Earwigflies, Hangingflies, and Scorpionflies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12. -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
Hypothesis on Monochromatic Vision in Scorpionflies Questioned by New
www.nature.com/scientificreports OPEN Hypothesis on monochromatic vision in scorpionfies questioned by new transcriptomic data Received: 7 July 2017 Alexander Böhm 1, Karen Meusemann2,3,4, Bernhard Misof3 & Günther Pass1 Accepted: 12 June 2018 In the scorpionfy Panorpa, a recent study suggested monochromatic vision due to evidence of only a Published: xx xx xxxx single opsin found in transcriptome data. To reconsider this hypothesis, the present study investigates opsin expression using transcriptome data of 21 species including representatives of all major lineages of scorpionfies (Mecoptera) and of three families of their closest relatives, the feas (Siphonaptera). In most mecopteran species investigated, transcripts encode two opsins with predicted peak absorbances in the green, two in the blue, and one in the ultraviolet spectral region. Only in groups with reduced or absent ocelli, like Caurinus and Apteropanorpa, less than four visual opsin messenger RNAs have been identifed. In addition, we found a Rh7-like opsin in transcriptome data derived from larvae of the mecopteran Nannochorista, and in two fea species. Peropsin expression was observed in two mecopterans. In light of these new data, we question the hypothesis on monochromatic vision in the genus Panorpa. In a broader phylogenetic perspective, it is suggested that the common ancestor of the monophyletic taxon Antliophora (Diptera, Mecoptera and Siphonaptera) possessed the full set of visual opsins, a Rh7-like opsin, and in addition a pteropsin as well as a peropsin. In the course of evolution individual opsins were likely lost in several lineages of this clade. Colour vision has two prerequisites1,2: receptors with diferent spectral responses and a neural system that can process their output in a way that preserves colour information. -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
Habitat Divergence Shapes the Morphological Diversity Of
www.nature.com/scientificreports OPEN Habitat divergence shapes the morphological diversity of larval insects: insights from scorpionfies Received: 5 March 2018 Lu Jiang1,2, Yuan Hua1,3, Gui-Lin Hu1 & Bao-Zhen Hua1 Accepted: 21 August 2019 Insects are the most diverse group of organisms in the world, but how this diversity was achieved is Published: xx xx xxxx still a disputable and unsatisfactorily resolved issue. In this paper, we investigated the correlations of habitat preferences and morphological traits in larval Panorpidae in the phylogenetic context to unravel the driving forces underlying the evolution of morphological traits. The results show that most anatomical features are shared by monophyletic groups and are synapomorphies. However, the phenotypes of body colorations are shared by paraphyletic assemblages, implying that they are adaptive characters. The larvae of Dicerapanorpa and Cerapanorpa are epedaphic and are darkish dorsally as camoufage, and possess well-developed locomotory appendages as adaptations likely to avoid potential predators. On the contrary, the larvae of Neopanorpa are euedaphic and are pale on their trunks, with shallow furrows, reduced antennae, shortened setae, fattened compound eyes on the head capsules, and short dorsal processes on the trunk. All these characters appear to be adaptations for the larvae to inhabit the soil. We suggest that habitat divergence has driven the morphological diversity between the epedaphic and euedaphic larvae, and may be partly responsible for the divergence of major clades within the Panorpidae. Insects are the most diverse organisms on the earth, exhibiting the most diverse morphological features and occupying a wide range of ecological niches1,2. -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae, -
Fossil Calibrations for the Arthropod Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. -
Functional Morphology of the Larval Mouthparts of Panorpodidae Compared with Bittacidae and Panorpidae (Insecta: Mecoptera)
Org Divers Evol (2015) 15:671–679 DOI 10.1007/s13127-015-0225-7 ORIGINAL ARTICLE Functional morphology of the larval mouthparts of Panorpodidae compared with Bittacidae and Panorpidae (Insecta: Mecoptera) Lu Jiang1 & Bao-Zhen Hua1 Received: 10 February 2015 /Accepted: 15 June 2015 /Published online: 27 June 2015 # Gesellschaft für Biologische Systematik 2015 Abstract In Mecoptera, the larvae of Bittacidae and morphological and biological diversity (Byers and Thornhill Panorpidae are saprophagous, but the feeding habit of larval 1983; Byers 1987, 1991; Grimaldi and Engel 2005;Maetal. Panorpodidae remains largely unknown. Here, we compare 2009, 2012). The feeding habits of adult Mecoptera vary the ultramorphology of the mouthparts of the larvae among among families (Palmer 2010): predacious in Bittacidae (Tan the hangingfly Bittacus planus Cheng, 1949, the scorpionfly and Hua 2006;Maetal.2014b), phytophagous in Boreidae Panorpa liui Hua, 1997, and the short-faced scorpionfly and Panorpodidae (Carpenter 1953; Russell 1982;Beuteletal. Panorpodes kuandianensis Zhong, Zhang & Hua, 2011 to 2008;Maetal.2013), and saprophagous in Panorpidae, infer the feeding habits of Panorpodidae. The molar region Apteropanorpidae, Choristidae, Eomeropidae, and of Panorpodidae is glabrous, lacking the long spines for filter- Meropidae (Palmer and Yeates 2005; Palmer 2010; Huang ing (preventing larger particles from entering the pharynx) as and Hua 2011). The knowledge of the feeding habits of larval found in Bittacidae or the tuberculate teeth for grinding as Mecoptera, however, is still fragmentary. present in Panorpidae. The mandibles of Panorpodidae are The larvae of Mecoptera are morphologically diverse unsuitable for grinding, and most likely, larval Panorpodidae and inhabit a wide range of habitats (Byers 1987, 1991). -
Fleas Are Parasitic Scorpionflies
Palaeoentomology 003 (6): 641–653 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.3.6.16 http://zoobank.org/urn:lsid:zoobank.org:pub:9B7B23CF-5A1E-44EB-A1D4-59DDBF321938 Fleas are parasitic scorpionflies ERIK TIHELKA1, MATTIA GIACOMELLI1, 2, DI-YING HUANG3, DAVIDE PISANI1, 2, PHILIP C. J. DONOGHUE1 & CHEN-YANG CAI3, 1, * 1School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 2School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 3State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China [email protected]; https://orcid.org/0000-0002-5048-5355 [email protected]; https://orcid.org/0000-0002-0554-3704 [email protected]; https://orcid.org/0000-0002-5637-4867 [email protected]; https://orcid.org/0000-0003-0949-6682 [email protected]; https://orcid.org/0000-0003-3116-7463 [email protected]; https://orcid.org/0000-0002-9283-8323 *Corresponding author Abstract bizarre bodyplans and modes of life among insects (Lewis, 1998). Flea monophyly is strongly supported by siphonate Fleas (Siphonaptera) are medically important blood-feeding mouthparts formed from the laciniae and labrum, strongly insects responsible for spreading pathogens such as plague, murine typhus, and myxomatosis. The peculiar morphology reduced eyes, laterally compressed wingless body, of fleas resulting from their specialised ectoparasitic and hind legs adapted for jumping (Beutel et al., 2013; lifestyle has meant that the phylogenetic position of this Medvedev, 2017). -
Mecoptera: Panorpidae and Panorpodidae)
The Great Lakes Entomologist Volume 6 Number 2 -- Summer 1973 Number 2 -- Summer Article 2 1973 August 2017 The Morphology and Histology of New Sex Pheremone Glands in Male Scorpionflies, anorpaP and Brachypanorpa (Mecoptera: Panorpidae and Panorpodidae) Albert R. Thornhill The University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Thornhill, Albert R. 2017. "The Morphology and Histology of New Sex Pheremone Glands in Male Scorpionflies, Panorpa and Brachypanorpa (Mecoptera: Panorpidae and Panorpodidae)," The Great Lakes Entomologist, vol 6 (2) Available at: https://scholar.valpo.edu/tgle/vol6/iss2/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Thornhill: The Morphology and Histology of New Sex Pheremone Glands in Male THE GREAT LAKES ENTOMOLOGIST THE MORPHOLOGY AND HISTOLOGY OF NEW SEX PHEROMONE GLANDS IN IMALE SCORPIOIUFLIES, PANORPA AND BRACHYPANORPA (MECOPTERA: PANORPIDAE AND PANORPODIDAE)~ Albert K. Thornhill Museum of Zoology, The University of Michigan, Ann Arbor, Michigan 48 104 ABSTRACT The n~orphologyand histology of a previously undescribed sex pheromone gland in male scorpionflies of the genus Panorpa (Mecoptera: Panorpidae) and a morphologically similar gland in Brachypat~orpa (Mecoptera: Panorpodidae) are described and discussed. The gland and the associated pheromone dispersing structure consist of an eversible pouch that lies in the ventral part of the male genital bulb at the point where the basistyles diverge. -
Abhandlungen Und Berichte
ISSN 1618-8977 Actinedida Volume 11 (3) Museum für Naturkunde Görlitz 2011 Senckenberg Museum für Naturkunde Görlitz ACARI Bibliographia Acarologica Editor-in-chief: Dr Axel Christian authorised by the Senckenberg Gesellschaft für Naturfoschung Enquiries should be directed to: ACARI Dr Axel Christian Senckenberg Museum für Naturkunde Görlitz PF 300 154, 02806 Görlitz, Germany ‘ACARI’ may be orderd through: Senckenberg Museum für Naturkunde Görlitz – Bibliothek PF 300 154, 02806 Görlitz, Germany Published by the Senckenberg Museum für Naturkunde Görlitz All rights reserved Cover design by: E. Mättig Printed by MAXROI Graphics GmbH, Görlitz, Germany ACARI Bibliographia Acarologica 11 (3): 1-31, 2011 ISSN 1618-8977 Actinedida No. 10 David Russell and Kerstin Franke Senckenberg Museum of Natural History Görlitz ACARI - Bibliographia Acarologica endeavours to advance and help disseminate acarological knowledge as broadly as possible. To this end, each year we ascertain and compile all internationally available papers published on Acari worldwide. Two major taxon groups, however, are excluded from this bibliography – the Eriophyidae and the paraphyletic “Hydracarina” - since literature databanks of these groups are available elsewhere. Approximately 300 papers are listed this year, showing the continued high scientific interest in Actinedida. The present volume also reflects the worldwide interest on Actinedida, with papers from all continents (including papers on Antarctic Actinedida) and 50 countries (Brazil, the USA, China, European and Arabian countries being most common). Systematics and taxonomy of this poorly studied mite group are still the most highly represented topic (>35% of all papers), with almost 130 descriptions of new taxa in over 80 papers. As in previous years, economically important topics such as plant protection, acarine-pest biology as well as chemical and biological mite control are also dominant (~25% of all papers). -
Amberif 2018
AMBERIF 2018 Jewellery and Gemstones INTERNATIONAL SYMPOSIUM AMBER. SCIENCE AND ART Abstracts 22-23 MARCH 2018 AMBERIF 2018 International Fair of Ambe r, Jewellery and Gemstones INTERNATIONAL SYMPOSIUM AMBER. SCIENCE AND ART Abstracts Editors: Ewa Wagner-Wysiecka · Jacek Szwedo · Elżbieta Sontag Anna Sobecka · Janusz Czebreszuk · Mateusz Cwaliński This International Symposium was organised to celebrate the 25th Anniversary of the AMBERIF International Fair of Amber, Jewellery and Gemstones and the 20th Anniversary of the Museum of Amber Inclusions at the University of Gdansk GDAŃSK, POLAND 22-23 MARCH 2018 ORGANISERS Gdańsk International Fair Co., Gdańsk, Poland Gdańsk University of Technology, Faculty of Chemistry, Gdańsk, Poland University of Gdańsk, Faculty of Biology, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Gdańsk, Poland University of Gdańsk, Faculty of History, Gdańsk, Poland Adam Mickiewicz University in Poznań, Institute of Archaeology, Poznań, Poland International Amber Association, Gdańsk, Poland INTERNATIONAL ADVISORY COMMITTEE Dr Faya Causey, Getty Research Institute, Los Angeles, CA, USA Prof. Mitja Guštin, Institute for Mediterranean Heritage, University of Primorska, Slovenia Prof. Sarjit Kaur, Amber Research Laboratory, Department of Chemistry, Vassar College, Poughkeepsie, NY, USA Dr Rachel King, Curator of the Burrell Collection, Glasgow Museums, National Museums Scotland, UK Prof. Barbara Kosmowska-Ceranowicz, Museum of the Earth in Warsaw, Polish Academy of Sciences, Poland Prof. Joseph B. Lambert, Department of Chemistry, Trinity University, San Antonio, TX, USA Prof. Vincent Perrichot, Géosciences, Université de Rennes 1, France Prof. Bo Wang, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, China SCIENTIFIC COMMITTEE Prof. Barbara Kosmowska-Ceranowicz – Honorary Chair Dr hab. inż. Ewa Wagner-Wysiecka – Scientific Director of Symposium Prof.