Functional Morphology of the Larval Mouthparts of Panorpodidae Compared with Bittacidae and Panorpidae (Insecta: Mecoptera)

Total Page:16

File Type:pdf, Size:1020Kb

Functional Morphology of the Larval Mouthparts of Panorpodidae Compared with Bittacidae and Panorpidae (Insecta: Mecoptera) Org Divers Evol (2015) 15:671–679 DOI 10.1007/s13127-015-0225-7 ORIGINAL ARTICLE Functional morphology of the larval mouthparts of Panorpodidae compared with Bittacidae and Panorpidae (Insecta: Mecoptera) Lu Jiang1 & Bao-Zhen Hua1 Received: 10 February 2015 /Accepted: 15 June 2015 /Published online: 27 June 2015 # Gesellschaft für Biologische Systematik 2015 Abstract In Mecoptera, the larvae of Bittacidae and morphological and biological diversity (Byers and Thornhill Panorpidae are saprophagous, but the feeding habit of larval 1983; Byers 1987, 1991; Grimaldi and Engel 2005;Maetal. Panorpodidae remains largely unknown. Here, we compare 2009, 2012). The feeding habits of adult Mecoptera vary the ultramorphology of the mouthparts of the larvae among among families (Palmer 2010): predacious in Bittacidae (Tan the hangingfly Bittacus planus Cheng, 1949, the scorpionfly and Hua 2006;Maetal.2014b), phytophagous in Boreidae Panorpa liui Hua, 1997, and the short-faced scorpionfly and Panorpodidae (Carpenter 1953; Russell 1982;Beuteletal. Panorpodes kuandianensis Zhong, Zhang & Hua, 2011 to 2008;Maetal.2013), and saprophagous in Panorpidae, infer the feeding habits of Panorpodidae. The molar region Apteropanorpidae, Choristidae, Eomeropidae, and of Panorpodidae is glabrous, lacking the long spines for filter- Meropidae (Palmer and Yeates 2005; Palmer 2010; Huang ing (preventing larger particles from entering the pharynx) as and Hua 2011). The knowledge of the feeding habits of larval found in Bittacidae or the tuberculate teeth for grinding as Mecoptera, however, is still fragmentary. present in Panorpidae. The mandibles of Panorpodidae are The larvae of Mecoptera are morphologically diverse unsuitable for grinding, and most likely, larval Panorpodidae and inhabit a wide range of habitats (Byers 1987, 1991). have different feeding habits than larval Bittacidae and The larvae of Nannochoristidae are campodeiform and live Panorpidae. The diversity of the larval feeding habits in in the substrate of shallow streams (Pilgrim 1972;Beutel Mecoptera and its evolutionary advantage are briefly et al. 2009; Fraulob et al. 2012).ThelarvaeofBoreidaeare discussed. scarabaeiform and creep on or bore in live liverworts (Cooper 1974; Russell 1982). The larvae of Choristidae, Keywords Panorpodidae . Bittacidae . Panorpidae . Larva . Apteropanorpidae, Bittacidae, and Panorpidae are Mouthparts . Feeding habits eruciform and have an edaphic lifestyle (Miyaké 1912; Setty 1940;Byers1987, 1991; Tan and Hua 2008, 2009; Jiang and Hua 2013;Jiangetal.2015).Thelarvaeof Panorpidae are either epedaphic (living on soil surface as Introduction of Panorpa obtusa) or euedaphic (living underground as of Neopanorpa lui)(JiangandHua2015). However, the feed- Mecoptera is a small order of holometabolous insects, com- ing habits of larval Panorpodidae remain largely unknown posed of nine extant families, and exhibiting a high degree of to date, although the morphology of the larvae is known (Carpenter 1953;Byers1997;Pollmannetal.2008;Jiang et al. 2014). * Bao-Zhen Hua Mouthparts are closely associated with the feeding [email protected] habits of insects (Stehr 1987; Labandeira 1997;Jervis 1998; Smith and Capinera 2005). The larval mouthparts 1 of the scorpionfly Panorpa communis L. (Steiner 1930; State Key Laboratory of Crop Stress Biology for Arid Areas, Entomological Museum, Northwest A&F University, Grell 1938;Potter1938; Bierbrodt 1942), the snow Yangling, Shaanxi 712100, China scorpionfly Boreus hyemalis L. (Potter 1938), and the 672 L. Jiang, B.-Z. Hua hangingflies Apterobittacus apterus (MacLachlan) and Feeding experiments Bittacus pilicornis Westwood (Applegarth 1939; Setty 1940) were described using light microscopy. Recently, For observing the feeding behavior, larvae were reared in the larval mouthparts of Nannochoristidae (Beutel et al. plastic jars with humid soil at the bottom. The larvae of 2009), Bittacidae (Jiang et al. 2015), and Panorpidae Bittacidae and Panorpidae were daily provided with chopped (Chen and Hua 2011;Maetal.2014a; Jiang and Hua meal worms or housefly pupae on the soil surface. The larvae 2015) are studied using scanning electron microscopy. of Panorpodidae were provided additionally with locally col- However, morphological comparisons of mouthpart com- lected decayed leaves, stems, flowers, and roots. The feeding ponents in relation to their feeding habits have not been behavior was observed every 2 h during day time. conducted. Photographs were taken using a Nikon D90 digital camera The objective of this study was to unravel the feeding (Nikon, Tokyo, Japan). habits of Panorpodidae through comparing the larval mouth- parts of the short-faced scorpionfly Panorpodes Scanning electron microscopy kuandianensis Zhong, Zhang & Hua, 2011 with those of the hangingfly Bittacus planus Cheng, 1949 and of the For scanning electron microscopy (SEM), the larvae were scorpionfly Panorpa liui Hua, 1997, using scanning electron fixed in Carnoy’s solution for 12 h and preserved in 75 % microscopy. In addition, the feeding behavior of the larvae ethanol. The fixed larval mouthparts were dissected and seri- was observed both in the field and in the laboratory. ally dehydrated in a graded ethanol series, replaced by tertiary butanol, freeze-dried for 3 h, sputter-coated with gold, and examined under a Hitachi S-3400N scanning electron micro- Materials and methods scope (Hitachi, Tokyo, Japan) at 5 kV. Insect collecting Results Live adults of B. planus were captured using sweeping nets along the Jialing River source (34° 13′ N, 106° 59′ E, elev. Larval feeding habits 1500–1800 m) in the Qinling Mountains, Shaanxi Province of central China, from the middle of July to late August in 2013. The larvae of B. planus are saprophagous, feeding especially Adults of P. liui and P. kuandianensis were collected from on the inner semi-fluid tissues of dead insects. Larvae crawl Huabo Mountain (41° 06′ N, 125° 02′ E, elev. 650–1100 m) around appropriate dead insects, using their mandibles to in Liaoning Province, northeastern China, from late June to pierce and cut the cuticle; insert their heads into the body early August in 2010–2014. cavity to chew the soft tissues; and at the end leave an empty exoskeleton on the ground (Fig. 1). The larvae of P.liui are also saprophagous, consuming both Insect rearing the soft tissues and chitinous cuticle of dead insects. When the larvae find an appropriate dead insect, they burrow beneath it Adults of B. planus were reared in nylon gauze cages (40 cm× to feed on the carrion. The larvae usually pull small fragments 40 cm×60 cm) under semi-natural conditions (Tan and Hua into their burrow and feed on them underground. 2009). Live potted plants were provided for suspending The feeding habit of P. kuandianensis larvae remains un- adults. Live houseflies were supplied three times a day. A clear. During our rearing experiments, the larvae fed neither piece of wet tissue was put on the bottom of cages for egg on dead arthropods nor on plant leaves, stems, seeds, and collection. Eggs were collected twice a day and transferred roots. Although a dark line was visible through the transparent into plastic jars containing moist soil for overwintering. Larvae were collected from the soil surface in late March 2014. Adults of P. liui and P. kuandianensis were reared in pairs in plastic jars covered with a piece of gauze under natural conditions (Jiang and Hua 2013; Jiang et al. 2014). The jars were filled with 4–5 cm of humid soil for the deposition of eggs. The adults and larvae of P. liui were provided daily with chopped mealworms. Adults of P. kuandianensis received drops of honey twice a day. First-instar larvae were collected from inside the soil. Fig. 1 AlarvaofBittacus planus feeding on a housefly pupa Larval mouthparts of Panorpodidae 673 larval trunk (indicating the larvae had eaten some material), all kidney-shaped, fused from the original cardo and stipes, and the larvae died before molting within 19 days after hatching. connected distally to the galea and lacinia medially and bears the palp laterally. The galea is weakly sclerotized at the basal half and membranous at the apical half, which bears numerous Gross morphology of the mouthparts sensilla and microtrichia. The lacinia is quite small, broadly connected with the galea, and bears plenty of microtrichia on The larval mouthparts of Bittacidae, Panorpidae, and the mesal surface. The maxillary palp is three-segmented. Panorpodidae all are of the mandibulate (biting/chewing) The labium is somewhat reduced and is composed of a type, consisting of a labrum-epipharynx, paired mandibles postmentum, a prementum, and a pair of palpi (Fig. 2d–f: and maxillae, and a labium (Fig. 2). lb). The postmentum is merged with the cranium and bears The labrum is sub-rectangular, articulated proximally with two pairs of sensilla chaetica on the ventral surface. The the anterior region of the clypeus, and furnished apically with prementum is mesally divided by the orifice of the salivary two pairs of setae (Fig. 2a–c: lm). The epipharynx is situated duct and connected distally with a pair of two-segmented pal- on the ventral surface of the labrum (Fig. 2d–f: ep) and is pi, which bear various numbers of sensilla on the apex furnished with numerous microtrichia and various types of (Fig. 2d–f). sensilla arranged symmetrically. The paired mandibles are strongly sclerotized, curved in- ward, and cross each other apically (Fig. 2a–c: md). The man- Mouthparts of B. planus dible is typically dicondylic, bearing a notched ginglymus and a knob-like condyle on the dorsal and ventral corners, respec- The labrum is furnished apically with two pairs of labral setae tively (Fig. 2a–c: gg/cd). The mandible bears three sensilla and numerous microtrichia. The inner pair of setae is approx- trichodea on the lateral surface. imately two thirds the length of the outer pair (Fig. 3a:ls). The paired maxillae each consist of a cardo-stipes, a galea, The epipharynx is grossly subdivided into a terminal rect- a lacinia, and a palp (Fig. 2d–f: mx). The basal cardo-stipes is angular plate and a proximal triangular plate, both furnished Fig.
Recommended publications
  • Insecta, Neuropterida, Megaloptera, Sialidae)
    Graellsia, 70(2): e009 julio-diciembre 2014 ISSN-L: 0367-5041 http://dx.doi.org/10.3989/graellsia.2014.v70.111 LOS MEGALÓPTEROS DE LA PENÍNSULA IBÉRICA (INSECTA, NEUROPTERIDA, MEGALOPTERA, SIALIDAE) Víctor J. Monserrat Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, España. E-mail: [email protected] RESUMEN Se actualiza toda la información bibliográfica relativa a la Península Ibérica y relacionada con las tres especies de megalópteros presentes en su fauna (Insecta, Neuropterida, Megaloptera: Sialidae). Partiendo de los datos generales conocidos sobre estas especies, y en base a esta información ibérica, se aporta una clave de identifi- cación de imagos y larvas de estas especies, y se anotan y se recopilan los datos conocidos sobre su morfología, su biología, sus estadios larvarios y su distribución geográfica, fenológica y altitudinal en la zona estudiada. Palabras clave: Península Ibérica; Faunística; Biología; Neuropterida; Megaloptera; Sialidae; Sialis; “monjas”. ABSTRACT The alder-flies of the Iberian Peninsula (Insecta, Neuropterida, Megaloptera, Sialidae) All existing Iberian bibliographical information related to the three alder-flies species known in the Iberian Peninsula’s fauna (Insecta, Neuropterida, Megaloptera: Sialidae) is brought up to date. On the basis of general knowledge about these species, and taking into account the known Iberian data, a key for imagoes and larvae is included and what is known about their morphology, biology, larval stages and geographical, phenological and altitudinal distribution in the area studied is reviewed. Keywords: Iberian Peninsula; Faunistical; Biology; Neuropterida; Megaloptera; Sialidae; Sialis; “alder-flies”. Recibido/Received: 14/03/2014; Aceptado/Accepted: 02/09/2014; Publicado en línea/Published online: 26/11/2014 Como citar este artículo/Citation: Monserrat, V.
    [Show full text]
  • Insect Orders V: Panorpida & Hymenoptera
    Insect Orders V: Panorpida & Hymenoptera • The Panorpida contain 5 orders: the Mecoptera, Siphonaptera, Diptera, Trichoptera and Lepidoptera. • Available evidence clearly indicates that the Lepidoptera and the Trichoptera are sister groups. • The Siphonaptera and Mecoptera are also closely related but it is not clear whether the Siponaptera is the sister group of all of the Mecoptera or a group (Boreidae) within the Mecoptera. If the latter is true, then the Mecoptera is paraphyletic as currently defined. • The Diptera is the sister group of the Siphonaptera + Mecoptera and together make up the Mecopteroids. • The Hymenoptera does not appear to be closely related to any of the other holometabolous orders. Mecoptera (Scorpionflies, hangingflies) • Classification. 600 species worldwide, arranged into 9 families (5 in the US). A very old group, many fossils from the Permian (260 mya) onward. • Structure. Most distinctive feature is the elongated clypeus and labrum that together form a rostrum. The order gets its common name from the gential segment of the male in the family Panorpodiae, which is bulbous and often curved forward above the abdomen, like the sting of a scorpion. Larvae are caterpillar-like or grub- like. • Natural history. Scorpionflies are most common in cool, moist habitats. They get the name “hangingflies” from their habit of hanging upside down on vegetation. Larvae and adult males are mostly predators or scavengers. Adult females are usually scavengers. Larvae and adults in some groups may feed on vegetation. Larvae of most species are terrestrial and caterpillar-like in body form. Larvae of some species are aquatic. In the family Bittacidae males attract females for mating by releasing a sex pheromone and then presenting the female with a nuptial gift.
    [Show full text]
  • ZOOLOGY Zoology 110 (2007) 409–429
    ARTICLE IN PRESS ZOOLOGY Zoology 110 (2007) 409–429 www.elsevier.de/zool Towards an 18S phylogeny of hexapods: Accounting for group-specific character covariance in optimized mixed nucleotide/doublet models Bernhard Misofa,Ã, Oliver Niehuisa, Inge Bischoffa, Andreas Rickerta, Dirk Erpenbeckb, Arnold Staniczekc aAbteilung fu¨r Entomologie, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany bDepartment of Coelenterata and Porifera (Zoologisch Museum), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cStaatliches Museum fu¨r Naturkunde Stuttgart, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 19 May 2007; received in revised form 2 August 2007; accepted 22 August 2007 Abstract The phylogenetic diversification of Hexapoda is still not fully understood. Morphological and molecular analyses have resulted in partly contradicting hypotheses. In molecular analyses, 18S sequences are the most frequently employed, but it appears that 18S sequences do not contain enough phylogenetic signals to resolve basal relationships of hexapod lineages. Until recently, character interdependence in these data has never been treated seriously, though possibly accounting for the occurrence of biased results. However, software packages are readily available which can incorporate information on character interdependence within a Bayesian approach. Accounting for character covariation derived from a hexapod consensus secondary structure model and applying mixed DNA/RNA substitution models, our Bayesian analysis of 321 hexapod sequences yielded a partly robust tree that depicts many hexapod relationships congruent with morphological considerations. It appears that the application of mixed DNA/RNA models removes many of the anomalies seen in previous studies. We focus on basal hexapod relationships for which unambiguous results are missing.
    [Show full text]
  • Final Report 1
    Sand pit for Biodiversity at Cep II quarry Researcher: Klára Řehounková Research group: Petr Bogusch, David Boukal, Milan Boukal, Lukáš Čížek, František Grycz, Petr Hesoun, Kamila Lencová, Anna Lepšová, Jan Máca, Pavel Marhoul, Klára Řehounková, Jiří Řehounek, Lenka Schmidtmayerová, Robert Tropek Březen – září 2012 Abstract We compared the effect of restoration status (technical reclamation, spontaneous succession, disturbed succession) on the communities of vascular plants and assemblages of arthropods in CEP II sand pit (T řebo ňsko region, SW part of the Czech Republic) to evaluate their biodiversity and conservation potential. We also studied the experimental restoration of psammophytic grasslands to compare the impact of two near-natural restoration methods (spontaneous and assisted succession) to establishment of target species. The sand pit comprises stages of 2 to 30 years since site abandonment with moisture gradient from wet to dry habitats. In all studied groups, i.e. vascular pants and arthropods, open spontaneously revegetated sites continuously disturbed by intensive recreation activities hosted the largest proportion of target and endangered species which occurred less in the more closed spontaneously revegetated sites and which were nearly absent in technically reclaimed sites. Out results provide clear evidence that the mosaics of spontaneously established forests habitats and open sand habitats are the most valuable stands from the conservation point of view. It has been documented that no expensive technical reclamations are needed to restore post-mining sites which can serve as secondary habitats for many endangered and declining species. The experimental restoration of rare and endangered plant communities seems to be efficient and promising method for a future large-scale restoration projects in abandoned sand pits.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Morfologia Externa Da Lar Va De Megadytes Giganteus (Laporte
    ii NELSON FERREIRA JUNIOR MORFOLOGIA EXTERNA DA LAR V A DE MEGADYTES GIGANTEUS (LAPORTE, 1834) (INSECTE: COLEOPTERA: DYTISCIDAE), COM EVIDÊNCIASSOBRE A CONDIÇÃO MONOFILÉTICA DA TRIBO CYBISTERINJ Banca examinadora: Presidente Dr. Miguel A Monné Dr. Sérgio A Vanin Dr. Jorge L. Nessimian Rio de Janeiro, 20 de setembro de 1994 n;,,------ - - Ili Trabalho realizado no Departamento de Entomologia, Museu Nacional / Departamento de Zoologia, Instituto de Biologia - Universidade Federal do Rio de Janeiro. Orientador: Prof Dr Miguel Angel Monné Barrios iv FICHA CATALOGRÁFICA FERREIRA-Jr, Nelson Morfologia externa da larva de Megadytes giganteus (Laporte, 1834) (Insecta: Coleoptera: Dytiscidae), com evidências sobre a condição monofilética da tribo Cybisterini. Rio de Janeiro, UFRJ, Museu Nacional, 1994. x, 68 p. Dissertação de Mestrado. Ciências Biológicas (Zoologia) 1. Morfologia larval; 2. Megadytes giganteus; 3. Coleoptera; 4. Dytiscidae; 5. Dissertação. I. Universidade Federal do Rio de Janeiro - Museu Nacional II. Título. • V Aos meus pais e ao meu filho Vl AGRADECIMENTOS Aos meus amigos e colegas do laboratório de Entomologia, Departamento _,.....,_ de Zoologia, UFRJ, pelo interesse demonstrado nas diversas fases do trabalho: Prof Dr Jorge luiz Nessimian, Prof Alcimar L. Carvalho, Prof Elidiomar R. da Silva, Luís Fernando M. Dorvillé, Gabriel Luis F. Mejdalani, José Ricardo Pereira, Eduardo R. Calil, Angela M. Sanseverino, Márcio Eduardo Felix, Beatriz A. Gallo, Márcia R. Guinelle, Luci Boa Nova Coelho, Maria Antonieta P. Azevedo. Ao meu orientador, Dr Miguel Angel Monné Barrios (MNRJ), pela orientação, apoio constante e amizade. Aos amigos Prof Johann Becker (MNRJ), Renner Luís C. Baptista (UFRJ) e Richard Sachsse (UFRJ), pelo auxílio na tradução de artigos em alemão.
    [Show full text]
  • Hypothesis on Monochromatic Vision in Scorpionflies Questioned by New
    www.nature.com/scientificreports OPEN Hypothesis on monochromatic vision in scorpionfies questioned by new transcriptomic data Received: 7 July 2017 Alexander Böhm 1, Karen Meusemann2,3,4, Bernhard Misof3 & Günther Pass1 Accepted: 12 June 2018 In the scorpionfy Panorpa, a recent study suggested monochromatic vision due to evidence of only a Published: xx xx xxxx single opsin found in transcriptome data. To reconsider this hypothesis, the present study investigates opsin expression using transcriptome data of 21 species including representatives of all major lineages of scorpionfies (Mecoptera) and of three families of their closest relatives, the feas (Siphonaptera). In most mecopteran species investigated, transcripts encode two opsins with predicted peak absorbances in the green, two in the blue, and one in the ultraviolet spectral region. Only in groups with reduced or absent ocelli, like Caurinus and Apteropanorpa, less than four visual opsin messenger RNAs have been identifed. In addition, we found a Rh7-like opsin in transcriptome data derived from larvae of the mecopteran Nannochorista, and in two fea species. Peropsin expression was observed in two mecopterans. In light of these new data, we question the hypothesis on monochromatic vision in the genus Panorpa. In a broader phylogenetic perspective, it is suggested that the common ancestor of the monophyletic taxon Antliophora (Diptera, Mecoptera and Siphonaptera) possessed the full set of visual opsins, a Rh7-like opsin, and in addition a pteropsin as well as a peropsin. In the course of evolution individual opsins were likely lost in several lineages of this clade. Colour vision has two prerequisites1,2: receptors with diferent spectral responses and a neural system that can process their output in a way that preserves colour information.
    [Show full text]
  • New Species and Records of Corydalidae (Insecta: Megaloptera) from Myanmar
    Zootaxa 4306 (3): 428–436 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4306.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:3E1C83F4-54BB-4B9F-AC0F-467CB9CF0032 New species and records of Corydalidae (Insecta: Megaloptera) from Myanmar XINGYUE LIU1,3 & LIBOR DVORAK2 1Department of Entomology, China Agricultural University, Beijing 100193, China. 2Municipal Museum Marianske Lazne, Goethovo namesti 11, CZ–35301 Marianske Lazne, The Czech Republic. 3Corresponding author. E-mail: [email protected] Abstract Seven species of the family Corydalidae (Insecta: Megaloptera) are newly recorded from Myanmar, including a new spe- cies of the dobsonfly genus Protohermes van der Weele, 1907, P. burmanus sp. nov. A total of 18 species of Megaloptera are now known from Myanmar. Key words: Corydalinae, Chauliodinae, Protohermes, taxonomy, Burma Introduction Myanmar is a biodiversity hotspot with high levels of species richness and endemism (Rao et al. 2013). The Megaloptera (dobsonflies, fishflies, and alderflies), a holometabolous insect order, currently includes ca. 380 species in the world (Yang & Liu 2010; Liu et al. 2016). The fauna of this order is extraordinarily rich in the Oriental region, comprising more than 200 described species. The northern portion of Myanmar is located within the diversification centre of the Asian Megaloptera as proposed by Yang & Liu (2010). However, due to lack of intensive collecting, the fauna of Megaloptera from Myanmar is relatively poorly known. The earliest records of Megaloptera of the family Corydalidae from Myanmar are by Kimmins (1948) describing Protohermes subnubilus and mentioning P.
    [Show full text]
  • Zootaxa, a Review of the Scorpionflies (Mecoptera) of Indochina with the Description
    Zootaxa 2480: 61–67 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A review of the scorpionflies (Mecoptera) of Indochina with the description of a new species of Neopanorpa from Northern Thailand WESLEY J. BICHA 121 Old Batley Road, Oliver Springs, TN 37840 USA. E-mail: [email protected] Abstract Thirty-nine species of scorpionflies are currently known from Indochina, consisting of 34 Neopanorpa, 1 Panorpa, and one, and 1 Bicaubittacus. An additional new species from northern Thailand, Neopanorpa latiseparata, is described and illustrated, and its biology is discussed. The male of this species has a wide subquadrate separation between the hypovalves of sternum 9. Additional distribution and seasonal data for Indochinese Mecoptera are provided. Key words: Bicaubittacus, Bittacus, Burma, distribution records, Laos, Malaysia, Vietnam () , () , , . . , , . () . Introduction Mecoptera is an ancient, small, holometabolous order of insects with approximately 650 described extant species assigned to nine families. Thirty-nine species of Mecoptera in two families have been described from Indochina, including 4 species of Bittacidae. These four currently consist of one species of Bicaubittacus Tan and Hua, 2009 from Burma (Tan & Hua 2009) and three species of Bittacus Latreille, 1805: one each from Burma (Tjeder 1974), Thailand (Byers 1965), and Vietnam (Bicha 2007). Thrity-four Indochinese Panorpidae currently are assigned to Neopanorpa Weele, 1909, although the genus may be paraphyletic with Panorpa Linnaeus, 1758 (Misof et al. 2000, Whiting 2002). Fifteen species of Neopanorpa have been recorded from Burma (Byers 1965, 1999), ten species from Thailand (two of which occur in peninsular Malaysia) (Byers 1965, Webb & Penny 1979), one species from Laos (Byers 1982), nine species from Vietnam (Byers 1965, Willmann 1976), and three species from peninsular Malaysia (Penny & Avery 1978).
    [Show full text]
  • (Mecoptera) in Norway
    © Norwegian Journal of Entomology. 21 June 2011 Distribution of Boreus westwoodi Hagen, 1866 and Boreus hyemalis (L., 1767) (Mecoptera) in Norway SIGMUND HÅGVAR & EIVIND ØSTBYE Hågvar, S. & Østbye, E. 2011. Distribution of Boreus westwoodi Hagen, 1866 and Boreus hyemalis (L., 1767) (Mecoptera) in Norway. Norwegian Journal of Entomology 58, 73–80. An extensive material collected during nearly fifty years adds new detailed information on the distribution of the winter active insects Boreus westwoodi Hagen, 1866 and B. hyemalis (L., 1767) in Norway. Since females are difficult to identify, the new data rely on males. Based on the revised Strand-system, the following geographical regions are new to B. westwoodi: Ø, BØ, VAY, ON, TEI, TEY, MRI, MRY, and TRY. For B. hyemalis, AK, BØ, TEI, RY, SFI, and NTI are new regions. While B. westwoodi is widespread in Norway, including the three northernmost counties, B. hyemalis seems to be restricted to the south, with the northernmost record in NTI. In Sweden, the situation is similar: B. westwoodi is widespread, while B. hyemalis has been recorded as far north as Västerbotten, at a latitude corresponding to the northernmost record in Norway. The known distribution of both species in Norway is presented on EIS-grid map. Key words: Boreus hyemalis, Boreus westwoodi, Mecoptera, distribution, Norway. Sigmund Hågvar, Department of Ecology and Natural Resource Management, P.O. Box 5003, Norwegian University of Life Sciences, NO-1432 Ås, Norway. E-mail: [email protected] Eivind Østbye, Ringeriksveien 580, NO-3410 Sylling, Norway. E-mail: [email protected] Introduction county was described by Greve (1966).
    [Show full text]