Raport Otwarcia Reprezentujący Obecny Stan Wiedzy Na Temat Związku Zmian Klimatu Ze Stanem Zdrowia

Total Page:16

File Type:pdf, Size:1020Kb

Raport Otwarcia Reprezentujący Obecny Stan Wiedzy Na Temat Związku Zmian Klimatu Ze Stanem Zdrowia Raport otwarcia reprezentujący obecny stan wiedzy na temat związku zmian klimatu ze stanem zdrowia Zadanie finansowane ze środków „Narodowego Programu Zdrowia na lata 2016-2020” Umowa nr 6/4/5/NPZ/2018/1094/542 1 Spis treści: 1. Wprowadzenie ................................................................................................................................. 3 2. Zmiany klimatu ............................................................................................................................... 5 2.1. Zagrożenia klimatyczne w Europie .............................................................................................. 5 2.2. Klimat Polski ................................................................................................................................ 7 2.3. Skutki zmian klimatu .................................................................................................................... 9 3. Zdrowotne aspekty zmian klimatu ................................................................................................ 12 4. Zagrożenia termiczne (fale upałów i chłodów) ............................................................................. 21 5. Choroby wektorowe .......................................................................................................................... 25 5.1. Wpływ wahań temperatury i wilgotności na wskaźniki śmiertelności kleszczy ........................ 25 5.2. Biologia kleszczy a warunki środowiskowe ............................................................................... 25 5.3. Kleszcze jako rezerwuar i wektor patogenów chorób transmisyjnych w Polsce ....................... 27 5.4. Stan wiedzy na temat zakażeń w Polsce wirusem kleszczowego zapalenia mózgu (KZM) oraz występowania tego wirusa w naszym kraju ...................................................................................... 34 5.5. Podsumowanie............................................................................................................................ 35 6. Wpływ zmian klimatu na występowanie chorób związanych z wodą i żywnością: analiza sytuacji w Europie i Polsce ................................................................................................................................. 37 6.1. Pałeczki Legionella i legioneloza a zmiany klimatu .................................................................. 37 6.2. Występowanie przecinkowców z rodzaju Vibrio a zmiany klimatu .......................................... 44 7. Wnioski i rekomendacje ................................................................................................................ 57 2 1. Wprowadzenie Zmiany klimatu, wg. organu ONZ - Międzyrządowego Panelu ds. Zmian Klimatu (The Intergovernmental Panel on Climate Change - IPCC) rozumiane są jako zmiany wartości średnich i/lub zmienności elementów klimatu, utrzymujące się przez dłuższy okres, najczęściej dziesięciolecia lub dłużej. Zmiany klimatu mogą być następstwem zarówno naturalnych procesów wewnętrznych, jak i wymuszenia zewnętrznego lub trwałych zmian antropogenicznych w składzie atmosfery, lub w użytkowaniu gruntów1. Ramowa konwencja Narodów Zjednoczonych w sprawie zmian klimatu (UNFCCC) w swoim artykule 1 definiuje zmianę klimatu jako: „zmianę w klimacie spowodowaną pośrednio lub bezpośrednio działalnością człowieka, która zmienia skład atmosfery ziemskiej i która jest odróżniana od naturalnej zmienności klimatu obserwowanej w porównywalnych okresach”. Zmianom klimatycznym towarzyszą ekstremalne zjawiska pogodowe (zjawiska rzadko występujące na danym terenie i w danej porze roku, o zazwyczaj przyjmowanej częstotliwości występowania mieszczącej się w granicach 10-ego lub 90-ego percentyla zaobserwowanej funkcji gęstości prawdopodobieństwa). Należy podkreślić, że pojedyncze zjawiska ekstremalne nie mogą być w sposób prosty i bezpośredni przypisane antropogenicznej zmianie klimatu, ponieważ zawsze występuje określone prawdopodobieństwo, że analizowane zjawisko powstało w wyniku naturalnych procesów. Jeśli układ ekstremalnej pogody utrzymuje się przez pewien okres, np. porę roku, może być sklasyfikowany jako ekstremalne zjawisko klimatyczne, szczególnie jeżeli przekracza średnie lub sumaryczne wartości (np. susza lub ulewne deszcze w skali pory roku). Wg Światowej Organizacji Zdrowia (WHO) w związku z globalnym ocieplaniem się klimatu i wzrostem intensywności występowania zjawisk ekstremalnych z roku na rok, zmiany klimatu stanowią istotny problemy dla globalnego zdrowia publicznego. W ciągu ostatnich 50 lat działalność człowieka, a w szczególności spalanie paliw kopalnych (ropy naftowej, węgla i gazu ziemnego) oraz biomasy i intensyfikacja rolnictwa spowodowała znaczącą emisję tzw. gazów cieplarnianych (naturalnych i antropogenicznych elementów składowych atmosfery, które absorbują i emitują promieniowanie o określonych długościach fal w zakresie widma cieplnego promieniowania podczerwonego emitowanego przez powierzchnię Ziemi, samą atmosferę oraz chmury; gazu cieplarniane to: para wodna (H2O), 1 Ciais P. et al (2013): Climate change 2013: the physical science basis contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2013 https://www.ipcc.ch/report/ar5/wg1/ 3 dwutlenek węgla (CO2), podtlenek azotu (N2O), metan (CH4), ozon (O3), sześciofluorek siarki (SF6), fluorowęglowodory (HFCs) oraz perfluorowęglowodory (PFCs)) w ilościach powodujących efekt cieplarniany (pochłanianie prze gazy cieplarniane cieplnego promieniowania podczerwonego, emitowanego przez powierzchnię Ziemi, atmosferę i chmury, co prowadzi do zatrzymania ciepła przy powierzchni ziemi i w troposferze; zwiększenie koncentracji gazów cieplarnianych prowadzi do wzrostu współczynnika pochłaniania promieniowania podczerwonego w atmosferze a przez to do silniejszego wypromieniowania w kosmos z większych wysokości przy niższych temperaturach, co powoduje wymuszenie radiacyjne, które prowadzi do wzmocnienia efektu cieplarnianego, czyli tzw. wzmocnionego efektu cieplarnianego), co wpłynęło na ocieplenie się globalnego klimatu2. 3 Od czasu rewolucji przemysłowej emisje gazów cieplarnianych stale wzrastają . 4 Należy dodać, że wyemitowany CO2 pozostaje w atmosferze przez bardzo długi czas . W ciągu ostatnich 130 lat średnia temperatura powietrza wzrosła o około 0,85 st. C. Każda kolejna z ostatnich trzech dekad była sukcesywnie cieplejsza niż jakakolwiek inna dekada poprzedzająca 1850 rok5. Szacuje się, że oceany pochłonęły ponad 90% zatrzymanej w atmosferze energii w ostatnich latach. Wzrost temperatury powodujący topnienie lodowców (rocznie znika ok. 50 000 km² lodu Arktyki, Antarktyda traci rocznie ok. 159 miliardów ton lodu)6 w efekcie prowadzi do wzrostu poziomu mórz i oceanów. Taka sytuacja w konsekwencji powoduje wzrost i częstotliwość występowania ekstremalnych zjawisk pogodowych. Konsekwencje tego stanu rzeczy nie pozostają obojętne dla zdrowia publicznego. 2 WHO Fact “Climate change and Health” sheet https://www.who.int/news-room/fact-sheets/detail/climate- change-and-health 3 British Petroleum. BP statistical review of world energy June 2014. London: BP, 2014 4 Ciais P. et al (2013): Climate change 2013: the physical science basis contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2013 https://www.ipcc.ch/report/ar5/wg1/ 5 IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 6 McMillan M et al (2014): Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 2014; 41: 3899–905 4 2. Zmiany klimatu Krzysztof Skotak 2.1. Zagrożenia klimatyczne w Europie W ostatnich latach w Europie wyraźnie zauważalne są symptomy zmieniającego się klimatu. Do najbardziej istotnych zaliczyć należy wzrosty średniej temperatury oraz różnice w rozkładzie opadów7. Najważniejsze obserwowane i przewidywane skutki zmian klimatu w głównych regionach biogeograficznych Europy mają wpływ zarówno na morza europejskie – poprzez zakwaszenie oceanów i rosnącą temperaturę wody, jak i na wybrzeża zagrożone podnoszeniem się poziomu mórz, erozją i częstszymi potężnymi sztormami. Zmiany klimatu odbiją się również na systemach wód słodkich – w południowej i wschodniej Europie spada ilość wody w rzekach, podczas gdy w innych regionach rośnie. Na ekosystemy słodkowodne wpływa również zwiększenie częstotliwości i intensywności susz (zwłaszcza w południowej Europie) oraz wzrost temperatury wody. Ekosystemy lądowe zmieniają się w zakresie fenologii i dystrybucji, a ich stabilności zagrażają również inwazyjne gatunki obce8. Najbardziej zauważalne zmiany klimatu w Europie dotyczą9: - Temperatury. Globalna średnia temperatura powierzchni jest kluczową zmienną klimatyczną wykorzystywaną do śledzenia antropogenicznych zmian klimatu, często wskazywana jako kluczowy argument do podejmowania wszelkich działań. Zmiany średniej temperatury w Europie różnią się do globalnej, ale świadczą
Recommended publications
  • Microbial Study on Corrosion
    AN INVESTIGATION OF MICROBIAL DIVERSITY AND MICROBIOLOGICALLY INFLUENCED CORROSION IN AUTOMOTIVE FUEL ENVIRONMENTS by Charles H.D. Williamson IV A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Environmental Science and Engineering). Golden, Colorado Date ____________________________ Signed: ___________________________ _ Charles H.D. Williamson IV Signed: ____________________________ Dr. John R. Spear Thesis Advisor Golden, Colorado Date ____________________________ Signed: ____________________________ Dr. John McCray Professor and Director Department of Civil and Environmental Engineering ii ABSTRACT Microbial contamination of fuels can cause issues such as biofouling, fuel degradation and microbiologically influenced corrosion (MIC). The focus of the research presented in this thesis was characterizing the microbial diversity of automotive fuels and automotive fuel environments in the United States via both molecular-based techniques as well as cultivation- based methods in order to gain insight into how this diversity is impacting fuels and fuel system infrastructure. A field survey of fuels including biodiesel, diesel, E10, E85, fuel-grade ethanol and gasoline was conducted; and 454 pyrosequencing of both 16S/18S rRNA genes as well as 16S/18S rRNA (transcribed into cDNA) was applied to identify both total and active microbial communities in these environments. Microbial communities in all fuel types were broadly similar, and prevalent phylotypes included Halomonas spp., Pseudomonas spp., Shewanella spp., Corynebacterium spp. and Acetobacter spp. Pyrosequencing libraries generated from cDNA and DNA indicated that the active and total communities of the sampled environments show significant overlap. The microbial communities of storage tanks containing fuel-grade ethanol and water were also characterized by molecular and cultivation-based techniques.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]
  • Investigation of Bacterial Community Composition and Abundance in a Lowland Arable Catchment
    Investigation of bacterial community composition and abundance in a lowland arable catchment A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the degree of Doctor of Philosophy By Ali Khalaf A. Albaggar 2014 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior consent. Abstract This study aimed to characterise the bacterial community composition and abundance in the River Wensum in Norfolk using epifluorescence microscopy (EFM), automated ribosomal intergenic analysis (ARISA) and 454 pyrosequencing. It also aimed to determine the effects of spatial and temporal variations and environmental factors on bacterial community composition and abundance in this intensively farmed lowland catchment. The three techniques provided the same trends in bacterial community composition and abundance across the Wensum catchment. Total bacterial numbers ranged from 0.21 × 10 6 cells/mL to 5.34 × 10 6 cells/mL (mean = 1.1 × 10 6 cells/mL). The bacterial community composition and abundance showed significant differences between sites and times and were related to environmental parameters, with temperature and flow rate explaining most of the variation in bacterial community composition and abundance. Bacterial abundance increases as water moves downstream, while bacterial diversity decreases as water moves downstream. Some operational taxonomic units (OTUs) become commoner as the water moves downstream (3 rd and 4 th order streams). This presumably reflects the fact that these bacteria are actively growing in the river, and reducing the abundance of other taxa.
    [Show full text]
  • Application of Multilocus Sequence Analysis (MLSA) for Accurate Identification of Legionella Spp. Isolated from Municipal Founta
    The Journal of Microbiology (2012) Vol. 50, No. 1, pp. 127–136 DOI 10.1007/s12275-012-1243-1 Copyright ⓒ 2012, The Microbiological Society of Korea Application of Multilocus Sequence Analysis (MLSA) for Accurate Identification of Legionella spp. Isolated from Municipal Fountains in Chengdu, China, Based on 16S rRNA, mip, and rpoB Genes Wang Guan1, Ying Xu1,2, Da-li Chen1, Legionella (http://www.ncbi.nlm.nih.gov/Taxonomy, accessed 1 1 1,3 July 25, 2011). Among them, approximately 20 are involved Jia-nan Xu , Yu Tian , and Jian-ping Chen * in human diseases. Legionella infection is mainly caused by inhalation of contaminated aerosol, leading to flu-like Pon- 1 Department of Parasitology, West China School of Preclinical and Forensic tiac fever or the more serious legionellosis, also known as Medicine, Sichuan University, Chengdu 610041, Sichuan, P. R. China 2Department of Clinical Laboratories, the First Affiliated Hospital of Legionnaires’ disease (LD). The latter is a form of severe Chengdu Medical College, Chengdu, 610500, Sichuan, P. R. China pneumonia with a fatality rate that may reach 50% in im- 3Animal Disease Prevention and Food Safety Key Laboratory of Sichuan munocompromised patients (Fields et al., 2002; Yu et al., Province, Sichuan University, Chengdu 610064, Sichuan, P. R. China 2002). One species, Legionella pneumophila, is responsible for about 90% of LD cases. The other species are rarely (Received May 16, 2011 / Accepted August 31, 2011) pathogenic, although Legionella longbeachae accounts for about 30% of cases of LD in Australia and New Zealand Legionellosis (Legionnaires’ disease; LD) is a form of severe (Helbig et al., 2002; Newton et al., 2010).
    [Show full text]
  • Nosocomial Legionnaires' Disease
    Frontiers in Science 2012, 2(4): 62-75 DOI: 10.5923/j.fs.20120204.03 Nosocomial Legionnaires’ Disease: Risque and Prevention Jalila Tai1,2, Mohamed Nabil Benchekroun2, Mly Mustapha Ennaji2, Mariam Mekkour1, Nozha Cohen1,* 1Division de Microbiologie et d’hygiène des Produits de l’Environnement, Institut Pasteur du Maroc, Casablanca, 20360, Maroc 2Laboratoire de Biotechnologie, de l’Environnement et de la Santé, Faculté des Sciences et Techniques, Université Hassan II-Mohammedia, 146, Maroc Abstract In 1977, Fraser et al. described an outbreak of pneumonia among legionnaires attending a convention at a hotel in Philadelphia in 1976. Legionnaires’ disease (LD) can be nosocomial, community acquired or travel related. The incidence of hospital-acquired legionellosis appears to be increasing. Colonization of water systems by Legionella spp. is ubiquitous in hospitals throughout the world. The outbreak, which later became known as legionnaires’ disease, was caused by a new pleomorphic, faintly staining gram-negative bacillus, L. pneumophila, which was isolated at the Center for Disease Control from lung tissues of legionnaires who died. Risk assessment for this disease forms the basis for the institution of control measures. Detection and quantification of Legionella spp. in the environment, in particular in the hospital water distribution system is one of the cornerstones of risk assessment. This review summarizes the current state-of-the-art regarding these aspects and points out important areas which require further study. The environmental surveillance revealed that the centralized hot water distribution system of the hospital was colonized with Legionella. Methods of prevention of the organisms for eradication involved in hospital water systems.
    [Show full text]
  • Immunoproteomic Identification of Biomarkers for Diagnosis of Legionellosis
    Immunoproteomic identification of biomarkers for diagnosis of legionellosis Submitted in total fulfilment of the requirements for the degree of Doctor of philosophy by Kaylass Poorun Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Australia 2014 Abstract Abstract Legionellosis, a disease with significant mortality and morbidity rates, is considered to be the second most frequent cause of severe community-acquired pneumonia. It is difficult to distinguish from other types of pneumonia due to similar clinical manifestations. Several studies have demonstrated the inadequacies of current diagnostic tests for confirming Legionella infections. This study was aimed at identifying biomarkers that can be used in an improved test. A comparative proteomic analysis, using DIGE, was carried out between L. pneumophila ATCC33152 and L. longbeachae NSW150 and D4968 isolates. While many homologous proteins were found to be commonly expressed, numerous others were identified to be differentially expressed under similar in vitro conditions suggesting that the two species have different lifestyles and infection strategies. The bacterial immunoglobulin domain containing protein, found to share sequence homology to Type V secretion proteins intimin and invasin, is not known to be present in Legionella. Human sera containing antibodies against Legionella from a set of blind samples were identified by ELISA. Downstream analyses revealed that diverse immunogens may be responsible for eliciting immune response in different Legionella species which in turn show little to no congeneric cross-reactivity. To the best of our knowledge, this is a unique finding not previously reported. Several serological diagnostic tests currently in use do not include many Legionella species in their testing panel, which may be a reason for many Legionella species being under-reported.
    [Show full text]
  • Species List BDAL-7311 1 of 28
    1 Abiotrophia defectiva 31 Acinetobacter haemolyticus 61 Actinomyces cardiffensis 2 Acetobacter aceti 32 Acinetobacter johnsonii 62 Actinomyces catuli 3 Acetobacter cerevisiae 33 Acinetobacter junii 63 Actinomyces coleocanis 4 Acetobacter malorum 34 Acinetobacter lwoffii 64 Actinomyces dentalis 5 Acetobacter pasteurianus 35 Acinetobacter nectaris 65 Actinomyces denticolens 6 Acetobacter persici 36 Acinetobacter nosocomialis 66 Actinomyces europaeus 7 Acholeplasma laidlawii 37 Acinetobacter parvus 67 Actinomyces funkei 8 Achromobacter denitrificans 38 Acinetobacter pittii 68 Actinomyces georgiae 9 Achromobacter insolitus 39 Acinetobacter radioresistens 69 Actinomyces gerencseriae 10 Achromobacter piechaudii 40 Acinetobacter schindleri 70 Actinomyces graevenitzii 11 Achromobacter ruhlandii 41 Acinetobacter sp 71 Actinomyces hominis 12 Achromobacter sp 42 Acinetobacter tandoii 72 Actinomyces hordeovulneris 13 Achromobacter spanius 43 Acinetobacter tjernbergiae 73 Actinomyces hyovaginalis 14 Achromobacter xylosoxidans 44 Acinetobacter towneri 74 Actinomyces israelii 15 Acidaminococcus fermentans 45 Acinetobacter ursingii 75 Actinomyces marimammalium 16 Acidaminococcus intestini 46 Actinobacillus delphinicola 76 Actinomyces meyeri 17 Acidiphilium acidophilum 47 Actinobacillus equuli 77 Actinomyces naeslundii 18 Acidovorax avenae 48 Actinobacillus lignieresii 78 Actinomyces nasicola 19 Acidovorax defluvii 49 Actinobacillus pleuropneumoniae 79 Actinomyces neuii 20 Acidovorax delafieldii 50 Actinobacillus rossii 80 Actinomyces odontolyticus 21
    [Show full text]
  • Patent (10 ) Patent No
    US010195273B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 195 , 273 B2 Clube (45 ) Date of Patent : Feb . 5 , 2019 ( 54 ) SELECTIVELY ALTERING MICROBIOTA 9 , 113 ,616 B2 8 / 2015 MacDonald et al . 9 ,328 , 156 B2 5 /2016 June et al. FOR IMMUNE MODULATION 9 ,464 , 140 B2 10 / 2016 June et al . 9 ,481 , 728 B2 11 / 2016 June et al . (71 ) Applicant : SNIPR TECHNOLOGIES LIMITED , 9 , 499 ,629 B2 11/ 2016 June et al . London (GB ) 9 , 518 , 123 B2 12 / 2016 June et al. 9 , 540 , 445 B2 1 / 2017 June et al . ( 72 ) Inventor: Jasper Clube, London (GB ) 9 , 701, 964 B2 7 / 2017 Clube et al . 2004 /0096974 A1 5 / 2004 Herron et al . 2013 /0109053 Al 5 / 2013 MacDonald et al . (73 ) Assignee : SNIPR TECHNOLOGIES LIMITED , 2013 /0287748 A 10 / 2013 June et al. London (GB ) 2013 /0288368 Al 10 / 2013 June et al. 2013 /0309258 A1 10 / 2013 June et al . ( * ) Notice : Subject to any disclaimer , the term of this 2014 / 0106449 Al 4 / 2014 June et al . patent is extended or adjusted under 35 2014 / 0370017 A1 12 / 2014 June et al. 2015 / 0050699 A1 2 / 2015 Siksnys et al . U . S . C . 154 (b ) by 0 days . 2015 / 0050729 A1 2 / 2015 June et al. 2015 / 0064138 Al 3 / 2015 Lu et al . (21 ) Appl. No. : 15 / 820 ,296 2015 / 0093822 A1 4 / 2015 June et al. 2015 /0099299 Al 4 / 2015 June et al. ( 22 ) Filed : Nov . 21 , 2017 2015 /0118202 A1 4 / 2015 June et al . 2015 /0125463 A1 * 5 /2015 Cogswell .
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • WO 2012/055408 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date . 3 May 2012 (03.05.2012) WO 2012/055408 Al (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, CI2Q 1/68 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, PCT/DK20 11/000120 NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (22) International Filing Date: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 27 October 201 1 (27.10.201 1) TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/407,122 27 October 2010 (27.10.2010) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, PA 2010 70455 27 October 2010 (27.10.2010) DK RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, (71) Applicant (for all designated States except US): QUAN- LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, TIBACT A/S [DK/DK]; Kettegards Alle 30, DK-2650 SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, Hvidovre (DK).
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Identification Et Caractérisation De Composés Produits Par Des Bactéries Environnementales Pour La Lutte Biologique Contre Legionella Pneumophila Marie-Hélène Corre
    Identification et caractérisation de composés produits par des bactéries environnementales pour la lutte biologique contre Legionella pneumophila Marie-Hélène Corre To cite this version: Marie-Hélène Corre. Identification et caractérisation de composés produits par des bactéries environ- nementales pour la lutte biologique contre Legionella pneumophila. Chimie analytique. Université de Poitiers, 2018. Français. NNT : 2018POIT2309. tel-02461235 HAL Id: tel-02461235 https://tel.archives-ouvertes.fr/tel-02461235 Submitted on 30 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour l’obtention du Grade de DOCTEUR DE L’UNIVERSITE DE POITIERS FACULTE DES SCIENCES FONDAMENTALES ET APPLIQUEES (Diplôme National - Arrêté du 25 mai 2016) Ecole Doctorale : Gay Lussac – Sciences pour l'environnement Secteur de Recherche : Aspects moléculaires et cellulaires de la biologie - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Identification et caractérisation de composés produits par des
    [Show full text]