Identification Et Caractérisation De Composés Produits Par Des Bactéries Environnementales Pour La Lutte Biologique Contre Legionella Pneumophila Marie-Hélène Corre

Total Page:16

File Type:pdf, Size:1020Kb

Identification Et Caractérisation De Composés Produits Par Des Bactéries Environnementales Pour La Lutte Biologique Contre Legionella Pneumophila Marie-Hélène Corre Identification et caractérisation de composés produits par des bactéries environnementales pour la lutte biologique contre Legionella pneumophila Marie-Hélène Corre To cite this version: Marie-Hélène Corre. Identification et caractérisation de composés produits par des bactéries environ- nementales pour la lutte biologique contre Legionella pneumophila. Chimie analytique. Université de Poitiers, 2018. Français. NNT : 2018POIT2309. tel-02461235 HAL Id: tel-02461235 https://tel.archives-ouvertes.fr/tel-02461235 Submitted on 30 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour l’obtention du Grade de DOCTEUR DE L’UNIVERSITE DE POITIERS FACULTE DES SCIENCES FONDAMENTALES ET APPLIQUEES (Diplôme National - Arrêté du 25 mai 2016) Ecole Doctorale : Gay Lussac – Sciences pour l'environnement Secteur de Recherche : Aspects moléculaires et cellulaires de la biologie - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Identification et caractérisation de composés produits par des bactéries environnementales pour la lutte biologique contre Legionella pneumophila - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Présentée par : Marie-Hélène CORRE Directeurs de Thèse : Jean-Marc BERJEAUD, Professeur, Université de Poitiers Julien VERDON, Maître de Conférences, Université de Poitiers Soutenue le 10 Décembre 2018 devant la Commission d’Examen Rapporteurs : Ali LADRAM, Professeur, Sorbonne Université Isabelle SCHALK, Directeur de recherche CNRS, Strasbourg Examinateurs : Sylvie CHEVALIER, Professeur, Université de Rouen Sophie LECOMTE, Directeur de recherche CNRS, Bordeaux Christophe GINEVRA, Docteur, Université de Lyon Julien VERDON, Maître de Conférences, Université de Poitiers Jean-Marc BERJEAUD, Professeur, Université de Poitiers THESE Pour l’obtention du Grade de DOCTEUR DE L’UNIVERSITE DE POITIERS FACULTE DES SCIENCES FONDAMENTALES ET APPLIQUEES (Diplôme National - Arrêté du 25 mai 2016) Ecole Doctorale : Gay Lussac – Sciences pour l'environnement Secteur de Recherche : Aspects moléculaires et cellulaires de la biologie - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Identification et caractérisation de composés produits par des bactéries environnementales pour la lutte biologique contre Legionella pneumophila - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Présentée par : Marie-Hélène CORRE Directeurs de Thèse : Jean-Marc BERJEAUD, Professeur, Université de Poitiers Julien VERDON, Maître de Conférences, Université de Poitiers Soutenue le 10 Décembre 2018 devant la Commission d’Examen Rapporteurs : Ali LADRAM, Professeur, Sorbonne Université Isabelle SCHALK, Directeur de recherche CNRS, Strasbourg Examinateurs : Sylvie CHEVALIER, Professeur, Université de Rouen Sophie LECOMTE, Directeur de recherche CNRS, Bordeaux Christophe GINEVRA, Docteur, Université de Lyon Julien VERDON, Maître de Conférences, Université de Poitiers Jean-Marc BERJEAUD, Professeur, Université de Poitiers Dans la vie, rien est à craindre, tout est à comprendre Marie Curie À ma famille, Remerciements Je n’aurai pu réaliser cette thèse sans la générosité, les conseils et la bonne humeur d’un très grand nombre de personnes. J’aimerai donc les remercier d’avoir participé à ce travail et de m’avoir soutenue pendant ces trois années. Tout d’abord, je souhaite adresser ma gratitude à Didier Bouchon (ancien directeur du laboratoire EBI) et à Jean-Marc Berjeaud (directeur actuel) pour m’avoir permise de développer ce travail de thèse au sein de leur laboratoire. J’aimerai remercier Isabelle Schalk et Ali Ladram, rapporteurs de ce manuscrit, pour m’avoir fait l’honneur d’évaluer ce travail. Je souhaite également remercier Sophie Lecomte, Christophe Ginevra et Sylvie Chevalier pour avoir bien voulu faire partie de ce jury de thèse. Encore une fois, je tiens à remercier très sincèrement Jean-Marc Berjeaud, directeur de la thèse, pour toute la confiance qu’il m’a accordé pour mener à bien ce projet. Je lui suis reconnaissante pour sa disponibilité, pour son écoute, pour ses conseils et pour les opportunités qu’il a su m’offrir (ma participation à l’ESGLI, au GDR MufoPAM). Je lui exprime également ma gratitude pour son accompagnement motivationnel lors de ma présentation à MT180. Je tiens à le remercier aussi pour ses grandes qualités humaines, sa franchise et ses valeurs. J’exprime mes remerciements à Julien Verdon, co-directeur de cette thèse, sans qui ce projet n’aurait pas pu être mis en place. Je le remercie pour toutes les opportunités qu’il a su m’offrir pendant ces trois années (la Gordon en Californie, les projets secondaires, les collaborations). Nous avons beaucoup voyagé scientifiquement tous les deux. Un de nos plus beaux moments restera aussi un des plus douloureux : la randonnée au parc Griffith de Los Angeles... Je le remercie également pour son aide pour la valorisation scientifique associée à ce travail et pour son aide dans les moments de stress. Nous avons bien rigolé tous les trois, MERCI. J’aimerai que vous sachiez tous les deux que je me suis vraiment amusée pendant ces trois années ! Je remercie les membres de mon comité de suivi de thèse, Ali Ladram, Anabelle Merieau, Richard Cordaux et Sophie Lecomte pour leur présence à mi-parcours et leurs conseils. J’aimerai remercier chaleureusement l’Institut de Recherche sur la Biologie de l’Insecte (IRBI) à Tours et particulièrement David Giron et Ali Khalil (désolée pour le coup de la panne), pour notre collaboration et pour m’avoir accueillie dans votre laboratoire. Je souhaite remercier Vincent Delafont pour sa générosité. Tu m'as beaucoup aidée dans mon travail de thèse, par ton écoute et tes conseils. Je te remercie aussi pour la relecture du manuscrit et pour la valorisation de la collection. Enfin, merci pour les pauses clopes, toujours accompagnées de bonne humeur ! Je remercie également Emilie Portier pour avoir bien voulu relire une partie du manuscrit. J'aimerai remercier très sincèrement Laurence Belligot, Sylvie Clercy-Morel et Karine Demangeau pour toute la gestion administrative autour de ce projet et autour de la vie de laboratoire. Rien ne tournerai sans vous, vous êtes formidables et attentionnées et on peut toujours compter sur vous, y compris dans l'urgence. Je tiens à remercier Daniel Guyonnet, pour sa disponibilité pour passer mes séquences, pour son écoute, les pauses café, les petits déjeuners. Tu as toujours été là pour m’écouter me plaindre et ça n'a pas dû être facile tous les jours. Alors merci à toi, pour tes valeurs humaines, ton humour, ton implication au laboratoire et ta bienveillance envers moi. Thomas Becking, j’aimerai te remercier pour les moments que tu m’as accordés et pour nos échanges. Mais plus encore je te remercie pour tes qualités humaines, ton ouverture d’esprit, ton soutien et ton écoute lors de cette dernière année. Je souhaite remercier Benoit Porcheron, pour sa grande disponibilité pour passer mes échantillons au lyoph et pour sa gentillesse. Je désire également remercier Willy Aucher, pour tout le temps qu'il a consacré à mes questions et pour ses conseils. J'exprime ma gratitude envers Christine Braquart-Varnier et Marie-Hélène Rodier pour leurs attentions envers moi. Merci également pour votre humour contagieux. Je remercie mes compagnons de bureau, Clémence Loiseau lors de ma première année et Alexandre Crepin pour le reste de la thèse. J’ai passé de bons moments avec vous. Merci Alex pour les relectures, et les critiques sur certains de mes travaux. On a bien rigolé ! Je tiens à remercier Dominique Beguin pour toutes les discussions que nous avons eu pendant la première année. Tous les matins à 7h30, j'avais mon petit bonjour dans le bureau. Tu as été d'une grande écoute et d'un bon soutien pour moi, alors je te remercie du fond du cœur pour ça. J'aimerai remercier Christophe Souil, pour tout le travail qu'il a fait pour nous permettre de manipuler dans de bonnes conditions et pour la préparation des milieux de culture. Je désire également remercier chaleureusement François Baty-Sorel pour son écoute et ses conseils, de même que pour ses formations très enrichissantes. Je lui suis reconnaissante pour son accompagnement pour « ma thèse en 180 secondes ». Je remercie Stéphanie Crapart et Céline Lebon pour tout leur travail associé à la préparation des salles de TPs. J'aimerai également dire merci à Stéphanie pour sa grande efficacité au laboratoire. J’aimerai exprimer ma gratitude envers les étudiants de Licence Sciences du Vivant (2016-2019) et les Master 1 PNBCM (2016-2019) de l’Université de Poitiers pour m’avoir accompagnée dans le développement de ma pédagogie universitaire. J'aimerai également dire merci à Camille Juin avec qui j'ai tellement partagé d'émotions.. de la tristesse, de la joie (l'annonce du bébé à côté du plus bel appareil du laboratoire), c'était super ! Merci de m'avoir écouté
Recommended publications
  • Lpr0050 and Lpr0024 in Legionella Pneumophila
    Characterization of the role of the small regulatory RNA (sRNAs) lpr0050 and lpr0024 in Legionella pneumophila Malak Sadek Natural Resource Sciences Department McGill University Montreal, Canada Supervisor: Prof. Sébastien P. Faucher June , 2019 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Malak Sadek 2019 1 Abstract Legionella pneumophila is a facultative intracellular pathogen, and it is the causative agent of Legionnaires’ disease, a life-threatening form of pneumonia. L. pneumophila is commonly found in most water systems including freshwater bodies, rivers, and lakes as well as in engineered water systems and man-made water distribution systems such as cooling towers. Free-living amoeba in aquatic environments are the primary reservoir of L. pneumophila. Following inhalation of contaminated water droplets by humans, L. pneumophila infects and replicates within lung alveolar macrophages and potentially causes Legionnaires’ disease (LD) in susceptible individuals. The bacterium establishes its intracellular niche by forming the Legionella-containing vacuoles (LCVs). L. pneumophila governs the formation of the LCV and intracellular growth through the Icm/Dot type IVB secretion system. Icm/Dot is able to translocate around 300 protein effectors in the host cell allowing L. pneumophila to modulate many signalling and metabolic pathways of the host to its benefit. It is believed that Small Regulatory RNAs (sRNAs) are major players of regulation of virulence-related genes in L. pneumophila. We investigated the regulatory role of the two sRNA Lpr0050 and Lpr0024. Lpr0050 is encoded on the complementary strand of the effector SdeA. Using northern blot we showed that the cis-encoded sRNALpr0050 is expressed in the Exponential (E) phase and Post-Exponential (PE) phase in the wild-type, ΔcpxR and ΔletS.
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Download PDF Report
    PRINT DATE: 2021-10-05 12:30:28 +0200 JOB ID: 29ae139a-3a41-4571-a19b-809af76a3ec5 RESULT PAGE: https://tygs.dsmz.de/user_results/show?guid=29ae139a-3a41-4571-a19b-809af76a3ec5 Table 1: Phylogenies Publication-ready versions of both the genome-scale GBDP tree and the 16S rRNA gene sequence tree can be customized and exported either in SVG (vector graphic) or PNG format from within the phylogeny viewers in your TYGS result page. For publications the SVG format is recommended because it is lossless, always keeps its high resolution and can also be easily converted to other popular formats such as PDF or EPS. Please follow the link provided above! Table 2: Identification The below list contains the result of the TYGS species identification routine. Explanation of remarks that might occur in the below table: remark [R1]: The TYGS type strain database is automatically updated on an almost daily basis. However, if a particular type strain genome is not available in the TYGS database, this can have several reasons which are detailed in the FAQ. You can request an extended 16S rRNA gene analysis via the 16S tree viewer found in your result page to detect not yet genome-sequenced type strains relevant for your study. remark [R2]: > 70% dDDH value (formula d4) and (almost) minimal dDDH values for gene-content formulae d0 and d6 indicate a potentially unreliable identification result and should thus be checked via the 16S rRNA gene sequence similarity. Such strong deviations can, in principle, be caused by sequence contamination. remark [R3]: G+C content difference of > 1 % indicates a potentially unreliable identification result because within species G+C content varies no more than 1 %, if computed from genome sequences (PMID: 24505073).
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]
  • List of the Pathogens Intended to Be Controlled Under Section 18 B.E
    (Unofficial Translation) NOTIFICATION OF THE MINISTRY OF PUBLIC HEALTH RE: LIST OF THE PATHOGENS INTENDED TO BE CONTROLLED UNDER SECTION 18 B.E. 2561 (2018) By virtue of the provision pursuant to Section 5 paragraph one, Section 6 (1) and Section 18 of Pathogens and Animal Toxins Act, B.E. 2558 (2015), the Minister of Public Health, with the advice of the Pathogens and Animal Toxins Committee, has therefore issued this notification as follows: Clause 1 This notification is called “Notification of the Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2561 (2018).” Clause 2 This Notification shall come into force as from the following date of its publication in the Government Gazette. Clause 3 The Notification of Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2560 (2017) shall be cancelled. Clause 4 Define the pathogens codes and such codes shall have the following sequences: (1) English alphabets that used for indicating the type of pathogens are as follows: B stands for Bacteria F stands for fungus V stands for Virus P stands for Parasites T stands for Biological substances that are not Prion R stands for Prion (2) Pathogen risk group (3) Number indicating the sequence of each type of pathogens Clause 5 Pathogens intended to be controlled under Section 18, shall proceed as follows: (1) In the case of being the pathogens that are utilized and subjected to other law, such law shall be complied. (2) Apart from (1), the law on pathogens and animal toxin shall be complied.
    [Show full text]
  • Investigation of Bacterial Community Composition and Abundance in a Lowland Arable Catchment
    Investigation of bacterial community composition and abundance in a lowland arable catchment A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the degree of Doctor of Philosophy By Ali Khalaf A. Albaggar 2014 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior consent. Abstract This study aimed to characterise the bacterial community composition and abundance in the River Wensum in Norfolk using epifluorescence microscopy (EFM), automated ribosomal intergenic analysis (ARISA) and 454 pyrosequencing. It also aimed to determine the effects of spatial and temporal variations and environmental factors on bacterial community composition and abundance in this intensively farmed lowland catchment. The three techniques provided the same trends in bacterial community composition and abundance across the Wensum catchment. Total bacterial numbers ranged from 0.21 × 10 6 cells/mL to 5.34 × 10 6 cells/mL (mean = 1.1 × 10 6 cells/mL). The bacterial community composition and abundance showed significant differences between sites and times and were related to environmental parameters, with temperature and flow rate explaining most of the variation in bacterial community composition and abundance. Bacterial abundance increases as water moves downstream, while bacterial diversity decreases as water moves downstream. Some operational taxonomic units (OTUs) become commoner as the water moves downstream (3 rd and 4 th order streams). This presumably reflects the fact that these bacteria are actively growing in the river, and reducing the abundance of other taxa.
    [Show full text]
  • Application of Multilocus Sequence Analysis (MLSA) for Accurate Identification of Legionella Spp. Isolated from Municipal Founta
    The Journal of Microbiology (2012) Vol. 50, No. 1, pp. 127–136 DOI 10.1007/s12275-012-1243-1 Copyright ⓒ 2012, The Microbiological Society of Korea Application of Multilocus Sequence Analysis (MLSA) for Accurate Identification of Legionella spp. Isolated from Municipal Fountains in Chengdu, China, Based on 16S rRNA, mip, and rpoB Genes Wang Guan1, Ying Xu1,2, Da-li Chen1, Legionella (http://www.ncbi.nlm.nih.gov/Taxonomy, accessed 1 1 1,3 July 25, 2011). Among them, approximately 20 are involved Jia-nan Xu , Yu Tian , and Jian-ping Chen * in human diseases. Legionella infection is mainly caused by inhalation of contaminated aerosol, leading to flu-like Pon- 1 Department of Parasitology, West China School of Preclinical and Forensic tiac fever or the more serious legionellosis, also known as Medicine, Sichuan University, Chengdu 610041, Sichuan, P. R. China 2Department of Clinical Laboratories, the First Affiliated Hospital of Legionnaires’ disease (LD). The latter is a form of severe Chengdu Medical College, Chengdu, 610500, Sichuan, P. R. China pneumonia with a fatality rate that may reach 50% in im- 3Animal Disease Prevention and Food Safety Key Laboratory of Sichuan munocompromised patients (Fields et al., 2002; Yu et al., Province, Sichuan University, Chengdu 610064, Sichuan, P. R. China 2002). One species, Legionella pneumophila, is responsible for about 90% of LD cases. The other species are rarely (Received May 16, 2011 / Accepted August 31, 2011) pathogenic, although Legionella longbeachae accounts for about 30% of cases of LD in Australia and New Zealand Legionellosis (Legionnaires’ disease; LD) is a form of severe (Helbig et al., 2002; Newton et al., 2010).
    [Show full text]
  • Nosocomial Legionnaires' Disease
    Frontiers in Science 2012, 2(4): 62-75 DOI: 10.5923/j.fs.20120204.03 Nosocomial Legionnaires’ Disease: Risque and Prevention Jalila Tai1,2, Mohamed Nabil Benchekroun2, Mly Mustapha Ennaji2, Mariam Mekkour1, Nozha Cohen1,* 1Division de Microbiologie et d’hygiène des Produits de l’Environnement, Institut Pasteur du Maroc, Casablanca, 20360, Maroc 2Laboratoire de Biotechnologie, de l’Environnement et de la Santé, Faculté des Sciences et Techniques, Université Hassan II-Mohammedia, 146, Maroc Abstract In 1977, Fraser et al. described an outbreak of pneumonia among legionnaires attending a convention at a hotel in Philadelphia in 1976. Legionnaires’ disease (LD) can be nosocomial, community acquired or travel related. The incidence of hospital-acquired legionellosis appears to be increasing. Colonization of water systems by Legionella spp. is ubiquitous in hospitals throughout the world. The outbreak, which later became known as legionnaires’ disease, was caused by a new pleomorphic, faintly staining gram-negative bacillus, L. pneumophila, which was isolated at the Center for Disease Control from lung tissues of legionnaires who died. Risk assessment for this disease forms the basis for the institution of control measures. Detection and quantification of Legionella spp. in the environment, in particular in the hospital water distribution system is one of the cornerstones of risk assessment. This review summarizes the current state-of-the-art regarding these aspects and points out important areas which require further study. The environmental surveillance revealed that the centralized hot water distribution system of the hospital was colonized with Legionella. Methods of prevention of the organisms for eradication involved in hospital water systems.
    [Show full text]
  • Aquascreen® Legionella Species Qpcr Detection Kit
    AquaScreen® Legionella species qPCR Detection Kit INSTRUCTIONS FOR USE FOR USE IN RESEARCH AND QUALITY CONTROL Symbols Lot No. Cat. No. Expiry date Storage temperature Number of reactions Manufacturer INDICATION The AquaScreen® Legionella species qPCR Detection kit is specifically designed for the quantitative detection of several Legionella species in water samples prepared with the AquaScreen® FastExt- ract kit. Its design complies with the requirements of AFNOR T90-471 and ISO/TS 12869:2012. Legionella are ubiquitous bacteria in surface water and moist soil, where they parasitize protozoa. The optimal growth temperature lies between +15 and +45 °C, whereas these gram-negative bacteria are dormant below 20 °C and do not survive above 60 °C. Importantly, Legionella are well-known as opportunistic intracellular human pathogens causing Legionnaires’ disease and Pontiac fever. The transmission occurs through inhalation of contami- nated aerosols generated by an infected source (e.g. human-made water systems like shower- heads, sink faucets, heaters, cooling towers, and many more). In order to efficiently prevent Legionella outbreaks, water safety control measures need syste- matic application but also reliable validation by fast Legionella testing. TEST PRINCIPLE The AquaScreen® Legionella species Kit uses qPCR for quantitative detection of legionella in wa- ter samples. In contrast to more time-consuming culture-based methods, AquaScreen® assays need less than six hours including sample preparation and qPCR to reliably detect Legionella. Moreover, the AquaScreen® qPCR assay has proven excellent performance in terms of specificity and sensitivity: other bacterial genera remain undetected whereas linear quantification is obtai- ned up to 1 x 106 particles per sample, therefore requiring no material dilution.
    [Show full text]
  • Immunoproteomic Identification of Biomarkers for Diagnosis of Legionellosis
    Immunoproteomic identification of biomarkers for diagnosis of legionellosis Submitted in total fulfilment of the requirements for the degree of Doctor of philosophy by Kaylass Poorun Department of Chemistry and Biotechnology Faculty of Science, Engineering and Technology Swinburne University of Technology Australia 2014 Abstract Abstract Legionellosis, a disease with significant mortality and morbidity rates, is considered to be the second most frequent cause of severe community-acquired pneumonia. It is difficult to distinguish from other types of pneumonia due to similar clinical manifestations. Several studies have demonstrated the inadequacies of current diagnostic tests for confirming Legionella infections. This study was aimed at identifying biomarkers that can be used in an improved test. A comparative proteomic analysis, using DIGE, was carried out between L. pneumophila ATCC33152 and L. longbeachae NSW150 and D4968 isolates. While many homologous proteins were found to be commonly expressed, numerous others were identified to be differentially expressed under similar in vitro conditions suggesting that the two species have different lifestyles and infection strategies. The bacterial immunoglobulin domain containing protein, found to share sequence homology to Type V secretion proteins intimin and invasin, is not known to be present in Legionella. Human sera containing antibodies against Legionella from a set of blind samples were identified by ELISA. Downstream analyses revealed that diverse immunogens may be responsible for eliciting immune response in different Legionella species which in turn show little to no congeneric cross-reactivity. To the best of our knowledge, this is a unique finding not previously reported. Several serological diagnostic tests currently in use do not include many Legionella species in their testing panel, which may be a reason for many Legionella species being under-reported.
    [Show full text]
  • Antigenic Heterogeneity Among Legionella, Fluoribacter, and Tatlockia Species Analyzed by Crossed Immunoelectrophoresis
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1987, p. 351-356 Vol. 37, No. 4 0020-7713/87/040351-06$02.00/0 Copyright 0 1987, International Union of Microbiological Societies Antigenic Heterogeneity Among Legionella, Fluoribacter, and Tatlockia Species Analyzed by Crossed Immunoelectrophoresis MICHAEL T. COLLINS,l* JETTE M. BANGSBORG,2 AND NIELS H@IBY2 Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin 53706’ and State Serum Institute, Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark2 Crossed immunoelectrophoresis (XIE) reference systems were established for Fluoribacter (Legionella) (containing Fluoribacter bozemanae, Fluoribacter dumofii, and Fluoribacter gormanii) and for Tatlockia (Legionella) micdadei. The Fluoribacter and Tatlockia XIE reference systems contained 54 and 72 anode- migrating antigens, respectively. These two systems, together with the previously described polyvalent Legionella pneumophila (serogroups 1 through 6) XIE reference system, were used to study the cross- reactivities of antigens from organisms comprising the three proposed genera in the family Legionellaceae. Antigenic homology was expressed as the matching coefficient (MC), the ratio of the number of cross-reactive antigens to the total number of antigens. The MCs for individual L. pneumophila serogroups when the polyvalent L. pneumophila antibody was used were 0.98 f 0.05, which was significantly higher than the MCs determined by using Fluoribacter or Tatlockia antibodies (0.50 f 0.13) (P < 0.001). The MCs for the three species of Fluoribacter when polyvalent Fluoribacter antibody was used were 0.93 & 0.10, which was also significantly higher than the MCs when heterologous antibodies were used (0.40 f 0.04) (P< 0.001). The MCs for T.
    [Show full text]
  • Pesnyakevich.Pdf
    щ УДК 579.61(075.8)+579.63(075.8) ББК 52.64я73+51.201.7я73 П28 Рецензенты: кафедра биотехнологии и биоэкологии Белорусского государственного технологическго университета (заведующий кафедрой кандидат химических наук, доцент В. Н. Леонтьев); кандидат биологических наук, доцент Н. А. Белясова; кандидат биологических наук, доцент Л. Н. Валентович Песнякевич, А. Г. П28 Медицинская и санитарная микробиология : учеб. пособие / А. Г. Пес- някевич. – Минск, 2017. – 231 с. ISBN 978-985-566-452-0. Рассматриваются инфекционный процесс как взаимодействие патогена и ор- ганизма-хозяина, патогенность и вирулентность как общие свойства возбудите- лей инфекционных заболеваний, факторы патогенности и вирулентности болезне- творных бактерий и их действие на клеточно-молекулярном уровне. Описываются общие принципы борьбы с инфекционными заболеваниями, а также основы про- филактики и терапии инфекционных болезней. Приводятся современные сведения о систематическом положении возбудителей инфекционных заболеваний бактери- альной этиологии и вызываемых ими инфекционных процессах. Предназначено для студентов, обучающихся в учреждениях высшего образова- ния по специальностям «Биология (по направлениям)», «Микробиология». УДК 579.61(075.8)+579.63(075.8) ББК 52.64я73+51.201.7я73 ISBN 978-985-566-452-0 © Песнякевич А. Г., 2017 © БГУ, 2017 ВВЕДЕНИЕ Предлагаемое учебное пособие написано согласно программе, утверж- денной для студентов биологического факультета Белорусского государ- ственного университета. По этой причине в книге отсутствуют общие све дения о строении, физиологии и экологии микроорганизмов, а также о строении и функционировании иммунной системы млекопитающих, уже известные студентам пятого года обучения из общих курсов «Ми- кробиология» и «Основы иммунологии». Кроме того, в разделе «Частная медицинская микробиология» рассматриваются только бактериальные возбудители инфекционных заболеваний человека, поскольку о па тоген- ных грибах и вирусах студенты биофака БГУ узнают из других курсов, читаемых на факультете.
    [Show full text]