Identification and Characterisation of Novel Tubulin-Binding Motifs

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterisation of Novel Tubulin-Binding Motifs Journal of Neurochemistry, 2007, 101, 250–262 doi:10.1111/j.1471-4159.2006.04338.x Identification and characterisation of novel tubulin-binding motifs located within the C-terminus of TRPV1 C. Goswami,*, Tim B. Hucho and F. Hucho* *Freie Universita¨t Berlin, Institut fu¨r Chemie und Biochemie, Berlin, Germany Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany Abstract conserved in all known mammalian TRPV1 orthologues and Previously, we reported that TRPV1, the vanilloid receptor, partially conserved in some of the TRPV1 homologues. As interacts with soluble ab-tubulin dimers as well as microtubules these sequence stretches are not similar to any known tubulin- via its C-terminal cytoplasmic domain. The interacting region of binding sequences, we conclude that TRPV1 interacts with TRPV1, however, has not been defined. We found that the tubulin and microtubule through two novel tubulin-binding TRPV1 C-terminus preferably interacts with b-tubulin and less motifs. with a-tubulin. Using a systematic deletion approach and bio- Keywords: cytoskeleton, motif sequence, pain, receptor, tinylated-peptides we identified two tubulin-binding sites pre- TRPV, tubulin. sent in TRPV1. These two sequence stretches are highly J. Neurochem. (2007) 101, 250–262. Tubulin, the main constituent of microtubules is a cytoplas- Chen et al. 2003; Sarma et al. 2003; Popova and Rasenick mic protein. Nevertheless, it is often reported to be present 2004). The presence of tubulin was also identified in also in membrane preparations isolated from neuronal tissues complexes with voltage-dependent anion channel (VDAC) (Bhattacharyya and Wolff 1975; Walters and Matus 1975; (Carre et al. 2002), shaker channel (Moreno et al. 2002) Gozes and Littauer 1979; Zisapel et al. 1980; Babitch 1981; and with ion-pumps such as Na+-K+-ATPase (Vladimirova Strocchi et al. 1981; de Ne´chaud et al. 1983; Hargreaves and et al. 2002). In many instances, tubulin/transmembrane Avila 1985). Although it is not an integral membrane protein, protein interactions are involved in complex signalling it can be enriched together with the membrane proteins after events such as neurite out growth, cell morphology and cell solubilising the membranes with the detergent Triton X-114 differentiation. Interaction of acetylated tubulin (a post- (Beltramo et al. 1994). Indeed, in recent years, a number of trsanslationally modified form of tubulin) with H+-ATPase transmembrane receptors have been shown to interact is reported to be important for the glucose uptake regulation specifically with either a-tubulin and/or b-tubulin and in yeast (Campetelli et al. 2005). thereby to account for the tubulin association with mem- Like other transient receptor potential (TRP) channels, branes. TRPV1 is a non-selective cation channel (Caterina et al. The interactions of tubulin with membrane proteins often 1997). Both N-terminal and C-terminal sequences of TRPV1 results in altered microtubule dynamics. Conversely, chan- form cytoplasmic domains. Previously, we identified ab- ges of microtubule dynamics alter receptor/channel func- tubulin as TRPV1 interacting partner (Goswami et al. 2004). tions. Tubulin interaction with a wide variety of membrane We demonstrated that the C-terminus of TRPV1 is sufficient proteins has been documented. For example, functional and interacts directly with microtubules (Goswami et al. significance of tubulin interaction has been shown for the isoforms of the metabotropic glutamate receptor mGluR1 Received July 23, 2006; revised manuscript received September 15, and mGluR7 (Ciruela et al. 1999; Ciruela and McIlhinney 2006; accepted October 3, 2006. 2001; Saugstad et al. 2002), the ionotropic GABAA Address correspondence and reprint requests to F. Hucho, Freie receptor (Item and Sieghart 1994), subunits of the NMDA Universita¨t Berlin, Institut fu¨r Chemie und Biochemie, Thielallee 63, 14195 Berlin, Germany. E-mail: [email protected] receptor (van Rossum et al. 1999), and for various Abbreviations used: VDAC, voltage-dependent anion channel; TRP, G-proteins (Wang et al. 1990; Popova et al. 1997; Roy- transient receptor potential; MBP, maltose-binding protein; MT, micro- chowdhury and Rasenick 1997; Roychowdhury et al. 1999; tubules; DMS, dimethyl suberimidate. Ó 2007 The Authors 250 Journal Compilation Ó 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 250–262 Identification and characterisation of tubulin-binding motifs 251 2004). It provides stability to microtubules both in vitro and Constructs and peptides pI in vivo (Goswami et al. 2004, 2006). Interestingly, tubulin 681 838 interaction is observed also for other members of the TRP Ct 9.20 681 800 super family. Interaction of b-tubulin with TRPC1 has been Ct-Δ1 9.67 reported recently (Bollimuntha et al. 2005). Two other 681 760 Ct-Δ2 9.34 members, namely TRPC5 and TRPC6, contain tubulin as 681 730 Ct-Δ3 constituent of its ‘signalplex’ (Goel et al. 2005). Very 10.13 761 838 recently, it has been shown that Polycystin-2 type TRP Ct-frag 6 8.21 channels are regulated by microtubular structures in primary 731 838 Ct-frag 7 6.08 cilia of renal epithelial cells (Li et al. 2006). This suggests Ct-frag 8 710 797 that tubulin interaction might be common for many of the 10.03 681 709 TRP ion channels. Ct-frag 1 6.35 710 730 In spite of the functional implication of the interaction of Ct-frag 2 11.17 tubulin with several transmembrane receptors and ion Ct-frag 3 731 769 channels, very little is known about the binding structure/s 4.03 770 797 that underlie these interactions. Therefore, we set out to Ct-frag 4 12.6 identify the exact tubulin-binding region of TRPV1 and Ct-frag 5 801 838 5.49 further characterised the interacting structures. Peptide 1 - Biotin 11.17 Peptide 2 - Biotin 12.48 Materials and methods Fig. 1 Constructs and peptides used to identify the tubulin-binding site located in the C-terminus of TRPV1. Schematic representation of Reagents and antibodies constructs prepared to express the deletion-proteins and fragments Ò The microtubule stabilising drug Taxol (paclitaxel), the cross-linker corresponding to the different regions of C-terminus of TRPV1. Posi- DMS and purified actin, were purchased from Sigma–Aldrich tions of the amino acids are written in top. Different deleted and (Taufkirchen, Germany). Biotinylated-peptides (KSFLKCMRKA- fragmented parts of the C-terminal of TRPV1 are expressed as MBP- FRSGKLLQVGF-K-Biotin and KRTLSFSLRSGRVSGRNWKNF- fusion protein (MBP is at the N-terminus of each fusion constructs). K-Biotin) were synthesised at Biosynthan (Berlin, Germany). Mouse Biotinylated-peptides (biotin label is at the C-terminus) are indicated. monoclonal a-tubulin antibodies (clone DM1A), mouse monoclonal Dark background indicates the regions with higher pI (short basic b-tubulin antibodies (clone D66), mouse monoclonal tyrosinated stretches 1 and 2), whereas light background indicates the regions tubulin antibodies (clone TUB1A2), mouse monoclonal polyglutam- with lower pI. All theoretical isoelectric points of the deletion constructs ylated tubulin antibodies (clone B3), mouse monoclonal acetylated were calculated by using available software (http://www.expasy.org/ tubulin antibodies (clone 611-B-1), mouse monoclonal phosphoser- tools/pi_tool.html). ine antibodies (Clone PSR-45) and mouse monoclonal anti-b-tubulin sub type III (clone SDL.3D10) were purchased from Sigma–Aldrich. Mouse monoclonal neurofilament 200 kDa antibodies (clone RT97) (New England Biolabs, Beverly, MA, USA). A stop codon was and rabbit polyclonal detyrosinated tubulin antibodies were pur- introduced in each construct at the C-terminus of the coding chased from Chemicon (Chandlers Ford, UK). Mouse monoclonal sequences. All expression constructs were verified by automated actin antibodies (clone JLA20) was purchased from Oncogene nucleotide sequencing. Escherichia coli (E. coli) strain BL21DE3 (Cambridge, MA, USA). Mouse monoclonal anti-maltose-binding was transformed by heat shock with the plasmid coding for the protein (MBP) antibodies and amylose resin were purchased from TRPV1 cytoplasmic domains and fragments fused with MBP New England Biolab (Beverly, MD, USA). Enriched neurofilament protein. E. coli cells were induced to express the proteins by fraction was a kind gift from O. Bogen (Bogen et al. 2005). isopropyl thiogalactoside (IPTG) for 2 h. The cells were lysed by Subtilisin-digested tubulin and control tubulin were kindly provided repeated freeze-thaw cycles in lysis buffer (20 mmol/L Tris–HCl, by Linda Amos (Cambridge, UK). For the detection of subtilisin- pH 7.4, 150 mmol/L NaCl, 0.1% Tween 20, lysozyme, benzonase digested tubulin and control tubulin by western-blot analysis, we used and protease inhibitor cocktail). The lysed extracts were cleared by mouse monoclonal anti-b-tubulin (clone D10, Santa Cruz Biotech- centrifugation (100 000 g in a TFT 45 rotor for 2 h). The cleared nology, Heidelberg, Germany). lysate was applied to amylose resin and washed thoroughly. Bound protein was eluted with 10 mmol/L maltose in elution buffer Expression and purification of TRPV1 fusion proteins (50 mmol/L PIPES, pH 6.8, 100 mmol/L NaCl, 1 mmol/L EGTA Expression and purification of MBP-TRPV1-Nt (N-terminal cyto- and 0.2 mmol/L MgCl2). Protein concentration was determined plasmic domain of TRPV1 fused with MBP) and MBP-TRPV1-Ct according to method described by Bradford (1976). (C-terminal cytoplasmic domain of TRPV1 fused with MBP) were described in Goswami et al. (2004). The cDNA fragments of Purification of tubulin TRPV1-Ct (see Fig. 1) were amplified by PCR using specific ab-tubulin dimers were purified from porcine brain according to primers (Table 1). All amplified DNA fragments were subcloned Shelanski et al. (1973). In brief, two cycles of assembly from into the EcoR1 and Hind III restriction sites of the pMAL-c2x vector soluble brain extract in the presence of glycerol and GTP and Ó 2007 The Authors Journal Compilation Ó 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 250–262 252 C.
Recommended publications
  • Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mito
    fnins-12-00402 June 26, 2018 Time: 12:46 # 1 ORIGINAL RESEARCH published: 26 June 2018 doi: 10.3389/fnins.2018.00402 Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mitochondrial Trafficking in Adult Sensory Neurons Mohammad G. Sabbir1*, Nigel A. Calcutt2 and Paul Fernyhough1,3 1 Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada, 2 Department of Pathology, University of California, San Diego, San Diego, CA, United States, 3 Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada The muscarinic acetylcholine type 1 receptor (M1R) is a metabotropic G protein-coupled Edited by: receptor. Knockout of M1R or exposure to selective or specific receptor antagonists Roberto Di Maio, elevates neurite outgrowth in adult sensory neurons and is therapeutic in diverse University of Pittsburgh, United States models of peripheral neuropathy. We tested the hypothesis that endogenous M1R Reviewed by: activation constrained neurite outgrowth via a negative impact on the cytoskeleton Roland Brandt, University of Osnabrück, Germany and subsequent mitochondrial trafficking. We overexpressed M1R in primary cultures Rick Dobrowsky, of adult rat sensory neurons and cell lines and studied the physiological and The University of Kansas, United States molecular consequences related to regulation of cytoskeletal/mitochondrial dynamics *Correspondence: and neurite outgrowth. In adult primary neurons, overexpression of M1R caused Mohammad G. Sabbir disruption of the tubulin, but not actin, cytoskeleton and significantly reduced neurite [email protected] outgrowth. Over-expression of a M1R-DREADD mutant comparatively increased neurite Specialty section: outgrowth suggesting that acetylcholine released from cultured neurons interacts This article was submitted to with M1R to suppress neurite outgrowth.
    [Show full text]
  • Evidence for Conformational Change-Induced Hydrolysis of Β-Tubulin-GTP
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.288019; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Evidence for conformational change-induced hydrolysis of β-tubulin-GTP Mohammadjavad Paydar1 and Benjamin H. Kwok1† 1 Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada. † Corresponding author: B. H. Kwok: [email protected] Keywords: Kinesin, Kif2A, MCAK, motor protein, microtubules, tubulin, GTP hydrolysis Abbreviations NM: Neck+Motor MD: Motor domain MT: Microtubule Running title: Tubulin GTP hydrolysis 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.08.288019; this version posted September 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Microtubules, protein polymers of α/β-tubulin dimers, form the structural framework for many essential cellular processes including cell shape formation, intracellular transport, and segregation of chromosomes during cell division. It is known that tubulin-GTP hydrolysis is closely associated with microtubule polymerization dynamics. However, the precise roles of GTP hydrolysis in tubulin polymerization and microtubule depolymerization, and how it is initiated are still not clearly defined. We report here that tubulin-GTP hydrolysis can be triggered by conformational change induced by the depolymerizing kinesin-13 proteins or by the stabilizing chemical agent paclitaxel. We provide biochemical evidence that conformational change precedes tubulin-GTP hydrolysis, confirming this process is mechanically driven and structurally directional.
    [Show full text]
  • NIH Public Access Author Manuscript Future Neurol
    NIH Public Access Author Manuscript Future Neurol. Author manuscript; available in PMC 2013 January 08. Published in final edited form as: Future Neurol. 2012 November 1; 7(6): 749–771. doi:10.2217/FNL.12.68. Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, $watermark-textand $watermark-text central $watermark-text disorders Rajesh Khanna1,2,3,4,*, Sarah M Wilson1,‡, Joel M Brittain1,‡, Jill Weimer5, Rukhsana Sultana6, Allan Butterfield6, and Kenneth Hensley7 1Program in Medical Neurosciences, Paul & Carole Stark Neurosciences Research Institute Indianapolis, IN 46202, USA 2Departments of Pharmacology & Toxicology, Indianapolis, IN 46202, USA 3Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA 4Sophia Therapeutics LLC, Indianapolis, IN 46202, USA 5Sanford Children’s Health Research Center, Sanford Research & Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57104, USA 6Department of Chemistry, Center of Membrane Sciences, & Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA 7Department of Pathology & Department of Neurosciences, University of Toledo Medical Center, Toledo, OH 43614, USA Abstract CRMP2, also known as DPYSL2/DRP2, Unc-33, Ulip or TUC2, is a cytosolic phosphoprotein that mediates axon/dendrite specification and axonal growth. Mapping the CRMP2 interactome has revealed previously unappreciated functions subserved by this
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • The Mechanisms of Microtubule Catastrophe and Rescue: Implications from Analysis of a Dimer-Scale Computational Model
    M BoC | ARTICLE The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model Gennady Margolina,b,*,†, Ivan V. Gregorettib,c,*,†, Trevor M. Cickovskid,‡, Chunlei Lia,b, Wei Shia,b,§, Mark S. Albera,b,e, and Holly V. Goodsonb,c aDepartment of Applied and Computational Mathematics and Statistics, bInterdisciplinary Center for the Study of Biocomplexity, cDepartment of Chemistry and Biochemistry, and dDepartment of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556; eDepartment of Medicine, Indiana University School of Medicine, Indianapolis, IN 40202 ABSTRACT Microtubule (MT) dynamic instability is fundamental to many cell functions, but Monitoring Editor its mechanism remains poorly understood, in part because it is difficult to gain information Alexander Mogilner about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale com- University of California, Davis putational model of MT assembly that is consistent with tubulin structure and biochemistry, Received: Aug 12, 2011 displays dynamic instability, and covers experimentally relevant spans of time. It allows us to Revised: Nov 30, 2011 correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures Accepted: Dec 13, 2011 (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue. The model’s behavior suggests that several commonly held assumptions about MT dynamics should be reconsidered. Moreover, it predicts that short, interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks influ- ence both catastrophe and rescue.
    [Show full text]
  • EFFECTS of BLOOD FEEDING on the TRANSCRIPTOME of the MALPIGHIAN TUBULES in the ASIAN TIGER MOSQUITO AEDES ALBOPICTUS Thesis
    EFFECTS OF BLOOD FEEDING ON THE TRANSCRIPTOME OF THE MALPIGHIAN TUBULES IN THE ASIAN TIGER MOSQUITO AEDES ALBOPICTUS Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master in Science in the Graduate School of The Ohio State University By Carlos J. Esquivel Palma, B.S. Graduate Program in Entomology The Ohio State University 2015 Master’s Examination Committee: Dr. Peter M. Piermarini, Advisor Dr. David L. Denlinger Dr. Andrew P. Michel Copyright by Carlos J. Esquivel Palma 2015 Abstract Mosquitoes are one of the major threats to human health worldwide. They are vectors of protozoans, arboviruses, and filarial nematodes that cause diseases in humans and animals. The Asian tiger mosquito Aedes albopictus is a vector of medically important arboviruses such as dengue fever, chikungunya fever, yellow fever, eastern equine encephalitis, La Crosse encephalitis, and West Nile fever. Control of these diseases often involves control of the mosquito vectors with chemical insecticides. However, the use of a limited number of chemicals with similar modes of actions has led to resistance in several mosquito species. The development of new insecticides with novel modes of action is considered a promising strategy to overcome resistance. The Piermarini lab has recently shown that the renal (Malpighian) tubules of mosquitoes are promising physiological targets to disrupt for killing mosquitoes via a novel mode of action. The Malpighian tubules play a critical role in the acute processing of blood meals, by mediating the rapid excretion of water and ions derived from the ingested blood. However, the physiological roles of Malpighian tubules during the chronic processing of blood meals after the initial diuresis is complete (~1-2 h after feeding) are not known.
    [Show full text]
  • Phosphatidylinositol 4,5-Bisphosphate Modifies Tubulin
    The Journal of Neuroscience, March 1, 2002, 22(5):1668–1678 Phosphatidylinositol 4,5-Bisphosphate Modifies Tubulin ␤ Participation in Phospholipase C 1 Signaling Juliana S. Popova,1 Arin K. Greene,1 Jia Wang,1 and Mark M. Rasenick1,2 Departments of 1Physiology and Biophysics and 2Psychiatry, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612-7342 Tubulin forms the microtubule and regulates certain G-protein- the plasma membrane was demonstrated with confocal laser mediated signaling pathways. Both functions rely on the GTP- immunofluorescence microscopy. Although tubulin bound to ␣ ␣ ␤ binding properties of tubulin. Signal transduction through G q- both G q and PLC 1 , PIP2 facilitated the interaction between ␤ ␤ ␤ ␣ regulated phospholipase C 1 (PLC 1 ) is activated by tubulin tubulin and PLC 1 but not that between tubulin and G q. ␣ ␣ ␤ through a direct transfer of GTP from tubulin to G q. However, However, PIP2 did augment formation of tubulin–G q–PLC 1 ␤ ␤ at high tubulin concentrations, inhibition of PLC 1 is observed. complexes. Subsequent to potentiating PLC 1 activation, sus- ␤ This report demonstrates that tubulin inhibits PLC 1 by binding tained agonist-independent membrane binding of tubulin ␤ ␤ ␣ the PLC 1 substrate phosphatidylinositol 4,5-bisphosphate at PIP2- and PLC 1-rich sites appeared to inhibit G q coupling ␤ (PIP2 ). Tubulin binding of PIP2 was specific, because PIP2 but to PLC 1. Furthermore, colchicine increased membrane- ␤ not phosphatidylinositol 3,4,5-trisphosphate, phosphatidylino- associated tubulin and also inhibited PLC 1 activity in SK- sitol 3-phosphate, phosphatidylinositol, phosphatidylcholine, N-SH cells. Thus, tubulin, depending on local membrane con- phosphatidylethanolamine, or inositol 1,4,5-trisphosphate in- centration, may serve as a positive or negative regulator of hibited microtubule assembly.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infonnation CompaiQr 300 Noith Zed) Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 INVESTIGATION OF TUBULINS IN ASPERGILLUS NIDUIANS AND CYANIDIUM CALDARIUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yassmine M.
    [Show full text]
  • The Expanding Roles of Gbg Subunits in G Protein–Coupled Receptor Signaling and Drug Action
    1521-0081/65/2/545–577$25.00 http://dx.doi.org/10.1124/pr.111.005603 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:545–577, April 2013 Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ERIC L. BARKER The Expanding Roles of Gbg Subunits in G Protein–Coupled Receptor Signaling and Drug Action Shahriar M. Khan, Rory Sleno, Sarah Gora, Peter Zylbergold, Jean-Philippe Laverdure, Jean-Claude Labbé, Gregory J. Miller, and Terence E. Hébert Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (S.M.K., R.S., S.G., P.Z., G.J.M., T.E.H.); Institut de Recherche en Immunologie et en Cancérologie, (J.-P.L., J.-C.L.), and Department of Pathology and Cell Biology (J.-C.L.), Université de Montréal, Montréal, Québec, Canada; and Department of Chemistry, Catholic University of America, Washington, DC (G.J.M.) Abstract ...................................................................................546 Downloaded from I. Introduction . ..............................................................................546 II. Diversity and Phylogeny of Gbg Subunits . ................................................546 A. Gb and Gg Subunits in Lower Eukaryotes ..............................................547 B. Invertebrate Gbg ......................................................................549 C. Plant Gbg .............................................................................550 pharmrev.aspetjournals.org D. Fish and Mammalian Gbg .............................................................550
    [Show full text]