Red – Orange – Yellow) MGP Trailside Flowers (Purple (Lavender) – Blue)

Total Page:16

File Type:pdf, Size:1020Kb

Red – Orange – Yellow) MGP Trailside Flowers (Purple (Lavender) – Blue) MGP Trailside Flowers (Red – Orange – Yellow) MGP Trailside Flowers (Purple (Lavender) – Blue) red larkspur (35) Delphinium nudicaule scarlet monkeyflower (38) Indian paintbrush (38) columbine (35) (MimMimulusulus cacardinalisrdinalis) Castilleja subinclusa Aquilegia formosa blue dicks Dichelostemma capitatum Douglas iris (29) blue-eyed grass (29) Iris douglasiana Sisyrinchium bellum hazlenut (12) striped coralroot spotted coralroot California figwort or Corylus cornuta orchid (29) orchid (29) bee plant (38) var. californica (Corallorhiza striata) (Corallorhiza maculata) Scrophularia californica lupine (20) Lupinus sp. harvest brodiaea (26) Brodiaea elegans California poppy (30) scarlet pimpernel** (34) sticky or bush monkeyflower (38) Eschscholzia californica Anagallis arvensis Mimulus aurantiacus hedge nettle (25) Stachysajjgugoides milkwort Polygala californica narrowleaf flax** Linum bienne seep spring Sneezeweed (7) woodland tarweed (7) Lotus (20) monkeyflower (38) Mimulus guttatus Helenium purberulum Madia madioides (lotus sp.) hounds tongue (13) Cynoglossum grande froggy feet (23) Nemophila heterophylla Prepared by Pacific snake root (9) Gwen Heistand Fiddleneck (13) coast sun-cups (28) California buttercup (35) Ceanothus (Blue blossom) (36) forget-me-not** (13) Sanicula crassicaulis for ACR Education; using Amsinckia menziesii Camissonia ovata Ranunculus californicus materials prepared by Ceanothus thyrsiflorus (Myosotis latifolia) Jeanne Wirka MGP Trailside Flowers(Pink - Brown – Green) MGP Trailside Flowers (white) cow parsnip (9) pearly everlasting (7) Heracleum lanatum morning glory (17) checker bloom (27) willow herb (28) Anaphalis margaritacea elk clover Calystegia purpurata Sidalcea malviflora Epilobium ciliatum Aralia californica yerba buena (25) Satureja douglasii California buckeye (22) (Aesculus californicus) hillside pea (20) bedstraw (purple to pink) Galium aparine Lathyrus vestitus red flowering currant (21) Ribes sanguineum wild cucumber (()18) Honeysuc kle (11) (manroot) Lonicera hispidula Marah fabaceus fairy bells (26) Disporum hookeri star lily (36) (zygadene lily) Zigadenus fremontii virgin’s bower (35) Collomia (33) calypso orchid (29) Clematis lasiantha Collomia heterophylla (Calypso bulbosa) trillium (wake-robin) (26) (Trillium ovatum) wood rose (37) Rosa gymnocarpa miner’s lettuce yerba santa (23) Claytonia perfoliata (Eriodictyon californicum) Thimbleberry (37) Rubus parviflorus fetid adder’ s tongue (slinkpod) (26) Dutchman’s pipe (10) star-flower (34) (Scoliopus bigelovii ) Aristolochia californiica Trientalis latifolia ocean spray (37) California mission bells (26) wild strawberry (37) (creambush) Blackberry (37) Fritillaria affinis milk-maids (14) Fragaria vesca Cardamine californica Holodiscus discolor Rubus ursinus i Glossary (See also the diagrams for plant ID terms) 43 Topic Page # anther –male reproductive cell of a flower, located at end of the filament. The filament and anther make up the stamen. bract – small structure that subtends a peduncle, pedicel, or flower. calyx - collective term for all the sepals in a flower composite - flowers that occur in dense heads atop a specialized set of bracts called phyllaries; overall aspect sunflower-like or daisy-like. corolla - collective term for all the petals in a flower discoid - composite flower head composed of disc flowers only imperfect - flower that lacks either male or female parts. inflorescence – a cluster of flowers. inferior - below; when referring to an ovary, below the calyx inflorescence - all of the flowers on one plant. involucre – a group of bracts held together as a unit beneath a flower, a fruit or flower head. In composites, it’s the phyllaries beneath the “flower.” irregular - not symmetrical; when referring to a perianth, with all sepals and/or petals not of same size or shape. ligulate flower –a composite flower with no disk flowers. ovate – two-dimensionally egg-shaped; wider at base than tip palmate – a pattern of branching of veins, lobes, or leaflets in which several equally-sized units originate from a single point, similar to the fingers of the hand originating from the palm panicle - compound inflorescence; a cluster of spikes or racemes pedicel - stalk of an individual flower peduncle – stalk of an inflorescence or of a flower not in an inflorescence perfect - flower that has both male and female parts. perianth - all petals and sepals in a flower: = calyx + corolla petiole – the stem of a leaf or leaflet that attaches to a twig phyllary - specialized, scale-like bracts, several or many in a series, directly beneath a composite flower head; together form the involucre pinnate – a pattern of branching in which smaller units originate along the axis of a larger central unit, similar to the structure of a feather pistil – the female reproductive organ of a flower (“she’s a pistil-packin’ mama!”); consists of ovary, style, and stigma. raceme - inflorescence with single axis and flowers on pedicels ray flower - one of two basic types of flowers in composite head; recognized by presence of a petal-like structure (ligule). If no disk flowers are present, it’s called a ligulate flower (see definition above). Ray flowers are generally pistillate or sterile. regular - symmetrical; when referring to corolla or calyx, with all petals/sepals same size and shape. sepal -modifie d lea f o f the ca lyx. spike - inflorescence with single axis and flowers lacking pedicels. spur - slender projecting process from some portion of the perianth stamen – the male reproductive organ of a flower; consists of the filament and anther (sta-“men” = male). stigma – the receptive (female) part of the flower where pollen lands; located at the tip of the style in the pistil. stipule - paired small appendages on stem where leaf attaches superior - above; when referring to an ovary, above the calyx. terminal - at the end of a stem or branch. umbel - flat-topped inflorescence with pedicels arising from a common point on stem 1 42 Flower Anatomy Ferns of Martin Griffin Preserve Wood Fern Lady Fern (Above) •Fronds 2x divided •Crescent shaped indusia •Raised sori with •Lacyy, fronds, much divided hhidihorseshoe indusium •Dormant in winter Sori • Flowers are a plant’s reproductive system •Green all year Sporangia • The way flowers are arranged on a stem is called the inflorescence • The parts of an inflorescence are like nested cups (called whorls) • A complete flower has all whorls •A perfect flower has both ♀ and ♂ parts. • Monoecious plants have both ♀ & ♂ flowers on each individual • Dioeceious plants have either ♀ or ♂ flowers on each Sword-like “hilt” individual (example coyote bush) Circular sori with at base of pinnae Common Sword Fern umbrella-like Types of Inflorescences Fronds once-divided indusium California Polypody Giant Chain Fern •Similar to Sword Fern but no “hilt” •Largest of all •Circular sori, no indusia (naked) •Fronds 2x divided •Mossy ledges or epiphyte on trees •Near creek 2 41 Ferns of Martin Griffin Preserve Goldback Fern •Summer dormant •Naked indusia along veins •Gold waxyyp “powder” on back of fronds to prevent drying Types of Floral Symmetry Five-fingered Fern •Need permanent moisture •Winter dormant •First division palmate, then pinnately divided Bracken Fern •Fronds 3x divided or more •Drier, open areas •sporangia line frond margins; false indusium Flower Shapes Azolla (Water Fern) •Mon/Tues ponds •Stores Maidenhair Fern cyanobacteria •Delicate leaves; black stems (nitrogen-fixing •False indusia (rolled frond bacteria) in fronds margins) •Summer dormant 3 40 Leaf Anatomy California Buckeye Big Leaf Maple Arroyo Willow Red Alder Leaves are always attached to stem; responsible for photosynthesis leaf = petiole + blade (unless leaf is sessile) blades broad flat shapes (this shape helps with collecting the sun's rays) petioles turn to follow the sun throughout the day and return, overnight, to the best position to catch the first rays of dawn . nodes = point of attachment to the stem internode = distance between 2 nodes veins = bundles of vascular tissue used to transport water and nutrients midrib = a central vein from which secondary veins can grow Douglas Fir Coast Redwood sometimes called Tan Oak digitate California Bay Coast Live Oak 39 4 Common Trees of the Martin Griffin Preserve There are nine common trees at Bolinas Lagoon Preserve (MGP). Each species is easy to recognize if you look at it carefully a few times. The following notes are meant as an aid to identification, as well as an introduction to the natural history of the plants. A good book to help identify most of the common trees in CA is Tom Watts' Pacific Coast Tree Finder. Key to distinguish the common trees of MGP: 1 Tree deciduous..................................................................................... 2 1' Tree evergreen..................................................................................... 5 2 Leaves opposite.................................................................................... 3 2' Leaves alternate................................................................................... 4 3 Leaves compound, digitate...................................... California Buckeye 3' Leaves simple , palmately lobed.................................... Big Leaf Maple 4 Leaves ovate, margins coarsely toothed............................... Red Alder 4' Leaves narrow, margins smooth..................................... Arroyo Willow 5 Tree a conifer (an overgrown Christmas tree) .................................... 6 5'
Recommended publications
  • Vascular Plants at Fort Ross State Historic Park
    19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Myosotis Arvensis
    Myosotis arvensis COMMON NAME Field forget-me-not FAMILY Boraginaceae AUTHORITY Myosotis arvensis (L.) Hill FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Herbs - Dicotyledons other than Composites NVS CODE MYOARV DISTRIBUTION Naturalised (Indigenous to Europe and western Asia). Present in North, Myosotis arvensis. Photographer: John Smith- South, Stewart Islands Dodsworth HABITAT Rather common. A widespread weed of waste places, cultivated land, and other open, modified habitats also locally common in damp sites in tussock grassland. Altitudinal range sea level to c.1000 m. FEATURES Annual to biennial herb. Stems numerous and erect, up to c.300 mm high, angled. Lower leaves sessile, to c.80 × 20 mm, oblanceolate to oblong, hairy on both surfaces; hairs not hooked; apex obtuse; upper leaves similar but smaller. Cymes ebracteate, elongating to slightly greater than leafy part of stem after flowering. Pedicels 1 to nearly 3× length of calyx at fruiting. Calyx 3-5 mm long, elongating to c.7 mm at fruiting; hairs spreading, often hooked towards base; lobes ± triangular, cut to about half the length of calyx. Corolla tube less than calyx-length; limb c.3 mm diameter, concave, blue; lobes entire. Style very short. Nutlets 1.5-2.5 × 0.75-1.0 mm, ovoid, acute, dark brown or black; rim present. Description from: Webb et al. (1988). FLOWERING October - May Hutt River Trail north of Stokes Valley. Jan FLOWER COLOURS 2007. Photographer: Jeremy Rolfe Blue, White FRUITING November - June THREATS Myosotis arvensis is a naturalised weed in New Zealand. It was first recognised in New Zealand in 1872. although rather weedy it is not regarded as a serious environmental weed.
    [Show full text]
  • Green Leaf Perennial Catalog.Pdf
    Green Leaf Plants® A Division of Aris Horticulture, Inc. Perennials & Herbs 2013/2014 Visit us @ Green Leaf Plants® GLplants.com Green Leaf Plants® Perennial Management Teams Green Leaf Plants® Lancaster, Pennsylvania Green Leaf Plants® Bogotá, Colombia (Pictured Left to Right) Rich Hollenbach, Grower Manager and Production Planning/Inventory Control (Pictured Left to Right) Silvia Guzman, Farm Manager I Isabel Naranjo, Lab Manager I Juan Camilo Manager I Andrew Bishop, Managing Director I Sara Bushong, Customer Service Manager and Herrera, Manager of Latin American Operations & Sales Logistics Manager Cindy Myers, Human Resources and Administration Manager I Nancy Parr, Product Manager Customer Service Glenda Bradley Emma Bishop Jenny Cady Wendy Fromm Janis Miller Diane Lemke Yvonne McCauley [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Ext. 229 Ext. 227 Ext. 245 Ext. 223 Ext. 221 Ext. 231 Ext. 237 Management, Tech Support and New Product Development Brad Smith Sarah Rasch Sara Bushong, Nancy Parr, Product Mgr. Julie Knauer, Prod. Mgr. Asst Susan Shelly, Tech Support Melanie Neff, New Product Development [email protected] [email protected] C.S. Mgr. & Logistics Mgr. [email protected] [email protected] [email protected] [email protected] Ext. 228 800.232.9557 Ext. 5007 [email protected] Ext. 270 Ext. 288 Ext. 238 Ext. 273 Ext. 250 Varieties Pictured: Arctotis Peachy Mango™ Aster Blue Autumn® Colocasia Royal Hawaiian® DID YOU KNOW? ‘Blue Hawaii’ Customer service means more than answering the phone and Delphinium ‘Diamonds Blue’ Echinacea ‘Supreme Elegance’ taking orders.
    [Show full text]
  • Two New Genera in the Omphalodes Group (Cynoglosseae, Boraginaceae)
    Nova Acta Científica Compostelana (Bioloxía),23 : 1-14 (2016) - ISSN 1130-9717 ARTÍCULO DE INVESTIGACIÓN Two new genera in the Omphalodes group (Cynoglosseae, Boraginaceae) Dous novos xéneros no grupo Omphalodes (Cynoglosseae, Boraginaceae) M. SERRANO1, R. CARBAJAL1, A. PEREIRA COUTINHO2, S. ORTIZ1 1 Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela , Spain 2 CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal *[email protected]; [email protected]; [email protected]; [email protected] *: Corresponding author (Recibido: 08/06/2015; Aceptado: 01/02/2016; Publicado on-line: 04/02/2016) Abstract Omphalodes (Boraginaceae, Cynoglosseae) molecular phylogenetic relationships are surveyed in the context of the tribe Cynoglosseae, being confirmed that genusOmphalodes is paraphyletic. Our work is focused both in the internal relationships among representatives of Omphalodes main subgroups (and including Omphalodes verna, the type species), and their relationships with other Cynoglosseae genera that have been related to the Omphalodes group. Our phylogenetic analysis of ITS and trnL-trnF molecular markers establish close relationships of the American Omphalodes with the genus Mimophytum, and also with Cynoglossum paniculatum and Myosotidium hortensia. The southwestern European annual Omphalodes species form a discrete group deserving taxonomic recognition. We describe two new genera to reduce the paraphyly in the genus Omphalodes, accommodating the European annual species in Iberodes and Cynoglossum paniculatum in Mapuchea. The pollen of the former taxon is described in detail for the first time. Keywords: Madrean-Tethyan, phylogeny, pollen, systematics, taxonomy Resumo Neste estudo analisamos as relacións filoxenéticas deOmphalodes (Boraginaceae, Cynoglosseae) no contexto da tribo Cynoglosseae, confirmándose como parafilético o xéneroOmphalodes .
    [Show full text]
  • Physiological Observations on the Subterranean Organs of Some
    VOLUME XXXIII NUMBER 6 BOTAN ICAL GAZETTE JUNE, 1902 PHYSIOLOGICAL OBSERVATIONS ON THE SUBTER- RANEAN ORGANS OF SOME CALIFORNIAN LILIACEAE. A. RIMBACH. (WITH PLATE XIV) DURING my stay in the neighborhood of the Bay of San Francisco I have endeavored to get acquainted with the life- history of some of the numerous species of Liliaceae growing wild in that region, and my attention has been drawn especially to the physiological behavior of their subterranean organs. As the plants concerned exhibit some quite remarkable features, and have been little studied in this respect, and as they include some species of rather limited geographical distribution, I will give in the following pages an account of my investigations. CLINTONIA ANDREWSIANA Torr. The seeds of Clintonia Andrewsiana germinate in March. The cotyledon, after having absorbed the contents of the endosperm, serves as the first green leaf, growing I ocm long and 3 mm wide. The primary root, I mm thick, reaches over ocm in length, and forms a few branches of the Ist degree. Its central cylinder is 3-archic, the endodermis with slightly thickened walls, the cortex starch-bearing. There are no signs of contraction. The stem develops into a rhizome, which grows almost vertically downwards to a depth of about 8 cm, where it passes over into the horizontal direction. Its annual prolongation is in young 40I This content downloaded from 129.219.247.033 on August 26, 2016 23:28:20 PM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • Edible Seeds and Grains of California Tribes
    National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections.
    [Show full text]
  • Spring Overnight
    Columbines School of Botanical Studies Spring Apprenticeship Program Trip #11-12 Spring Overnight June 22-23, 24-25, 27-28 2017 Low Elevation Coniferous Woods and Disturbed Areas 1100' Low Elevation Coniferous Woods and Seepy Cliffs 2000' Low Elevation Coniferous Woods, Riparian, and Meadow 2400' Low Elevation Coniferous Woods and Riparian 2500' Middle Elevation Coniferous Woods and Meadow 3728' Middle Elevation Coniferous Woods and Meadows 4800' Middle Elevation Coniferous Woods and Beargrass Meadows 5620' http://www.botanicalstudies.net/botany/plantlists.php Family Name Uses Seen Araceae Lysichiton americanus (L. Skunk Cabbage +/- Edible X americanum) Liliaceae Calochortus subalpinus Alpine Cat's Ears No Pick X Calochortus tolmiei Cat's Ears No Pick X Clintonia uniflora Queen's Cup, Bead Lily Poisonous? X Erythronium grandiflorum Glacier Lily No Pick X Erythronium oregonum Fawn Lily No Pick Lilium columbianum Tiger Lily No Pick X Lilium washingtonianum Cascade Lily No Pick Prosartes hookeri (Disporum Fairy Bells +/- Edible X hookeri) Streptopus amplexifolius Twisted Stalk +/- Edible X Streptopus lanceolatus (S. roseus) Rosy Twisted Stalk +/- Edible Asparagaceae (Liliaceae) Brodiaea elegans Elegant Brodiaea No Pick Dichelostemma congestum Harvest Lily X (Brodiaea congesta) No Pick Maianthemum dilitatum False Wild Lily of the Valley Poisonous, Medicinal Maianthemum racemosum (Smilacina racemosa) Maianthemum stellatum (Smilacina Small False Solomon's Seal +/- Edible, Medicinal X stellata) Melanthiaceae (Liliaceae) Anticlea occidentalis
    [Show full text]
  • A Revision and Phylogeny of Eulonchus Gerstaecker (Diptera, Acroceridae)
    A peer-reviewed open-access journal ZooKeysJewelled 619: 103–146 spider (2016) flies of North America: a revision and phylogeny ofEulonchus Gerstaecker... 103 doi: 10.3897/zookeys.619.8249 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Jewelled spider flies of North America: a revision and phylogeny of Eulonchus Gerstaecker (Diptera, Acroceridae) Christopher J. Borkent1, Jessica P. Gillung1, Shaun L. Winterton1 1 California State Collection of Arthropods, California Department of Food and Agriculture, 3294 Mea- dowview Road, Sacramento, CA 95832, USA Corresponding author: Christopher J. Borkent ([email protected]) Academic editor: T. Dikow | Received 24 February 2016 | Accepted 2 September 2016 | Published 27 September 2016 http://zoobank.org/DEE67859-64AC-4C3F-8DF7-67A7BE1868FB Citation: Borkent CJ, Gillung JP, Winterton SL (2016) Jewelled spider flies of North America: a revision and phylogeny of Eulonchus Gerstaecker (Diptera, Acroceridae). ZooKeys 619: 103–146. doi: 10.3897/zookeys.619.8249 Abstract The spider fly genus Eulonchus Gerstaecker is found throughout the Nearctic Region. Six species are recognized and intraspecific morphological variation is documented in several species. A phylogeny of Eulonchus based on DNA sequence data of three molecular markers (COI, CAD, and 16S) is presented and relationships of species are discussed in the light of biogeography and host usage. All six species of Eulonchus are redescribed using natural language descriptions exported from a character matrix, and a key to species is presented. Lectotypes are designated for E. sapphirinus Osten Sacken, E. smaragdinus Gerstaecker, and E. tristis Loew. Keywords Antrodiaetidae, Euctenizidae, spider parasitoid, phylogeny, small-headed fly, tarantula, biodiversity, cy- bertaxonomy, Lucid Introduction Acroceridae are a small group of flies commonly known as spider flies or small-headed flies.
    [Show full text]
  • Gymnaconitum, a New Genus of Ranunculaceae Endemic to the Qinghai-Tibetan Plateau
    TAXON 62 (4) • August 2013: 713–722 Wang & al. • Gymnaconitum, a new genus of Ranunculaceae Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau Wei Wang,1 Yang Liu,2 Sheng-Xiang Yu,1 Tian-Gang Gao1 & Zhi-Duan Chen1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043, U.S.A. Author for correspondence: Wei Wang, [email protected] Abstract The monophyly of traditional Aconitum remains unresolved, owing to the controversial systematic position and taxonomic treatment of the monotypic, Qinghai-Tibetan Plateau endemic A. subg. Gymnaconitum. In this study, we analyzed two datasets using maximum likelihood and Bayesian inference methods: (1) two markers (ITS, trnL-F) of 285 Delphinieae species, and (2) six markers (ITS, trnL-F, trnH-psbA, trnK-matK, trnS-trnG, rbcL) of 32 Delphinieae species. All our analyses show that traditional Aconitum is not monophyletic and that subgenus Gymnaconitum and a broadly defined Delphinium form a clade. The SOWH tests also reject the inclusion of subgenus Gymnaconitum in traditional Aconitum. Subgenus Gymnaconitum markedly differs from other species of Aconitum and other genera of tribe Delphinieae in many non-molecular characters. By integrating lines of evidence from molecular phylogeny, divergence times, morphology, and karyology, we raise the mono- typic A. subg. Gymnaconitum to generic status. Keywords Aconitum; Delphinieae; Gymnaconitum; monophyly; phylogeny; Qinghai-Tibetan Plateau; Ranunculaceae; SOWH test Supplementary Material The Electronic Supplement (Figs. S1–S8; Appendices S1, S2) and the alignment files are available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).
    [Show full text]