Identification and Structural Analysis of Type I Collagen Sites in Complex with Fibronectin Fragments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Collagen and Creatine
COLLAGEN AND CREATINE : PROTEIN AND NONPROTEIN NITROGENOUS COMPOUNDS Color index: . Important . Extra explanation “ THERE IS NO ELEVATOR TO SUCCESS. YOU HAVE TO TAKE THE STAIRS ” 435 Biochemistry Team • Amino acid structure. • Proteins. • Level of protein structure. RECALL: 435 Biochemistry Team Amino acid structure 1- hydrogen atom *H* ( which is distictive for each amino 2- side chain *R* acid and gives the amino acid a unique set of characteristic ) - Carboxylic acid group *COOH* 3- two functional groups - Primary amino acid group *NH2* ( except for proline which has a secondary amino acid) .The amino acid with a free amino Group at the end called “N-Terminus” . Alpha carbon that is attached to: to: thatattachedAlpha carbon is .The amino acid with a free carboxylic group At the end called “ C-Terminus” Proteins Proteins structure : - Building blocks , made of small molecules unit called amino acid which attached together in long chain by a peptide bond . Level of protein structure Tertiary Quaternary Primary secondary Single amino acids Region stabilized by Three–dimensional attached by hydrogen bond between Association of covalent bonds atoms of the polypeptide (3D) shape of called peptide backbone. entire polypeptide multi polypeptides chain including forming a bonds to form a Examples : linear sequence of side chain (R functional protein. amino acids. Alpha helix group ) Beta sheet 435 Biochemistry Team Level of protein structure 435 Biochemistry Team Secondary structure Alpha helix: - It is right-handed spiral , which side chain extend outward. - it is stabilized by hydrogen bond , which is formed between the peptide bond carbonyl oxygen and amide hydrogen. - each turn contains 3.6 amino acids. -
The Close-Packed Triple Helix As a Possible New Structural Motif for Collagen
The close-packed triple helix as a possible new structural motif for collagen Jakob Bohr∗ and Kasper Olseny Department of Physics, Technical University of Denmark Building 307 Fysikvej, DK-2800 Lyngby, Denmark Abstract The one-dimensional problem of selecting the triple helix with the highest volume fraction is solved and hence the condition for a helix to be close-packed is obtained. The close-packed triple helix is ◦ shown to have a pitch angle of vCP = 43:3 . Contrary to the conventional notion, we suggest that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain- twist coupling is practically identical to the close-packed triple helix. Some of the difficulties for the current understanding of the structure of collagen are reviewed: The ambiguity in assigning crystal structures for collagen-like peptides, and the failure to satisfactorily calculate circular dichroism spectra. Further, the proposed new geometrical structure for collagen is better packed than both the 10=3 and the 7=2 structure. A feature of the suggested collagen structure is the existence of a central channel with negatively charged walls. We find support for this structural feature in some of the early x-ray diffraction data of collagen. The central channel of the structure suggests the possibility of a one-dimensional proton lattice. This geometry can explain the observed magic angle effect seen in NMR studies of collagen. The central channel also offers the possibility of ion transport and may cast new light on various biological and physical phenomena, including biomineralization. -
Non-Linearity of the Collagen Triple Helix in Solution and Implications for Collagen Function
Biochemical Journal (2017) 474 2203–2217 DOI: 10.1042/BCJ20170217 Research Article Non-linearity of the collagen triple helix in solution and implications for collagen function Kenneth T. Walker1, Ruodan Nan1, David W. Wright1, Jayesh Gor1, Anthony C. Bishop2, George I. Makhatadze2, Barbara Brodsky3 and Stephen J. Perkins1 1Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, U.K.; 2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, U.S.A.; and 3 Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, U.S.A. Correspondence: S. J. Perkins ([email protected]) or B. Brodsky ([email protected]) Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. -
The Recognition of Collagen and Triple-Helical Toolkit Peptides By
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 35, pp. 24091–24101, August 29, 2014 Author’s Choice © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. The Recognition of Collagen and Triple-helical Toolkit Peptides by MMP-13 SEQUENCE SPECIFICITY FOR BINDING AND CLEAVAGE* Received for publication, May 30, 2014, and in revised form, July 2, 2014 Published, JBC Papers in Press, July 9, 2014, DOI 10.1074/jbc.M114.583443 Joanna-Marie Howes‡, Dominique Bihan‡, David A. Slatter‡, Samir W. Hamaia‡, Len C. Packman‡, Vera Knauper§, Robert Visse¶, and Richard W. Farndale‡1 From the ‡Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, United Kingdom, the §Cardiff University Dental School, Dental Drive, Cardiff CF14 4XY, United Kingdom, and the ¶Kennedy Institute of Rheumatology, Hammersmith, London W6 8LH, United Kingdom Background: MMP-13 recognizes poorly-defined sequences in collagens. Results: MMP-13 binds key residues in the canonical cleavage site and another site near the collagen N terminus. Conclusion: MMP-1 and MMP-13 differ in their recognition and cleavage of collagen, which is regulated primarily through the Downloaded from Hpx domain of MMP-13. Significance: Our data explain the preference of MMP-13 for collagen II. Remodeling of collagen by matrix metalloproteinases (MMPs) is right-handed collagen superhelix, which endows the molecule crucial to tissue homeostasis and repair. MMP-13 is a collagen- with resistance to degradation by most proteases. The fibrillar http://www.jbc.org/ ase with a substrate preference for collagen II over collagens I collagens I, II, and III contain a conserved triple-helical COL and III. -
Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues
veterinary sciences Article Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues Luis Gabriel Rivera Calderón 1, Priscila Emiko Kobayashi 2, Rosemeri Oliveira Vasconcelos 1, Carlos Eduardo Fonseca-Alves 3 and Renée Laufer-Amorim 2,* 1 Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil; [email protected] (L.G.R.C.); [email protected] (R.O.V.) 2 Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] 3 Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-14-3880-2076 Received: 7 January 2019; Accepted: 25 February 2019; Published: 2 March 2019 Abstract: This study aimed to investigate collagen (Coll-I, III, IV) and elastin in canine normal prostate and prostate cancer (PC) using Picrosirius red (PSR) and Immunohistochemical (IHC) analysis. Eight normal prostates and 10 PC from formalin-fixed, paraffin-embedded samples were used. Collagen fibers area was analyzed with ImageJ software. The distribution of Coll-I and Coll-III was approximately 80% around prostatic ducts and acini, 15% among smooth muscle, and 5% surrounding blood vessels, in both normal prostate and PC. There was a higher median area of Coll-III in PC when compared to normal prostatic tissue (p = 0.001 for PSR and p = 0.05 for IHC). -
Collagen Type I and Decorin Expression in Tenocytes Depend On
Wagenhäuser et al. BMC Musculoskeletal Disorders 2012, 13:140 http://www.biomedcentral.com/1471-2474/13/140 RESEARCH ARTICLE Open Access Collagen type I and decorin expression in tenocytes depend on the cell isolation method Markus U Wagenhäuser1†, Matthias F Pietschmann1*†, Birte Sievers1, Denitsa Docheva2, Matthias Schieker2, Volkmar Jansson1 and Peter E Müller1 Abstract Backround: The treatment of rotator cuff tears is still challenging. Tendon tissue engineering (TTE) might be an alternative in future. Tenocytes seem to be the most suitable cell type as they are easy to obtain and no differentiation in vitro is necessary. The aim of this study was to examine, if the long head of the biceps tendon (LHB) can deliver viable tenocytes for TTE. In this context, different isolation methods, such as enzymatic digestion (ED) and cell migration (CM), are investigated on differences in gene expression and cell morphology. Methods: Samples of the LHB were obtained from patients, who underwent surgery for primary shoulder arthroplasty. Using ED as isolation method, 0.2% collagenase I solution was used. Using CM as isolation method, small pieces of minced tendon were put into petri-dishes. After cell cultivation, RT-PCR was performed for collagen type I, collagen type III, decorin, tenascin-C, fibronectin, Scleraxis, tenomodulin, osteopontin and agreccan. Results: The total number of isolated cells, in relation to 1 g of native tissue, was 14 times higher using ED. The time interval for cell isolation was about 17 hours using ED and approximately 50 days using CM. Cell morphology in vitro was similar for both isolation techniques. Higher expression of collagen type I could be observed in tenocyte-like cell cultures (TLCC) using ED as isolation method (p < 0.05), however decorin expression was higher in TLCC using CM as isolation method (p < 0.05). -
Collagens—Structure, Function, and Biosynthesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Advanced Drug Delivery Reviews 55 (2003) 1531–1546 www.elsevier.com/locate/addr Collagens—structure, function, and biosynthesis K. Gelsea,E.Po¨schlb, T. Aignera,* a Cartilage Research, Department of Pathology, University of Erlangen-Nu¨rnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany b Department of Experimental Medicine I, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany Received 20 January 2003; accepted 26 August 2003 Abstract The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue. D 2003 Elsevier B.V. All rights reserved. Keywords: Collagen; Extracellular matrix; Fibrillogenesis; Connective tissue Contents 1. Collagens—general introduction ............................................. 1532 2. Collagens—the basic structural module......................................... -
Sources of Collagen for Biomaterials in Skin Wound Healing
bioengineering Review Sources of Collagen for Biomaterials in Skin Wound Healing Evan Davison-Kotler 1,2, William S. Marshall 1 and Elena García-Gareta 2,* 1 Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada 2 Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK * Correspondence: [email protected]; Tel.: +44-(0)-1923844350 Received: 23 May 2019; Accepted: 26 June 2019; Published: 30 June 2019 Abstract: Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal–epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression. Keywords: collagen; collagen sources; recombinant collagen; biomaterials; regenerative medicine; tissue engineering; wound healing; skin 1. Introduction 1.1. The Molecular Structure of Collagen The 28 different collagen types of the collagen superfamily are further divided into eight subfamilies, with the majority of the collagen types belonging to the fibril-forming or fibrillar subfamily [1,2]. -
Protein Physics A
PROTEIN PHYSICS A. V. Finkelstein & O. B. Ptitsyn LECTURE 7 Secondary Structures ¾ Regular Secondary Structures - helices (not just α-helix) - β-sheet - superhelices ¾ Irregular Secondary Structure - β-turns - β-bulges Secondary Structures Helices - one continuous region of the polypeptide - stabilized by hydrogen bonds between carbonyl and amide groups and van der Waals interactions across the helical axis (i,i+2) (i,i+3) (i,i+4) (i,i+5) L-handed There are helices without any hydrogen bonds, stabilized only by van der Waals interactions ( synthetic: Poly(Pro)I-II, Poly(Gly)I-II) R-handed Structure Residues per Rise per Radius of Observed turn residue (Å) helix (Å) 310 - helix +3.0 2.0 1.9 Small pieces αR -helix +3.6 1.5 2.3 Abundant αL -helix -3.6 1.5 2.3 absent π-helix +4.3 1.1 2.8 absent β -2.3 3.2 1.0 Abundant β -2.3 3.4 1.0 Abundant Collagen helix -3 2.9 1.6 In fibers αR – helix is the most abundant and the most stable Helices Alpha(R) - helix • 4 – 100 components • average length ~10 residues, corresponding to 15Å • the helix is a long dipole; N-terminus is capped by negative phosphate groups C- • tendency to appear in an alpha helix: Met, Ala, Leu, Lys, Gln •Proline– tends to bend/break helices, though often appears as the first residue of the helix •Glycine– tends to disrupt the helix, it is entropically expensive state N+ ALA, etc. GLY only Location of an α - helix Helical Wheel – axis view 11 11 11 7 7 7 4 10 4 4 10 3 3 10 3 8 1 8 1 1 8 6 6 2 6 2 5 2 5 5 9 9 9 K-E-D-A-K-G-K-S-E-E-E L-S-F-A-A-A-M-N-G-L-A totally buried I-N-E-G-F-D-L-L-R-S-G -
Osteogenesis Imperfecta Types I-XI Implications for the Neonatal Nurse Jody Womack , RNC-NIC, NNP-BC, MS
Ksenia Zukowsky, PhD, APRN, NNP-BC ❍ Section Editor Beyond the Basics 3.0 HOURS Continuing Education Osteogenesis Imperfecta Types I-XI Implications for the Neonatal Nurse Jody Womack , RNC-NIC, NNP-BC, MS ABSTRACT Osteogenesis imperfecta (OI), also called “brittle bone disease,” is a rare heterozygous connective tissue disorder that is caused by mutations of genes that affect collagen. Osteogenesis imperfecta is characterized by decreased bone mass, bone fragility, and skin hyperlaxity. The phenotype present is determined according to the mutation on the affected gene as well as the type and location of the mutation. Osteogenesis imperfecta is neither preventable nor treatable. Osteogenesis imperfecta is classified into 11 types to date, on the basis of their clinical symptoms and genetic components. This article discusses the definition of the disease, the classifications on the basis of its clinical features, incidence, etiology, and pathogenesis. In addition, phenotype, natural history, diagnosis and manage- ment of this disease, recurrence risk, and, most importantly, the implications for the neonatal nurse and management for the family are discussed. Key Words: brittle bone disease , COL1A1 , COL1A2 , collagen disorders , osteogenesis imperfecta steogenesis imperfecta (OI) is a rare connec- is imperative to help the patient and the parents car- tive tissue disorder that is caused by muta- ing for infants born with OI. tions of genes that affect collagen. 1-4 Collagen O is the major protein of connective tissues, which is the REVIEW OF LITERATURE framework of bones. When collagen is not function- ing properly or there is lack of collagen in the tissue, Osteogenesis imperfecta was thought to have affected bones break easily. -
Serum Type I and Type III Procollagen Peptide Levels in Sarcoidosis
Eur Respir J, 1996, 9, 1648–1651 Copyright ERS Journals Ltd 1996 DOI: 10.1183/09031936.96.09081648 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Serum type I and type III procollagen peptide levels in sarcoidosis L. Bacchella*, C. Tinelli**, L.S. Gilè+, V. Peona+, C. Aprile*, M.Gorrini+, L. Pasturenzi+, G. Cetta++, M. Luisetti+ Serum type I and type III procollagen peptide levels in sarcoidosis. L. Bacchella, C. *Servizio di Medicina Nucleare, Fondazione Tinelli, L.S. Gilè, V. Peona, C. Aprile, M.Gorrini, L. Pasturenzi, G. Cetta, M. Luisetti. Clinica del Lavoro, Pavia, Italy. **Unità ERS Journals Ltd 1996. di Statistica and +Istituto di Tisiologia e ABSTRACT: Type I and type III are the most abundant collagens in the lung. Malattie Respiratorie, IRCCS Policlinico ++ The aim of our study was to compare type I and III procollagen peptides in sera San Matteo, Pavia, Italy. Dipartimento of sarcoid patients. di Biochimica, Università di Pavia, Italy. Sixty eight patients with sarcoidosis were studied (19 with newly recognized dis- Correspondence: M. Luisetti, Istituto di ease, 7 with relapsing disease, 15 with chronic disease, and 27 in stable remission). Tisiologia e Malattie Respiratorie, IRCCS Thirty healthy volunteers served as controls. The levels of procollagen I and III Policlinico San Matteo, Università degli peptides were determined by radioimmunoassay. Angiotensin-converting enzyme Studi di Pavia, Via Taramelli 5, 27100 (ACE) level was evaluated by means of a colorimetric assay. Pavia, Italy In patients with newly recognized sarcoidosis, both serum procollagen I and III peptide levels were increased with respect to controls (p=0.0014 and p<0.00001, Keywords: Angiotensin-converting enzyme, respectively). -
Three Decades of Research on Recombinant Collagens: Reinventing the Wheel Or Developing New Biomedical Products?
bioengineering Review Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Andrzej Fertala Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA; axf116@jefferson.edu; Tel.: +1-215-503-0113 Received: 20 October 2020; Accepted: 23 November 2020; Published: 2 December 2020 Abstract: Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens’ expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations. Keywords: recombinant collagen; gelatin; biomaterials; tissue engineering 1. Introduction Proteins, including insulin, various growth factors, enzymes, vaccines, and antibodies serve as irreplaceable therapeutics to prevent and treat diverse diseases.