2011Al-Ghamdiphd.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Safety Data Sheets
SAFETY DATA SHEETS According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition Version: 1.0 Creation Date: Feb. 6, 2018 Revision Date: Feb. 6, 2018 1. Identification 1.1 GHS Product identifier Product name Isophorone 1.2 Other means of identification Product number A601956 Other names Isooctopherone 1.3 Recommended use of the chemical and restrictions on use Identified uses Used for research and development only.Isophorone is used mainly as a solvent for concentrated vinyl chloride/acetate- based coating systems for metal cans, other metal paints, nitrocellulose finishes, and printing inks for plastics. Isophorone is also used in some herbicide and pesticide formulations and in adhesives for plastics, polyvinylchloride, and polystyrene materials. Isophorone is an intermediate in the synthesis of 3,5-xylenol, 3,3,5-trimethylcyclohexanol, and plant growth retardants. Uses advised against no data available 1.4 Supplier's details Company Sangon Biotech (Shanghai) Co., Ltd. Address 698 Xiangmin Road, Songjiang, Shanghai 201611, China Telephone +86-400-821-0268 / +86-800-820-1016 Fax +86-400-821-0268 to 9 1.5 Emergency phone number Emergency phone +86-21-57072055 number Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours). 2. Hazard identification 2.1 Classification of the substance or mixture Acute toxicity - Oral, Category 4 Acute toxicity - Dermal, Category 4 Isophorone Page 1 of 11 Eye irritation, Category 2 Specific target organ toxicity – single exposure, Category 3 Carcinogenicity, Category 2 2.2 GHS label elements, including precautionary statements Pictogram(s) Signal word Warning Hazard statement(s) H302 Harmful if swallowed H312 Harmful in contact with skin H319 Causes serious eye irritation H335 May cause respiratory irritation H351 Suspected of causing cancer Precautionary statement(s) Prevention P264 Wash .. -
Ultraviolet Light/Hydrogen Peroxide, Fenton's Reagent, and Titanium
^^ f 1 POOR LEGIBILITY ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL L J:\TM\AR\KXHLTM4 JULY11.M9S SFUND RECORDS CTR 81356 nd, the HAZARDOUS WASTE & HAZARDOUS MATERIALS jjgration Volume 10, Number 2, 1993 Mary Ann Liebert, Inc., Publishers [are not pose that Chemical Oxidation Technologies: ndfills need Ultraviolet Light/Hydrogen Peroxide, , them, f design Fenton's Reagent, and Titanium i them, lyard Dioxide-Assisted Photocatalysis tn with be RAJAGOPALAN VENKATADRI and ROBERT W. PETERS ods of sting, Energy Systems Division sfiiel Argonne National Laboratory tog of 9700 South Cass Avenue Ibeof Argonne, IL 60439 after tmay ;the ould ABSTRACT jable The application status and potential of three chemical oxidation treatment methods which generate powerful oxidants (hydroxyl radicals): ultra violet light (UV)/hydrogen peroxide (R^Oa) avity process, Fenton's reagent treatment, and titanium dioxide (TiO2)-assisted photocatalytic degradation, ste are described and discussed. These oxidation methods are known to effectively degrade and, in Item. several cases, mineralize contaminants ranging from inorganic compounds (such as cyanides) to ents chlorinated aliphatic compounds and complex aromatic compounds in reaction times on the order of a live. few minutes to a few hours. Of the three oxidation systems discussed, the technology for the edit UV/H2O2 process is the most advanced, with numerous successful full-scale treatment units already in JrML existence. Applications of both the Fenton's reagent and TiO2-assisted photodegradation processes are currently being developed, with the concepts proven in numerous laboratory-scale studies for a wide range of contaminants. -
Isophorone (Cas No
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 291 c TOXICOLOGY AND CARCINOGENESIS STUDIES OF ISOPHORONE (CAS NO. 78-59-1) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health NATIONAL TOXICOLOGY PROGRAM The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S.Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test developmentlvalidation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies. The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), Naiional Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcino- genesis Bioassay Testing Program, NCI, was transferred to the NIEHS. Isophorone, NTP TR 291 NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF ISOPHORONE (CAS NO. 78-59-1) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 January 1986 NTP TR 291 NIH Publication No. -
Novel Aspects in the Preparation of Phorone 2
Novel Aspects in the Preparation of Phorone Maria Konieczny* and George Sosnovsky Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA Z. Naturforsch. 33b, 454-460 (1978); received Januaiy 4, 1978 Phorone, Mesityl Oxide, Triacetoneamine, Nitroxyls The condensation of acetone using anhydrous hydrogen chloride results after three weeks at room temperature, in a 15% yield of phorone (4) and a 75% yield of mesityl oxide (5). In the presence of one weight percent of the Lewis acid, aluminium chloride, the yield of 4 is increased to 39%. An increase in the amount of the Lewis acid, aluminium chloride, to ten weight percent results in a 22% yield of phorone (4) and a 68% yield of mesityl oxide (5). In the presence of one hundred weight percent of aluminium chloride, ( CH3)2C = CHC CHr C(CH3)2 (CH3)2 C=CHCCH3 in the absence of hydrogen chloride, the condensation produces a 62% yield of mesityl oxide (5) and no phorone (4). In the course of this investigation, two intermediates, 6 and 7 o u (CH5)2C CH2CCH5 (CHJ)2CCH2CCH2C(CH3)2 CI 6 7 were isolated and characterized for the first time. These intermediates are the actual products formed in the condensation of acetone with hydrogen chloride, and not the "free" phorone (4) and mesityl oxide (5). The conversion of 6 and 7 to 5 and 4, respectively, occurs during the isolation stage using a saturated solution of ethanolic potassium hydroxide. Since the discovery of the long-lived nitroxyl science. The most commonly used nitroxyls are radical [1], 2,2,6,6-tetramethyl-4-oxopiperidine-l- prepared by the catalytic oxidation of triacetone- oxyl, and its derivatives, considerably interest has amine (1) or its derivatives with 30% aqueous been shown in the application of these nitroxyls in hydrogen peroxide in the presence of sodium various areas of biological [2, 3] and polymer [3] tungstate [3, 4]. -
Ambient Water Quality Criteria for Isophorone
United States Office of Water EPA 440/5-80-056 Environmental Protection Regulations and Standards October 1980 Agency Criteria and Standards Division Washington DC 20460 EPA Ambient Water Quality Criteria for lsophorone AMBIENT WATERQUALITY CRITERIA FOR ISOPHORONE Prepared By U.S. ENVIRONMENTALPROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a)(1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare which may be expected from the presence of pollutants in any body of water, including ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a)(1) of the Clean Water Act were developed and a notice of their availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628). -
Technical Background Document (U.S
Part 5: CHEMICAL-SPECIFIC PARAMETERS Chemical-specific parameters required for calculating soil screening levels include the organic carbon normalized soil-water partition coefficient for organic compounds (Koc), the soil-water partition coefficient for inorganic constituents (Kd), water solubility (S), Henry's law constant (HLC, HN), air diffusivity (Di,a), and water diffusivity (Di,w). In addition, the octanol-water partition coefficient (Kow) is needed to calculate Koc values. This part of the background document describes the collection and compilation of these parameters for the SSL chemicals. With the exception of values for air diffusivity (Di,a), water diffusivity (Di,w), and certain Koc values, all of the values used in the development of SSLs can be found in the Superfund Chemical Data Matrix (SCDM). SCDM is a computer code that includes more than 25 datafiles containing specific chemical parameters used to calculate factor and benchmark values for the Hazard Ranking System (HRS). Because SCDM datafiles are regularly updated, the user should consult the most recent version of SCDM to ensure that the values are up to date. 5.1 Solubility, Henry's Law Constant, and Kow Chemical-specific values for solubility, Henry's law constant (HLC), and Kow were obtained from SCDM. In the selection of the value for SCDM, measured or analytical values are favored over calculated values. However, in the event that a measured value is not available, calculated values are used. Table 36 presents the solubility, Henry's law constant, and Kow values taken from SCDM and used to calculate SSLs. Henry's law constant values were available for all but two of the constituents of interest. -
Maine Remedial Action Guidelines (Rags) for Contaminated Sites
Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites (RAGs) Effective Date: May 1, 2021 Approved by: ___________________________ Date: April 27, 2021 David Burns, Director Bureau of Remediation & Waste Management Executive Summary MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites Contents 1 Disclaimer ...................................................................................................................... 1 2 Introduction and Purpose ............................................................................................... 1 2.1 Purpose ......................................................................................................................................... 1 2.2 Consistency with Superfund Risk Assessment .............................................................................. 1 2.3 When to Use RAGs and When to Develop a Site-Specific Risk Assessment ................................. 1 3 Applicability ................................................................................................................... 2 3.1 Applicable Programs & DEP Approval Process ............................................................................. 2 3.1.1 Uncontrolled Hazardous Substance Sites ............................................................................. 2 3.1.2 Voluntary Response Action Program -
Gases Supported by IRI Analyzers
Toll Free | 800.344.0321 Tel | 510.782.8100 Fax | 510.782.8101 www.InfraredIndustries.com The following is a list of gases and vapors that can be analyzed Gases Supported with certain gas analyzers from Infrared Industries. For any application of a particular gas, please contact us to by IRI Analyzers confi rm our ability to meet your needs. GAS/VAPOR GAS/VAPOR 1 Acetaldehyde (Ethanal) 30 trans2Butenal (Crotonaldehyde) 2 Acetaldehyde Diacetate (Ethylidene Diacetate) 31 2Butoxyetanol Skin (Butyl Cellosolve; Ethylene Glycol 3 Acetic Acid (Ethanoic Acid) Monobutyl Ether) 4 Acetophenone (Acetylbenzene; Methyl Phenyl Ketone) 32 Butyl Acetate 5 1Allyloxy2, 3Epoxypropane (A.G.E., Allyl Glycidyl Ether) 33 secButyl Acetate 6 1Aminobutane Skin (Butylamine) 34 tertButyl Acetate 7 Aminoethane (Ethylamine) 35 1tertButyl4Methylbenzene (ptertButyltoluene) 8 2Aminoethanol (Ethanolamine; Monoethanolamine) 36 Camphene 9 Aminomethane (Methylamine) 37 Carbon Monoxide (CO) 10 2Aminopropane (Isopropylamine) 38 Carbon Dioxide (CO2) 11 2Aminotoluene Skin (oMethylaniline; oToluidine) 39 Carbonyl Sulfi de (CO 5) 40 Carbonyl Sulfi de (Carbon Oxysulfi de) 12 Ammonia (NH3) 13 Aniline Skin (Aminobenzene; Phenylamine) 41 Carvone (Carvol) 14 Benzaldehyde (Benzenecarbonal) 42 Chlorobenzene (Monochlorobenzene; Phenyl Chloride) 15 Benzene 43 1Chlorobutane (nButyl Chloride) 16 Benzyl Acetate 44 Chlorodifl uoromethane (Freon 22) 17 Bromobenzene (Phenyl Bromide) 45 1Chloro2, 3EpoxypropaneSkin (αEpichlorohydrin) 18 1Bromobutane (nButyl Bromide) 46 Chloroethane (Ethyl Chloride) -
Ketones and Quinones, Whether Or Not with Other Oxygen Function, and Their Halogenated, Sulphonated, Nitrated Or Nitrosated Derivatives
29-VI Sub-Chapter VI KETONE-FUNCTION COMPOUNDS AND QUINONE-FUNCTION COMPOUNDS 29.14 - Ketones and quinones, whether or not with other oxygen function, and their halogenated, sulphonated, nitrated or nitrosated derivatives. - Acyclic ketones without other oxygen function : 2914.11 - - Acetone 2914.12 - - Butanone (methyl ethyl ketone) 2914.13 - - 4-Methylpentan-2-one (methyl isobutyl ketone) 2914.19 - - Other - Cyclanic, cyclenic or cycloterpenic ketones without other oxygen function : 2914.22 - - Cyclohexanone and methylcyclohexanones 2914.23 - - Ionones and methylionones 2914.29 - - Other - Aromatic ketones without other oxygen function : 2914.31 - - Phenylacetone (phenylpropan-2-one) 2914.39 - - Other 2914.40 - Ketone-alcohols and ketone-aldehydes 2914.50 - Ketone-phenols and ketones with other oxygen function - Quinones : 2914.61 - - Anthraquinone 2914.69 - - Other 2914.70 - Halogenated, sulphonated, nitrated or nitrosated derivatives The term “ ketones and quinones with other oxygen function ” means ketones and quinones which contain also one or more of the oxygen functions referred to in previous sub-Chapters (alcohol, ether, phenol, aldehyde, etc., functions). VI-2914-1 29.14 (A) KETONES These are compounds containing the group (>C=O), so-called “ carbonyl ” group, and can be represented by the general formula (R-CO-R1), in which R and R1 stand for alkyl or aryl radicals (methyl, ethyl, propyl, phenyl, etc.). Ketones may have two tautomeric forms, the true ketonic form (-CO-) and the enolic form (=C(OH)-), both of which fall in this heading. (I) Acyclic ketones. (1) Acetone (propanone) (CH3COCH3). Found in the products of the dry distillation of wood (methyl alcohol and crude pyroligneous acid), but is mainly obtained by synthesis. -
Polyurethane Coating Composition
turopaisches Patentamt (19) European Patent Office © Publication number: 0 263 298 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 87112643.9 © C08G 18/12 Int. CI.": , C08G 18/66 , C08G - 18/72 , C09D 3/72 © Date of filing: 29.08.87 ® Priority: 08.09.86 US 904732 © Applicant: W.R. GRACE & CO. Grace Plaza 1114 Avenue of the Americas © Date of publication of application: New York New York 10036(US) 13.04.88 Bulletin 88/15 © Inventor: Vu, Cung © Designated Contracting States: 18805 Still Meadows Court AT BE CH DE ES FR GB GR IT LI LU NL SE Gaithersburg Maryland 20879(US) © Representative: UEXKULL & STOLBERG Patentanwalte Beselerstrasse 4 D-2000 Hamburg 52(DE) Polyurethane coating composition. This invention relates to a moisture curable, isocyanate terminated, branched prepolymer which is the reaction product of (a) an alcohol having two or three -OH groups, (b) a hydrophobic polymeric diol or triol and (c) at least one polyisocyanate, said prepolymer having an NCO content in the range 0.3 to 1 .0 meq/g. Exposure Df the prepolymer as a coating on a substrate to moisture under atmospheric conditions results in a cured soating having excellent adhesion to the substrate and excellent abrasion resistance. 30 3) N y) £> N D a. jj «rax Copy Centre 0 263 298 POLYURETHANE COATING COMPOSITION BACKGROUND OF THE INVENTION This invention relates to a process for forming a crosslinked polyurethane. More particularly, this 5 invention relates to a crosslinked, polyurethane of 100% solids content which can be formulated into products usable in the coatings field. -
Chemical Compatibility Chart
Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene