Suppresses the Expression of Clock Genes by Interfering with E-Box-Mediated Transcription

Total Page:16

File Type:pdf, Size:1020Kb

Suppresses the Expression of Clock Genes by Interfering with E-Box-Mediated Transcription TNF-␣ suppresses the expression of clock genes by interfering with E-box-mediated transcription Gionata Cavadini*, Saskia Petrzilka*, Philipp Kohler*, Corinne Jud†, Irene Tobler‡, Thomas Birchler*§, and Adriano Fontana*§ *Division of Clinical Immunology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland; †Institute of Biochemistry, University of Fribourg, Rue du Muse´e 5, CH-1700 Fribourg, Switzerland; and ‡Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and approved June 15, 2007 (received for review February 22, 2007) Production of TNF-␣ and IL-1 in infectious and autoimmune dis- by the suprachiasmatic nuclei (SCN) of the hypothalamus being eases is associated with fever, fatigue, and sleep disturbances, entrained by light stimuli to the environment. This self- which are collectively referred to as sickness behavior syndrome. In sustaining circadian pacemaker uses a molecular mechanism mice TNF-␣ and IL-1 increase nonrapid eye movement sleep. Be- similar to the one used in subsidiary oscillators present in any cause clock genes regulate the circadian rhythm and thereby type of cell in the organism. The molecular clockwork involves locomotor activity and may alter sleep architecture we assessed the transcriptional repressor genes Per1, Per2, Cry1, and Cry2,as the influence of TNF-␣ on the circadian timing system. TNF-␣ is well as the transcriptional activators Bmal1 and Clock. The shown here to suppress the expression of the PAR bZip clock- heterodimerized transcription factor BMAL1:CLOCK activates controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per and Cry gene transcription by binding to E-box mo- Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice tives in their promoters. PER and CRY proteins inhibit infused with the cytokine. The effect of TNF-␣ on clock genes is BMAL1:CLOCK complexes, thereby inhibiting their own gene shared by IL-1␤, but not by IFN-␣, and IL-6. Furthermore, TNF-␣ expression. This feedback-loop mechanism generates circadian interferes with the expression of Dbp in the suprachiasmatic oscillations of Per and Cry expression. The same positive and nucleus and causes prolonged rest periods in the dark when mice negative regulatory components also govern the rhythmic ex- show spontaneous locomotor activity. Using clock reporter genes pression of the nuclear orphan receptor Rev-Erb␣, which in turn TNF-␣ is found here to inhibit CLOCK-BMAL1-induced activation of represses the transcription of Bmal1 through direct binding to a E-box regulatory elements-dependent clock gene promoters. We REV-ERB␣ response element in the Bmal1 promoter. Thereby, suggest that the increase of TNF-␣ and IL-1␤, as seen in infectious REV-ERB␣ interconnects the cyclic expression of positive- and and autoimmune diseases, impairs clock gene functions and causes negative-loop members (for reviews, see refs. 15 and 16). The fatigue. targeted inactivation of Bmal1 showed that this gene is indis- pensable for the maintenance of circadian functions (17). Clock- behavior ͉ circadian rhythms ͉ cytokines ͉ innate immunity deficient mice show robust circadian patterns of locomotor activity with period lengths shortened by only 20 min; Dbp mRNA rhythm, however, was severely blunted in both the SCN n microbial infections, host defense mechanisms activate the and the liver (18). The deletion of the clock-controlled genes innate and adaptive arms of the immune response. Microbial I (CCG) PAR bZip transcription factors Dbp, Tef, and Hlf only recognition by Toll-like receptors (TLR) expressed by macrophages moderately affects the circadian clock but leads to pronounced and dendritic cells leads to the activation of signal transduction disturbances of locomotor activity. In the present study, our pathways with induction of various genes including IL-1, TNF-␣, objective was to examine (i) whether and how TNF-␣ influences IL-6, and IFN-␣/␤ (1–3). These cytokines mediate the acute-phase the circadian timing system and modulates the expression of response, which is a systemic generalized reaction characterized by clock genes and CCGs, and (ii) whether TNF-␣ affects locomo- fever, fatigue, and weight loss, an increase in the number of tor activity, rest time, and periodicity in mice. neutrophils, and the induction of synthesis of acute-phase proteins in the liver with increased haptoglobin, antiproteases, complement Results components, fibrinogen, ceruloplasmin, and ferritin in the blood Suppressed Expression of Clock Genes in TNF-␣-Treated Synchronized (4). An acute phase response with a dose-dependent state of Fibroblasts. To determine whether TNF-␣ interferes with circa- lethargy and severe fatigue has been described in cancer patients ␣ ␣ dian gene expression, we used NIH 3T3 fibroblast cultures IMMUNOLOGY treated with TNF- (5). A link between production of TNF- and synchronized by a 2-h serum shock; this system elicits a well daytime fatigue has also been suggested in rheumatoid arthritis described circadian expression of central clock genes and CCGs (RA) and in the obstruction sleep apnea syndrome (OSAS). for at least three cycles (19). We analyzed serum shocked Inhibition of TNF-␣ by soluble TNF-receptor p75 improves dis- abling fatigue in patients with RA (6). A TNF-␣-308 (A-G) single-nucleotide polymorphism and elevated TNF-␣ serum levels Author contributions: G.C. and S.P. contributed equally to this work; T.B. and A.F. contrib- have been described in OSAS (7, 8). Moreover, neutralization of uted equally to this work; G.C., S.P., I.T., T.B., and A.F. designed research; G.C., S.P., P.K., C.J., TNF-␣ reduces daytime sleepiness in sleep apneics (9). Direct T.B., and A.F. performed research; C.J. and I.T. contributed new reagents/analytic tools; G.C., S.P., I.T., T.B., and A.F. analyzed data; and T.B. and A.F. wrote the paper. effects of TNF-␣ on spontaneous sleep are also shown in animal studies. i.v., i.p., or intracerebroventricular injections of TNF-␣ or This article is a PNAS Direct Submission. IL-1 enhance nonrapid eye-movement (NREM) sleep (for reviews, Abbreviations: TLR, Toll-like receptor; RA, rheumatoid arthritis; NREM, nonrapid eye movement; SCN, suprachiasmatic nuclei; CCG, clock-controlled gene; ZT, Zeitgeber time; see refs. 10 and 11). This increase in NREM sleep is independent LD, 12-h light/12-h dark. of the fever-inducing capacity of these cytokines (12). Although §To whom correspondence may be addressed. E-mail: [email protected] or there is good evidence for TNF-␣ and IL-1 as mediators of altered [email protected]. sleep–wake behavior, the underlying mechanisms remain elusive. This article contains supporting information online at www.pnas.org/cgi/content/full/ The regulation of sleep depends on a circadian control and a 0701466104/DC1. homeostatic drive (13, 14). The circadian influence is provided © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0701466104 PNAS ͉ July 31, 2007 ͉ vol. 104 ͉ no. 31 ͉ 12843–12848 Downloaded by guest on October 1, 2021 A B Dbp Per 1 3 Clock 3 Per1 3 Dbp 120 140 rol 2 2 2 Rev-erb α nt 100 * 120 1 1 1 Clock 100 o t=0 o 80 t Bmal1 Per1 80 ** n 3 6 Per2 3 Tef * 60 *** 60 tio 2 4 2 Per2 ** a 40 2 1 *** 40 1 Per3 ** 0 elative to co 20 20 vari Dbp r Per3 Hlf *** ld 8 Rev-erb α 2 3 0 0 % 6 Tef 2 * 4 1 o x-f 1 Hlf 2 *** 20 806040 100 120 140 Per 2 Per 3 0 4 8 12162024283236 0 4 8 12162024283236 0 4 8 12162024283236 Zeitgeber Time (hours) % relative to control 140 160 120 140 100 120 3 Dbp ** 100 0 24h TNF 80 ** C = 80 t D 60 24h TNF/ 24h TNF 60 *** to 2 24h TNF/ 24h mock 40 n n 40 elative to control 20 20 r 0 0 % atio ari Dbp 1 α β α γ v ø TNF-αIL-1β IL-6 IFN-αIFN-γ ø TNF- IL-1 IL-6 IFN- IFN- d Per1 l 24 Per2 x-fo 0 8 16 24 32 40 48 56 Clock Fig. 2. Cytokine effects on Dbp, Per1, Per2, and Per3 in NIH 3T3 fibroblasts. Zeitgeber Time (hours) Confluent cells were synchronized with 50% horse serum for 2 h (ZT 0–2). Dbp * After serum shock, cells were kept in serum-free medium with TNF-␣ (10 TNF-α ␤ ␣ ␥ E Per1 *** ng/ml), IL-1 (10 ng/ml), IL-6 (10 ng/ml), IFN- (10 ng/ml), IFN- (20 ng/ml) or 1.6 (ng/ml): Zeitgeber time: 1.4 without cytokines and analyzed at ZT 24 with quantitative real-time RT-PCR. 0.1 48 Per2 *** 1.2 1 Results are shown as percent of expression to noncytokine-treated fibroblast 1.0 Clock Ϯ 0.8 10 cultures; one representative experiment of three; mean values of triplicates 0.6 20 Յ Յ Յ 0 20406080100120140 SD; independent sample t test; *, P 0,05; **, P 0,005; ***, P 0.0005. 0.4 0.2 % expression compared to mock-treated 0 to mock-treated rel. mRNA expression Dbp Per1 Per2 Clock second circadian cycle and analyzed rhythmic expression up to Fig. 1. TNF-␣ impairs expression of clock genes in synchronized NIH 3T3 60 h. In this, emphasis was placed on Dbp expression, because its ␣ fibroblasts. (A) TNF- attenuates circadian Per1/2/3 and PAR bZIP family (Dbp, amplitude was the most affected by TNF-␣. Rhythmicity and Tef, and Hlf) gene expression. After serum shock (ZT 0–2), cells were kept in period length of Dbp expression were not changed by TNF-␣, but serum-free medium with TNF-␣ (10 ng/ml; open circles) or without the cyto- kine (filled circles) and analyzed every 4 h with quantitative real-time RT-PCR.
Recommended publications
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • TWIST1 and TWIST2 Regulate Glycogen Storage and Inflammatory
    J M MUDRY and others TWIST regulation of metabolism 224:3 303–313 Research in muscle TWIST1 and TWIST2 regulate glycogen storage and inflammatory genes in skeletal muscle Correspondence 1 1 2 1,2 Jonathan M Mudry , Julie Massart , Ferenc L M Szekeres and Anna Krook should be addressed to A Krook 1Section for Integrative Physiology, Department of Molecular Medicine and Surgery, and 2Section for Integrative Email Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden [email protected] Abstract TWIST proteins are important for development of embryonic skeletal muscle and play a role Key Words in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism " TWIST in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 " metabolism and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, " glycogen overexpression of Twist reduced total glycogen content without altering glucose uptake. " skeletal muscle Expression of TWIST1 or TWIST2 reduced Pdk4 mRNA, while increasing mRNA levels of Il6, Tnfa, and Il1b. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered in ob/ob mice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Journal of Endocrinology Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • A Molecular Switch for Photoperiod Responsiveness in Mammals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 20, 2193–2198, December 21, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.10.048 Report A Molecular Switch for Photoperiod Responsiveness in Mammals Hugues Dardente,1,* Cathy A. Wyse,1 Mike J. Birnie,1 type 2 thyroid hormone deiodinase (Dio2) expression in the Sandrine M. Dupre´,2 Andrew S.I. Loudon,2 hypothalamus [6]. This enzyme is a gatekeeper for the effects Gerald A. Lincoln,3 and David G. Hazlerigg1,* of thyroid hormone in the hypothalamus, controlling the avail- 1Institute of Biological and Environmental Sciences, Zoology ability of the active form of thyroid hormone, triiodothyronine, Building, Tillydrone Avenue, University of Aberdeen, and dictating the expression of summer phenotypes [7, 8]. Aberdeen AB24 2TZ, UK A unique feature of mammalian seasonal biology [2–5] is that 2Faculty of Life Sciences, University of Manchester, these effects of day length on PT function depend on the pineal Manchester M13 9PT, UK hormone melatonin, which acts via a high density of melatonin 3Queen’s Medical Research Institute, University of Edinburgh, receptors localized in the PT [ 9, 10]. Melatonin is a circadian Edinburgh EH16 4SB, UK signal, with a nocturnal waveform proportional to the length of the night, and consequently, in the PT, melatonin controls the rhythmical expression of multiple transcription factors Summary implicated in circadian function [11–15]. Hence, we hypothe- sized that photoperiodic effects on TSHb expression in the Seasonal synchronization based on day length (photope- PT are initiated through melatonin’s effects on circadian tran- riod) allows organisms to anticipate environmental change.
    [Show full text]
  • Structural and Numerical Changes of Chromosome X in Patients with Esophageal Atresia
    European Journal of Human Genetics (2014) 22, 1077–1084 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Structural and numerical changes of chromosome X in patients with esophageal atresia Erwin Brosens*,1,2,5, Elisabeth M de Jong1,2,5, Tahsin Stefan Barakat3, Bert H Eussen1, Barbara D’haene4, Elfride De Baere4, Hannah Verdin4, Pino J Poddighe1, Robert-Jan Galjaard1, Joost Gribnau3, Alice S Brooks1, Dick Tibboel2 and Annelies de Klein1 Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is a relatively common birth defect often associated with additional congenital anomalies such as vertebral, anal, cardiovascular, renal and limb defects, the so-called VACTERL association. Yet, little is known about the causal genetic factors. Rare case reports of gastrointestinal anomalies in children with triple X syndrome prompted us to survey the incidence of structural and numerical changes of chromosome X in patients with EA/TEF. All available (n ¼ 269) karyotypes of our large (321) EA/TEF patient cohort were evaluated for X-chromosome anomalies. If sufficient DNA material was available, we determined genome-wide copy number profiles with SNP array and identified subtelomeric aberrations on the difficult to profile PAR1 region using telomere-multiplex ligation-dependent probe amplification. In addition, we investigated X-chromosome inactivation (XCI) patterns and mode of inheritance of detected aberrations in selected patients. Three EA/TEF patients had an additional maternally inherited X chromosome. These three female patients had normal random XCI patterns. Two male EA/TEF patients had small inherited duplications of the XY-linked SHOX (Short stature HOmeoboX-containing) locus.
    [Show full text]
  • C/Ebpα Is an Essential Collaborator in Hoxa9/Meis1-Mediated Leukemogenesis
    C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis Cailin Collinsa, Jingya Wanga, Hongzhi Miaoa, Joel Bronsteina, Humaira Nawera, Tao Xua, Maria Figueroaa, Andrew G. Munteana, and Jay L. Hessa,b,1 aDepartment of Pathology, University of Michigan, Ann Arbor, MI 48109; and bIndiana University School of Medicine, Indianapolis, IN 46202 Edited* by Louis M. Staudt, National Institutes of Health, Bethesda, MD, and approved May 19, 2014 (received for review February 12, 2014) Homeobox A9 (HOXA9) is a homeodomain-containing transcrip- with Hoxa9. In addition, C/EBP recognition motifs are enriched tion factor that plays a key role in hematopoietic stem cell expan- at Hoxa9 binding sites. sion and is commonly deregulated in human acute leukemias. A C/EBPα is a basic leucine-zipper transcription factor that plays variety of upstream genetic alterations in acute myeloid leukemia a critical role in lineage commitment during hematopoietic dif- −/− (AML) lead to overexpression of HOXA9, almost always in associ- ferentiation (18). Whereas Cebpa mice show complete loss of ation with overexpression of its cofactor meis homeobox 1 (MEIS1). the granulocytic compartment, recent work shows that loss of α A wide range of data suggests that HOXA9 and MEIS1 play a syn- C/EBP in adult HSCs leads to both an increase in the number ergistic causative role in AML, although the molecular mechanisms of functional HSCs and an increase in their proliferative and leading to transformation by HOXA9 and MEIS1 remain elusive. In repopulating capacity (19, 20). Conversely, CEBPA overexpression can promote transdifferentiation of a variety of fibroblastic cells to this study, we identify CCAAT/enhancer binding protein alpha (C/ the myeloid lineage and can induce monocytic differentiation in EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated α MLL-fusion protein-mediated leukemias (21, 22).
    [Show full text]
  • The Role of Constitutive Androstane Receptor and Estrogen Sulfotransferase in Energy Homeostasis
    THE ROLE OF CONSTITUTIVE ANDROSTANE RECEPTOR AND ESTROGEN SULFOTRANSFERASE IN ENERGY HOMEOSTASIS by Jie Gao Bachelor of Engineering, China Pharmaceutical University, 1999 Master of Science, China Pharmaceutical University, 2002 Submitted to the Graduate Faculty of School of Pharmacy in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2012 UNIVERSITY OF PITTSBURGH School of Pharmacy This dissertation was presented by Jie Gao It was defended on January 18, 2012 and approved by Billy W. Day, Professor, Pharmaceutical Sciences Donald B. DeFranco, Professor, Pharmacology & Chemical Biology Samuel M. Poloyac, Associate Professor, Pharmaceutical Sciences Song Li, Associate Professor, Pharmaceutical Sciences Dissertation Advisor: Wen Xie, Professor, Pharmaceutical Sciences ii Copyright © by Jie Gao 2012 iii THE ROLE OF CONSTITUTIVE ANDROSTANE RECEPTOR AND ESTROGEN SULFOTRANSFERASE IN ENERGY HOMEOSTASIS Jie Gao, PhD University of Pittsburgh, 2012 Obesity and type 2 diabetes are related metabolic disorders of high prevalence. The constitutive androstane receptor (CAR) was initially characterized as a xenobiotic receptor regulating the responses of mammals to xenotoxicants. In this study, I have uncovered an unexpected role of CAR in preventing obesity and alleviating type 2 diabetes. Activation of CAR prevented obesity and improved insulin sensitivity in both the HFD-induced type 2 diabetic model and the ob/ob mice. In contrast, CAR null mice maintained on a chow diet showed spontaneous insulin insensitivity. The metabolic benefits of CAR activation may have resulted from inhibition of hepatic lipogenesis and gluconeogenesis. The molecular mechanism through which CAR activation suppressed hepatic gluconeogenesis might be mediated via peroxisome proliferator- activated receptor gamma coactivator-1 alpha (PGC-1α).
    [Show full text]
  • Transcription Mediated Insulation and Interference Direct Gene Cluster
    1 Transcription mediated insulation and interference direct gene 2 cluster expression switches 3 Tania Nguyen1, Harry Fischl1#, Françoise S. Howe1#, Ronja Woloszczuk1#, Ana Serra 4 Barros1*, Zhenyu Xu2*, David Brown1, Struan C. Murray1, Simon Haenni1, James M. 5 Halstead1, Leigh O’Connor1, Gergana Shipkovenska1, Lars M. Steinmetz2 and Jane Mellor1§ 6 1Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK 7 2European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, 8 Germany 9 10 . 11 # , * Equal contribution 12 § Corresponding author: [email protected] 13 14 Competing interests statement: JM is an advisor to Oxford Biodynamics Ltd and Sibelius Ltd and sits 15 on the board of Chronos Therapeutics Ltd. OBD supported this work but have no commercial 16 interest in the study design, data collection and interpretation, or the decision to submit the work 17 for publication. 1 18 Abstract 19 In yeast, many tandemly arranged genes show peak expression in different phases of the 20 metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi- 21 modal switch, but it is not clear how these switches are controlled. Using native 22 elongating transcript analysis (NET-seq), we show that transcription itself is a component 23 of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a 24 growth-regulated transcription factor, switches between sense- or antisense-dominant 25 states that also coordinate up- and down-regulation of transcription at neighbouring 26 genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense 27 transcription units (TUs), using different promoter and terminator combinations, that 28 underlie state-switching.
    [Show full text]
  • 273.Full-Text.Pdf
    Copyright 2001 by the Genetics Society of America The te¯on Gene Is Required for Maintenance of Autosomal Homolog Pairing at Meiosis I in Male Drosophila melanogaster John E. Tomkiel,* Barbara T. Wakimoto² and Albert Briscoe, Jr.* *Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48202 and ²Departments of Zoology and Genetics, University of Washington, Seattle, Washington 98195 Manuscript received July 10, 2000 Accepted for publication September 29, 2000 ABSTRACT In recombination-pro®cient organisms, chiasmata appear to mediate associations between homologs at metaphase of meiosis I. It is less clear how homolog associations are maintained in organisms that lack recombination, such as male Drosophila. In lieu of chiasmata and synaptonemal complexes, there must be molecules that balance poleward forces exerted across homologous centromeres. Here we describe the genetic and cytological characterization of four EMS-induced mutations in te¯on (tef), a gene involved in this process in Drosophila melanogaster. All four alleles are male speci®c and cause meiosis I-speci®c nondisjunction of the autosomes. They do not measurably perturb sex chromosome segregation, suggesting that there are differences in the genetic control of autosome and sex chromosome segregation in males. Meiotic transmission of univalent chromosomes is unaffected in tef mutants, implicating the tef product in a pairing-dependent process. The segregation of translocations between sex chromosomes and autosomes is altered in tef mutants in a manner that supports this hypothesis. Consistent with these genetic observations, cytological examination of meiotic chromosomes suggests a role of tef in regulating or mediating pairing of autosomal bivalents at meiosis I.
    [Show full text]
  • Gene Networks Activated by Specific Patterns of Action Potentials in Dorsal Root Ganglia Neurons Received: 10 August 2016 Philip R
    www.nature.com/scientificreports OPEN Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons Received: 10 August 2016 Philip R. Lee1,*, Jonathan E. Cohen1,*, Dumitru A. Iacobas2,3, Sanda Iacobas2 & Accepted: 23 January 2017 R. Douglas Fields1 Published: 03 March 2017 Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. Adaptation in the nervous system in response to external stimuli requires synthesis of new gene products in order to elicit long lasting changes in processes such as development, response to injury, learning, and memory1. Information in the environment is coded in the pattern of action-potential firing, therefore gene transcription must be regulated by the pattern of neuronal firing.
    [Show full text]