, collagen type III, decorin, tenascin-C, fibronectin, Scleraxis, tenomodulin, osteopontin and agreccan. Results: The total number of isolated cells, in relation to 1 g of native tissue, was 14 times higher using ED. The time interval for cell isolation was about 17 hours using ED and approximately 50 days using CM. Cell morphology in vitro was similar for both isolation techniques. Higher expression of collagen type I could be observed in tenocyte-like cell cultures (TLCC) using ED as isolation method (p < 0.05), however decorin expression was higher in TLCC using CM as isolation method (p < 0.05).
    [Show full text]
  • A Comparison of in Vivo Gene Delivery Methods for Antisense Therapy in Ligament Healing
    Gene Therapy (1998) 5, 1455–1461 1998 Stockton Press All rights reserved 0969-7128/98 $12.00 http://www.stockton-press.co.uk/gt A comparison of in vivo gene delivery methods for antisense therapy in ligament healing N Nakamura1, SA Timmermann1, DA Hart1, Y Kaneda2, NG Shrive1, K Shino3, T Ochi3 and CB Frank1 1McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Calgary, Alberta, Canada; 2Institute for Molecular and Cellular Biology, Osaka University; and 3Department of Orthopaedic Surgery, Osaka University Medical School, Osaka, Japan To determine the most efficient in vivo delivery method of at 7 days after transfection. We then introduced antisense oligonucleotides for antisense therapy in ligament healing, ODN for the rabbit proteoglycan, decorin, into ligament fluorescence-labelled phosphorothioate oligodeoxynuleo- scars with this delivery method and confirmed a significant tides (ODN) were introduced into 12 rabbit ligament scars inhibition of decorin mRNA expression in antisense-treated 2 weeks after injury using haemagglutinating virus of Japan scar tissues in vivo both at 2 days (42.3 ± 14.7% of sense (Sendai virus; HVJ)-conjugated liposomes. We compared control ± s.d.; P Ͻ 0.0025) and 3 weeks (60.5 ± 28.2% of the efficiency of cellular uptake of fluorescence as a per- sense control ± s.d.; P Ͻ 0.024) after treatment, compared centage of all cells in each scar using three delivery pro- with sense ODN-treated scars. Decorin was significantly cedures: (1) direct free-hand injection into the ligament suppressed also at protein level in antisense-treated scars scar using a conventional syringe; (2) systematic direct at 4 weeks (66.6 ± 35.7% of sense control ± s.d.; scar injection using a repeating 10 ␮l dispenser and a P Ͻ 0.045) after treatment.
    [Show full text]
  • Collagens—Structure, Function, and Biosynthesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Advanced Drug Delivery Reviews 55 (2003) 1531–1546 www.elsevier.com/locate/addr Collagens—structure, function, and biosynthesis K. Gelsea,E.Po¨schlb, T. Aignera,* a Cartilage Research, Department of Pathology, University of Erlangen-Nu¨rnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany b Department of Experimental Medicine I, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany Received 20 January 2003; accepted 26 August 2003 Abstract The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue. D 2003 Elsevier B.V. All rights reserved. Keywords: Collagen; Extracellular matrix; Fibrillogenesis; Connective tissue Contents 1. Collagens—general introduction ............................................. 1532 2. Collagens—the basic structural module.........................................
    [Show full text]
  • Sources of Collagen for Biomaterials in Skin Wound Healing
    bioengineering Review Sources of Collagen for Biomaterials in Skin Wound Healing Evan Davison-Kotler 1,2, William S. Marshall 1 and Elena García-Gareta 2,* 1 Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada 2 Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK * Correspondence: [email protected]; Tel.: +44-(0)-1923844350 Received: 23 May 2019; Accepted: 26 June 2019; Published: 30 June 2019 Abstract: Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal–epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression. Keywords: collagen; collagen sources; recombinant collagen; biomaterials; regenerative medicine; tissue engineering; wound healing; skin 1. Introduction 1.1. The Molecular Structure of Collagen The 28 different collagen types of the collagen superfamily are further divided into eight subfamilies, with the majority of the collagen types belonging to the fibril-forming or fibrillar subfamily [1,2].
    [Show full text]
  • Osteogenesis Imperfecta Types I-XI Implications for the Neonatal Nurse Jody Womack , RNC-NIC, NNP-BC, MS
    Ksenia Zukowsky, PhD, APRN, NNP-BC ❍ Section Editor Beyond the Basics 3.0 HOURS Continuing Education Osteogenesis Imperfecta Types I-XI Implications for the Neonatal Nurse Jody Womack , RNC-NIC, NNP-BC, MS ABSTRACT Osteogenesis imperfecta (OI), also called “brittle bone disease,” is a rare heterozygous connective tissue disorder that is caused by mutations of genes that affect collagen. Osteogenesis imperfecta is characterized by decreased bone mass, bone fragility, and skin hyperlaxity. The phenotype present is determined according to the mutation on the affected gene as well as the type and location of the mutation. Osteogenesis imperfecta is neither preventable nor treatable. Osteogenesis imperfecta is classified into 11 types to date, on the basis of their clinical symptoms and genetic components. This article discusses the definition of the disease, the classifications on the basis of its clinical features, incidence, etiology, and pathogenesis. In addition, phenotype, natural history, diagnosis and manage- ment of this disease, recurrence risk, and, most importantly, the implications for the neonatal nurse and management for the family are discussed. Key Words: brittle bone disease , COL1A1 , COL1A2 , collagen disorders , osteogenesis imperfecta steogenesis imperfecta (OI) is a rare connec- is imperative to help the patient and the parents car- tive tissue disorder that is caused by muta- ing for infants born with OI. tions of genes that affect collagen. 1-4 Collagen O is the major protein of connective tissues, which is the REVIEW OF LITERATURE framework of bones. When collagen is not function- ing properly or there is lack of collagen in the tissue, Osteogenesis imperfecta was thought to have affected bones break easily.
    [Show full text]