ACETONE Method No.: 69 Matrix: Air Target Concentration

Total Page:16

File Type:pdf, Size:1020Kb

ACETONE Method No.: 69 Matrix: Air Target Concentration ACETONE Method no.: 69 Matrix: Air Target concentration: 1000 ppm (2375 mg/m3) (OSHA PEL) Procedure: Air samples are collected by drawing known volumes of air through standard size sampling tubes containing 130 mg of Carbosieve S-III (carbon based molecular sieve) adsorbent in the front section and 65 mg in the back section. The samples are desorbed with 1% dimethylformamide in carbon disulfide, in the presence of magnesium sulfate, and analyzed by GC with FID detection. Recommended air volume and sampling rate: 3 L and 0.05 L/min Reliable quantitation limit: 2.0 ppm (4.7 mg/m3) Standard error of estimate at the target concentration: 8.16% (Section 4.7) Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: March 1988 Chemist: Kevin Cummins Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1 of 17 T-69-FV-01-8803-M 1. General Discussion 1.1 Background 1.1.1 History The previous OSHA method for sampling acetone is essentially the NIOSH method for sampling organic vapors (Ref. 5.1). In that method air samples are collected on coconut shell charcoal and analyzed by GC/FID following desorption with carbon disulfide. One of the major limitations of the NIOSH method is the poor stability of acetone and other ketones on charcoal (Refs. 5.2 - 5.6). Catalytic oxidation and irreversible adsorption (chemisorption) of ketones on the surface of charcoal is thought to account for the low recovery (Ref. 5.3). This effect is most pronounced for samples collected at high relative humidity (Ref. 5.2). Alternative sampling methods have been employed to improve the storage stability of ketones collected on an adsorbent surface. Sample tubes packed with either silica gel (Ref. 5.5) or Ambersorb XE-347 (Rohm & Haas, Philadelphia, PA) (Ref. 5.6), a synthetic, carbonaceous molecular sieve adsorbent, have been used to collect 2-butanone with improved sample stability. Collection of air samples on Ambersorb XE-348, a slightly polar type of carbonaceous molecular sieve material, results in improved storage stability of acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, and isophorone (Ref. 5.2). Pretreatment of coconut shell charcoal with hydroquinone has been shown to slightly improve the stability of cyclohexanone upon storage (Ref. 5.3). Carbosieve S-III (Supelco, Inc., Bellefonte, PA) was used in this evaluation for the collection of acetone. This material is a carbonaceous molecular sieve adsorbent similar to the Ambersorb XE-347 and XE-348. The stability of acetone collected on this adsorbent is superior to that observed with coconut shell charcoal (Section 4.5) and comparable with Ambersorb XE-348 (Ref. 5.2). The sampling capacity of Carbosieve S-III for acetone is greater than both coconut shell or petroleum-based charcoal. It is also greater than that of Ambersorb XE-347, Ambersorb XE-348, and Purasieve, which is a synthetic carbon- based material manufactured by Union Carbide (Section 4.10). Occupational exposures to acetone alone are uncommon. Typically acetone is used with other solvents. It would be advantageous if Carbosieve S-III could be used to collect a variety of other solvents simultaneously with acetone. The sample capacities of Carbosieve S-III for some common solvents have been found to equal or exceed that of coconut shell charcoal (Section 4.10). Common ketones and some esters which are known to be unstable when collected on charcoal are also excellent candidates for evaluation with Carbosieve S-III (Ref. 5.3.). 1.1.2 Toxic effects (This section is for information only and should not be taken as the basis of OSHA policy.) Acetone is a relatively non-toxic solvent. An oral LD50 of 10.7 mL/kg in the rat has been reported. Inhalation of the vapor may produce headaches, fatigue, excitement, and bronchial irritation. (Ref. 5.8) High vapor concentrations will produce anesthesia. There are no confirmed reports of serious effects produced from chronic exposure to low levels of acetone. Prolonged or repeated skin exposure can dry and defat the skin and lead to dermatitis. Direct contact of acetone with the eye may produce temporary corneal injury. (Ref. 5.9) 1.1.3 Workplace exposure Acetone is used as a chemical intermediate and solvent. In 1986, approximately 1.94 billion pounds of acetone were produced in the United States (Ref. 5.10). Approximately one-third of the total amount produced in the United States is used as an intermediate in the production of methacrylates via the acetone cyanohydrin process (Ref. 5.9). Another 15% is used as a solvent for vinyl or acrylic resins, alkyd paints, varnishes and lacquers, oils, waxes, plastics, and rubber cements. Approximately 20% of the total U.S. acetone production is used to produce a variety of common solvents. Methyl isobutyl ketone, methyl isobutyl carbinol, mesityl oxide, hexylene glycol, and isophorone are all derived from reactions in which the initial step involves the self condensation of acetone (Ref. 5.9). Acetone is also used as a chemical intermediate in the production of Bisphenol A, as a 2 of 17 T-69-FV-01-8803-M solvent and chemical intermediate in the pharmaceutical industry, and as a solvent in the processing of cellulose acetate. 1.1.4 Physical properties (Ref. 5.9 unless otherwise noted) CAS no.: 67-64-1 molecular weight: 58.08 appearance: colorless liquid odor: pungent, aromatic-like melting point: -123.5EC boiling point at 1 atm: 56.1EC vapor pressure at 20EC: 24.7 kPa (185 mm Hg) specific gravity: 0.783 (at 20EC relative to water at 4EC) solubility: miscible with water, alcohols, chloroform, ether, and most oils (Ref. 5.8) flash point (closed cup): -18EC autoignition temperature: 538EC flammable (explosive) limits: lower 2.1 (% by volume in air) upper 13 synonyms: 2-propanone, dimethyl-ketone, beta-keto-propane, pyroacetic acid formula: CH3COCH3 The analyte air concentrations throughout this method are based on the recommended sampling and analytical parameters. Air concentrations listed in ppm are referenced to 25EC and 760 mm Hg. 1.2 Limit defining parameters 1.2.1 Detection limit of the analytical procedure The detection limit of the analytical procedure is 0.71 ng per injection. This is the amount of analyte which is readily detectable in the presence of the solvent front. (Section 4.1.) 1.2.2 Detection limit of the overall procedure The detection limit of the overall procedure is 14.1 µg per sample (2.0 ppm or 4.7 mg/m3). This is the amount of acetone spiked on the sampling device which allows recovery of an amount of analyte equivalent to the detection limit of the analytical procedure. (Section 4.2) 1.2.3 Reliable quantitation limit The reliable quantitation limit is 14.1 µg per sample (2.0 ppm or 4.7 mg/m3). This is the smallest amount of analyte which can be quantitated within the requirements of a recovery of at least 75% and a precision (±1.96 SD) of ±25% or better. (Section 4.3) The reliable quantitation limit and detection limits reported in the method are based upon optimization of the instrument for the smallest possible amount of the analyte. When the target concentration of the analyte is exceptionally higher than these limits, they may not be attainable at the routine operating parameters. 1.2.4 Instrument response to the analyte The instrument response over the concentration range of 0.5 to 2 times the target concentration is linear. (Section 4.4) 1.2.5 Recovery The recovery of acetone from samples used in a storage test was equal to or greater than 86.7% when the samples were stored at about 23EC over a 17-day storage period. This value is determined from the equation of the regression line of the graphed storage data, at the 17th day, for ambient storage of samples collected at high relative humidity (Section 4.5). The recovery of the analyte from the collection medium during storage must be 75% or greater. 3 of 17 T-69-FV-01-8803-M 1.2.6 Precision (analytical procedure) The pooled coefficient of variation obtained from replicate determinations of analytical standards at 0.5, 1 and 2 times the target concentration is 0.018. (Section 4.6) 1.2.7 Precision (overall procedure) The precision at the 95% confidence level for the 17-day ambient temperature storage test is ±14.6% (Section 4.7). This includes an additional ±5% for sampling error. The overall procedure must provide results at the target concentration that are ±25% or better at the 95% confidence level. 1.2.8 Reproducibility Six samples collected from a test atmosphere and a draft copy of this procedure were given to a chemist with this evaluation. The samples were analyzed after 59 days of storage at 5EC. No sample deviated from its theoretical value by more than the precision reported in Section 1.2.7. (Section 4.8) 1.3 Advantages This sampling method has a higher sampling capacity and results in improved storage stability for acetone over the existing coconut shell charcoal method. 1.4 Disadvantages 1.4.1 The Carbosieve S-III sampling tubes are slightly more expensive than coconut shell charcoal sampling tubes. 1.4.2 The fine mesh size of Carbosieve S-III (60/80) results in a greater pressure drop across the sample tube than occurs with the conventional coconut shell charcoal sampling tube. At a sampling rate of 0.2 L/min the pressure drop across the tube is 10 in. of water. 2. Sampling Procedure 2.1 Apparatus 2.1.1 Samples are collected with a personal sampling pump that can be calibrated to within ±5% of the recommended flow rate with the sampling device attached.
Recommended publications
  • Novel Aspects in the Preparation of Phorone 2
    Novel Aspects in the Preparation of Phorone Maria Konieczny* and George Sosnovsky Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA Z. Naturforsch. 33b, 454-460 (1978); received Januaiy 4, 1978 Phorone, Mesityl Oxide, Triacetoneamine, Nitroxyls The condensation of acetone using anhydrous hydrogen chloride results after three weeks at room temperature, in a 15% yield of phorone (4) and a 75% yield of mesityl oxide (5). In the presence of one weight percent of the Lewis acid, aluminium chloride, the yield of 4 is increased to 39%. An increase in the amount of the Lewis acid, aluminium chloride, to ten weight percent results in a 22% yield of phorone (4) and a 68% yield of mesityl oxide (5). In the presence of one hundred weight percent of aluminium chloride, ( CH3)2C = CHC CHr C(CH3)2 (CH3)2 C=CHCCH3 in the absence of hydrogen chloride, the condensation produces a 62% yield of mesityl oxide (5) and no phorone (4). In the course of this investigation, two intermediates, 6 and 7 o u (CH5)2C CH2CCH5 (CHJ)2CCH2CCH2C(CH3)2 CI 6 7 were isolated and characterized for the first time. These intermediates are the actual products formed in the condensation of acetone with hydrogen chloride, and not the "free" phorone (4) and mesityl oxide (5). The conversion of 6 and 7 to 5 and 4, respectively, occurs during the isolation stage using a saturated solution of ethanolic potassium hydroxide. Since the discovery of the long-lived nitroxyl science. The most commonly used nitroxyls are radical [1], 2,2,6,6-tetramethyl-4-oxopiperidine-l- prepared by the catalytic oxidation of triacetone- oxyl, and its derivatives, considerably interest has amine (1) or its derivatives with 30% aqueous been shown in the application of these nitroxyls in hydrogen peroxide in the presence of sodium various areas of biological [2, 3] and polymer [3] tungstate [3, 4].
    [Show full text]
  • Gases Supported by IRI Analyzers
    Toll Free | 800.344.0321 Tel | 510.782.8100 Fax | 510.782.8101 www.InfraredIndustries.com The following is a list of gases and vapors that can be analyzed Gases Supported with certain gas analyzers from Infrared Industries. For any application of a particular gas, please contact us to by IRI Analyzers confi rm our ability to meet your needs. GAS/VAPOR GAS/VAPOR 1 Acetaldehyde (Ethanal) 30 trans2Butenal (Crotonaldehyde) 2 Acetaldehyde Diacetate (Ethylidene Diacetate) 31 2Butoxyetanol Skin (Butyl Cellosolve; Ethylene Glycol 3 Acetic Acid (Ethanoic Acid) Monobutyl Ether) 4 Acetophenone (Acetylbenzene; Methyl Phenyl Ketone) 32 Butyl Acetate 5 1Allyloxy2, 3Epoxypropane (A.G.E., Allyl Glycidyl Ether) 33 secButyl Acetate 6 1Aminobutane Skin (Butylamine) 34 tertButyl Acetate 7 Aminoethane (Ethylamine) 35 1tertButyl4Methylbenzene (ptertButyltoluene) 8 2Aminoethanol (Ethanolamine; Monoethanolamine) 36 Camphene 9 Aminomethane (Methylamine) 37 Carbon Monoxide (CO) 10 2Aminopropane (Isopropylamine) 38 Carbon Dioxide (CO2) 11 2Aminotoluene Skin (oMethylaniline; oToluidine) 39 Carbonyl Sulfi de (CO 5) 40 Carbonyl Sulfi de (Carbon Oxysulfi de) 12 Ammonia (NH3) 13 Aniline Skin (Aminobenzene; Phenylamine) 41 Carvone (Carvol) 14 Benzaldehyde (Benzenecarbonal) 42 Chlorobenzene (Monochlorobenzene; Phenyl Chloride) 15 Benzene 43 1Chlorobutane (nButyl Chloride) 16 Benzyl Acetate 44 Chlorodifl uoromethane (Freon 22) 17 Bromobenzene (Phenyl Bromide) 45 1Chloro2, 3EpoxypropaneSkin (αEpichlorohydrin) 18 1Bromobutane (nButyl Bromide) 46 Chloroethane (Ethyl Chloride)
    [Show full text]
  • Ketones and Quinones, Whether Or Not with Other Oxygen Function, and Their Halogenated, Sulphonated, Nitrated Or Nitrosated Derivatives
    29-VI Sub-Chapter VI KETONE-FUNCTION COMPOUNDS AND QUINONE-FUNCTION COMPOUNDS 29.14 - Ketones and quinones, whether or not with other oxygen function, and their halogenated, sulphonated, nitrated or nitrosated derivatives. - Acyclic ketones without other oxygen function : 2914.11 - - Acetone 2914.12 - - Butanone (methyl ethyl ketone) 2914.13 - - 4-Methylpentan-2-one (methyl isobutyl ketone) 2914.19 - - Other - Cyclanic, cyclenic or cycloterpenic ketones without other oxygen function : 2914.22 - - Cyclohexanone and methylcyclohexanones 2914.23 - - Ionones and methylionones 2914.29 - - Other - Aromatic ketones without other oxygen function : 2914.31 - - Phenylacetone (phenylpropan-2-one) 2914.39 - - Other 2914.40 - Ketone-alcohols and ketone-aldehydes 2914.50 - Ketone-phenols and ketones with other oxygen function - Quinones : 2914.61 - - Anthraquinone 2914.69 - - Other 2914.70 - Halogenated, sulphonated, nitrated or nitrosated derivatives The term “ ketones and quinones with other oxygen function ” means ketones and quinones which contain also one or more of the oxygen functions referred to in previous sub-Chapters (alcohol, ether, phenol, aldehyde, etc., functions). VI-2914-1 29.14 (A) KETONES These are compounds containing the group (>C=O), so-called “ carbonyl ” group, and can be represented by the general formula (R-CO-R1), in which R and R1 stand for alkyl or aryl radicals (methyl, ethyl, propyl, phenyl, etc.). Ketones may have two tautomeric forms, the true ketonic form (-CO-) and the enolic form (=C(OH)-), both of which fall in this heading. (I) Acyclic ketones. (1) Acetone (propanone) (CH3COCH3). Found in the products of the dry distillation of wood (methyl alcohol and crude pyroligneous acid), but is mainly obtained by synthesis.
    [Show full text]
  • Ep 0095783 A2
    Europaisch.es Patentamt European Patent Office ® Publication number: 0 095 783 A2 Office europeen des brevets ® EUROPEAN PATENT APPLICATION © Application number: 83105450.7 ® Int. CI.3: C 07 C 45/74, C 07 C 49/203, C 07 C B 01 J ^ 49/603, 29/04, @ Dateof filing: 01.06.83 B 01 J 21/16 (§) Priority: 02.06.82 US 384212 @ Applicant: UNION CARBIDE CORPORATION, Old Ridgebury Road, Danbury Connecticut 06817 (US) @@on ~ ... ,.... ,... nun on ^(7?) Inventor: Reichle, Walter Thomas, 158 Mountain Avenue, j^J/^ Warren New Jersey 07060 (US) @ Representative : Wuesthoff , Franz, Dr.-lng. et al, Patentanwalte Wuesthoff -v. Pechmann-Behrens-Goetz @ Designated Contracting States : DE FR GB Schweigerstrasse 2, D-8000 Miinchen 90 (DE) @ Catalyzed aldol condensations. Heat treated anionic clay mineral is an improved catalyst for the conversion of acetone to mesityl oxide and isophorone as well as for the aldol condensation of other carbonyl-contain- ing compounds. BACKGROUND OF THE INVENTION This invention pertains to aldol condensations catalyzed by heat-treated synthetic anionic clay minerals ana more particularly to the use of these catalysts ror the conversion of acetone to mesityl oxide and isophorone. The alaol condensation of active hydrogen-containing organic carbonyl compounds has found wide use in the chemical industry for the synthesis of a myriad of organic compounds. The earliest catalysts used for this conaensation reaction were bases, such as, alkali metal hydroxides which have been used for the production of 2-ethylhexanediol-l, 3, 2-ethylhexanol-l, diacetone alcohol, isopnorone, mesityl oxide, methylisoamyl ketone, and methylisobutyl ketone. A variety of methods has been disclosed in the literature for converting, for example, acetone by aldol condensation into a wide spectrum of products particularly isophorone and mesityl oxide which are used in industrial solvents and as chemical intermediates for resins, dyes, intersecticiaes.
    [Show full text]
  • 2011Al-Ghamdiphd.Pdf
    Al-Ghamdi, Khalaf (2011) An investigation of heterogeneous base catalysed acetone conversion. PhD thesis. http://theses.gla.ac.uk/2878/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] 1 An investigation of heterogeneous base catalysed acetone conversion Khalaf Al-Ghamdi Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Chemistry College of Science and Engineering 2011 2 Abstract A series of materials have been compared for their activity in the base catalysed condensation of acetone. Activities have been compared after extended times on stream (18 h) and under a H2 containing atmosphere at elevated pressure which is designed to mimic conditions applicable for the single stage transformation of acetone to MIBK. In general, catalysts without a strong hydrogenation function have been screened and so mesityl oxide is the dominant reaction product. However, 1%Pd5%MgO/SiO2 does exhibit high selectivity towards MIBK, demonstrating that single-stage conversion is possible under the conditions investigated. Catalytic activity is found to be a strong function of the material tested.
    [Show full text]
  • Prefeasibility Report Prasol Chemicals Private Limited, Village Honad, Dist Raigad, Maharashtra
    Prefeasibility Report Prasol Chemicals Private limited, Village Honad, Dist Raigad, Maharashtra Pre-Feasibility Report For Proposed Expansion of Synthetic Organic Chemicals Manufacturing unit By PRASOL CHEMICALS PRIVATE LIMITED Project under – Activity 5(f) Category - A Prepared By M/s Prasol Chemicals Private Limited Survey No. 8,13,15,16,25,75, Tal : Khalapur, Dist: Raigad Maharashtra, India Web: prasolchem.com 1 Prefeasibility Report Prasol Chemicals Private limited, Village Honad, Dist Raigad, Maharashtra Table of Contents 1 EXECUTIVE SUMMARY ............................................................................................................................. 4 2 INTRODUCTION OF THE PROJECT ............................................................................................................. 7 IDENTIFICATION OF THE PROJECT AND PROJECT PROPONENT ........................................................................ 7 BRIEF DESCRIPTION OF NATURE OF THE PROJECT ......................................................................................... 7 NEED OF THE PROJECT AND ITS IMPORTANCE TO THE COUNTRY AND/OR REGION ............................................ 9 DEMAND – SUPPLY GAP ................................................................................................................................ 9 IMPORTS VS INDIGENOUS PRODUCTION ............................................................................................................ 9 EXPORT POSSIBILITY ....................................................................................................................................
    [Show full text]
  • OSHA Hazard Classification Guidance for Manufacturers, Importers, And
    HAZARD COMMUNICATION Hazard Classification Guidance for Manufacturers, Importers, and Employers OSHA 3844-02 2016 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards, and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan.
    [Show full text]
  • UH Chemical Hygiene Plan Appendix
    APPENDIX I EMERGENCY TELEPHONE NUMBERS and WORK COORDINATION EMERGENCY TELEPHONE NUMBERS CAMPUS EMERGENCY (24 Hours) x 66911 POISON CENTER 941-4411 Environmental Health & Safety Office (EHSO) Resources Laboratory Safety x 65180 Mark Burch, Chemical Hygiene Officer Biological Safety x 63197 Hubert Olipares, Biological Safety Officer Radiation Safety x 66475 Irene Sakimoto, Radiation Safety Officer Industrial Hygiene x 63204 Emma Kennedy, Industrial Hygienist Hazardous Waste Disposal x 63198 Tim O'Callaghan, Hazardous Material Management Officer HMMP Training/Auditing x 63201 Ray Welch, Environmental and Occupational Safety Specialist Diving Safety x 66420 Dave Pence, Diving Safety Officer Fire Safety x 64953 Jerry Egenberger, Fire Safety Officer Environmental Compliance x 69173 Joel Narusawa, Environmental Compliance Officer Facilities Planning and Management Office (FPMO) Work Coordination x 67134 APPENDIX II LABORATORY INSPECTION CHECKLIST LABORATORY CHECK-UP DATE:_______________________________ ___________ BLDG/ROOM: ____________________________________ PI/LAB SUP:______________________________________ I. GENERAL YES NO COMMENTS a. Laboratory work and storage areas are clean and orderly? b. Emergency notification procedures, contacts, and phone numbers are posted? c. First aid kit readily accessible? Adequately stocked? d. Aisles have minimum 28 inches clearance? e. Food is stored properly; i.e., not in refrigerators or cabinets used to store laboratory samples or chemicals? f. Bicycles are not stored in the laboratory? g. Safety guards are in place for equipment with moving parts (belts, fans, sawblades)? h. Multi-outlet connectors (power strips) are secured? i. Equipment cord insulation is intact; i.e., not cracked or frayed? j. Equipment is grounded? k. A trash container is specifically designated for glass? l. No trip hazards (e.g., cords, equipment, etc.)? m.
    [Show full text]
  • CLH Report Template
    CLH REPORT FOR 4-METHYLPENTAN-2-ONE CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 International Chemical Identification: 4-methylpentan-2-one; isobutyl methyl ketone EC Number: 203-550-1 CAS Number: 108-10-1 Index Number: 606-004-00-4 Contact details for dossier submitter: Environment Agency Austria, Spittelauer Lände 5, A-1090 Vienna on behalf of the Austrian Competent Authority (Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, Stubenring 1, 1010 Vienna, Austria) Version number: 02 Date: September 2018 CLH REPORT FOR 4-METHYLPENTAN-2-ONE CONTENTS 1 IDENTITY OF THE SUBSTANCE........................................................................................................................1 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE...............................................................................................1 1.2 COMPOSITION OF THE SUBSTANCE..........................................................................................................................1 2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING............................................................2 2.1 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA............................2 3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING ......................................................4 4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL.................................................4
    [Show full text]
  • Kinetic Study of the Polycondensation of Acetone to Produce Isophorone Adopting Alumina and Magnesia As Catalyst
    Kinetic Study of the Polycondensation of Acetone to Produce Isophorone Adopting Alumina and Magnesia as Catalyst Andrea Sliepcevich, Davide Moscatelli and Simone Gelosa Dept. di Chimica, Materiali e Ingegneria Chimica “G. Natta” Politecnico di Milano Via Mancinelli 7 – 20131 Milano, Italy Isophorone (3,5,5-Trimethyl-2-cyclohexene- 1-one) is an α,β-unsaturated ketone of remarkable industrial interest, produced as a consequence of the aldolic condensation of three acetone molecules. Isophorone is used extensively as a solvent in some printing inks, paints, lacquers, adhesives, vinyl resins, copolymers, coatings, finishes, and pesticides, in addition to being used as a chemical intermediate of organic synthesis. This important chemical molecule is produced both by an homogeneous catalytic process as well as an heterogeneous one. In the homogeneous catalysis isophorone is produced in liquid phase with a mixture of acetone, water and KOH (0.1%) at about 200 °C and 35 bar. In the heterogeneous process, acetone reacts over a catalytic bed at temperatures comprised between 200 and 300 °C and pressure of about 5 bar. The main advantages to operate in heterogeneous phase consist in the absence of a corrosive alkaline atmosphere, in the facility of separation of the catalyst from the reaction products and in its recovery. In this work has been adopted a continuous fixed bed reactor to study the heterogeneous production of isophorone using a moderately basic catalyst constituted by a 10% of magnesia (MgO) over alumina. 1. Introduction As a result of the process of polycondensation of acetone, different intermediates of reaction can be identified. Some of these are the mesityl oxide and their isomer (isomesityl oxide), that are products of remarkable industrial interest because of they can be easily converted into methyl isobutyl ketone (MIBK).
    [Show full text]
  • Fourth ITC Report (PDF)
    =- ~ Friday June 1, 1979 =..-:;;;.. --- --- - =- E § ~- ------- FE':::::--- - ===- -- -- --- -- - :--- .=...- --- --- =- --- - -- -_.- - ------ .-- ---- .--- -- Part V Environmental Protection Agency Interagency .Testing Committeei Receipt of Fourth Report and Request for Comments - - ----- ---- - -- --.-=== ::=., ~ HeinOnline -- 44 Fed. Req. 31865 1979 _ _u ..-_. 31866 Federal R~gister I Vol. 44, No. 107 I Friday, June 1.,1979 I Notices 'ENVIRONMENTALPROTECTION FR 50134).The lTC's revisions ~othe Room 447, EPA, 401 M Street SW., AGENCY initial list appeared 10the Commlttee's Washington, D.C. 20460. All written Second Report and were pubhshed 10 comments will be available for public [OT5-410001; FRL 1237-1) the Federal Register on Apnl19, 1978 (43 inspecbon in Room 447, East Tower, at FR 16684).Those reViSions were the the same address, between 8:30 n.m. nnd Fourth Report of the Interagency addition of four substaitces and four' 4.30 p.m., weekdays. Testing Committee; Receipt of the categories of ~ubstances to the Pnonty Dated: May 18. 1979. Report and Request for Comments List. EPA's response to the second ITC Report was signed by the Deputy . Steven D. JelUnek, . AGENCY:Environmental Protection . Assistant Administrator for To;'Cic Agency (EPA). Administrator ofEPA on May 8,1979 Substances. (see 44 FR 28095, May 14, 1979). In its ACTlor~:This Notice requests comments Third Report, published irt the Federal Toxic Subslanccs Control Act,lnterogoncy Testing Commitlee. on recent additions to the Interagency Register on October 3D,1978 (43 FR Testing Committee's (1Te) priority list of 50631), the Committee recommended the Honorable Douglas M. Costle. chemical substances recommended for addition of one chemical substance and Administrator, Environmental Protection testing under section 4(a) of the Toxic Agency (A-lOa).
    [Show full text]
  • O-Ring Chemical Compatibility
    O-Ring Chemical Compatibility buna-n | capfe | chemraz® | epdm | fetfe | kalrez® | silicone | viton® a The information in this document is intended to be for general reference purposes only and is not intended to be a specific recommendation for any individual application. Any reliance on information is therefore at the user‘s own risk. In no event will Ace Glass Incorporated be liable for any loss, damage, claim or expense directly or indirectly arising or resulting from the use of any information provided in this document. While every effort is made to ensure the accuracy of information contained herewith, Ace Glass www.aceglass.com Incorporated cannot warrant the accuracy or completeness of information. Specifications are subject to change without prior notice. Although they are represented to be accurate, it is best to verify product specifications with ACE prior to purchase in the event they have been changed since publication of this catalog. Table of Contents Elastomers .....................................................4-5 Chemical Compatibility ................................ 6-20 Cross Reference .............................................. 21 Size Reference ........................................... 22-31 O-Rings Kalrez ........................................................ 32 Chemraz .................................................... 33 CAPFE ....................................................... 34 Viton A .................................................. 36-37 Silicone ................................................
    [Show full text]