Podocarp Evolution: a Molecular Phylogenetic Perspective Edward Biffin, John G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Review of Environmental History: Volume 5, Issue 1, 2019
TABLE OF CONTENTS Introduction James Beattie 1 Nature’s revenge: War on the wilderness during the opening of Brazil’s ‘Last Western Frontier’ Sandro Dutra e Silva 5 Water as the ultimate sink: Linking fresh and saltwater history Simone M. Müller and David Stradling 23 Climate change: Debate and reality Daniel R. Headrick 43 Biofuels’ unbalanced equations: Misleading statistics, networked knowledge and measured parameters Kate B. Showers 61 ‘To get a cargo of flesh, bone, and blood’: Animals in the slave trade in West Africa Christopher Blakley 85 Providing guideline principles: Botany and ecology within the State Forest Service of New Zealand during the 1920s Anton Sveding 113 ‘Zambesi seeds from Mr Moffat’: Sir George Grey as imperial botanist John O’Leary 129 INTRODUCTION JAMES BEATTIE Victoria University of Wellington; Research Associate Centre for Environmental History The Australian National University; Senior Research Associate Faculty of Humanities, University of Johannesburg This first issue of 2019 speaks to the many exciting dimensions of environmental history. Represented here is environmental history’s great breadth, in terms of geographical scope (Brazil, the Atlantic world, Europe, global, Africa and New Zealand); topics (animal studies, biography, climatological analysis, energy and waste); and temporal span (from the early modern to the contemporary period). The first article, ‘Nature’s revenge: War on the wilderness during the opening of Brazil’s “Last Western Frontier”’, explores the ongoing trope of the frontier and ‘frontiersman’ in the environmental history of twentieth-century Amazonia, Brazil. The author, Sandro Dutra e Silva, does so by skilfully analysing the creation of the heroic image of the road-building engineer Bernardo Sayão, and his deployment by the state to underpin its aims of developing Amazonia. -
Supplementary Material Local and Expert
10.1071/PC14920_AC CSIRO 2015 Pacific Conservation Biology 21 (3), 214-219 Supplementary material Local and expert knowledge improve conservation assessment of rare and iconic Fijian tree species Gunnar KeppelA,F, Alifereti NaikatiniB, Isaac A. RoundsC, Robert L. PresseyD, and Nunia T. ThomasE ASchool of Natural and Built Environments and Barbara Hardy Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia. BSouth Pacific Regional Herbarium, University of the South Pacific CConservation International, Suva, Fiji DAustralian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia. ENatureFiji-MareqetiViti, 14 Hamilton-Beattie Street, Suva, Fiji FCorresponding author. Email: [email protected] Part 1: Overview of conservation status for each study species before this study. Acmopyle sahniana Buchholz & N.E. Gray (Podocarpaceae) is a rare conifer to 12 m tall, previously only reported from forested mountain ridges from central Viti Levu (Bush and Doyle 1997, Thomas 2013a). A detailed survey of the species recorded a total of 46 adult and 17 juvenile trees in 2 subpopulations (Bush 1997). A recent (2011) assessment reported another subpopulation near Fiji’s highest mountain, Mt. Tomanivi, and estimated the total size of that subpopulation at <100 mature individuals (Thomas 2013a). The species is listed as critically endangered (CR), based on small population size and low area of occupancy (<10 km2) (Thomas 2013a). Cynometra falcata A.Gray (Leguminosae) is reported as a slender tree to 4 m in height that until recently had only been known from two locations, one on Vanua Levu and another on Viti Levu (Smith 1985, WCMC 1998). -
Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5. -
Recent Changes in the Names of New Zealand Tree and Shrub Species
-- -- - Recent changes in the names of New Zealand tree and shrub species - Since the publication of 'Flora of New Zealand' Volume 1 (A- iii) Podocarpus dacydioides Dacrycarpus ducydioides lan 1961),covering indigenous ferns, conifers and dicots, there (iii)Podocarpus ferrugzneus Prumnopitys ferruginea have been major advances in taxonomic research and the clas- Podocarpus spicatus Prumnopitys taxijolia sification of many plant groups revised accordingly. Most of (iv1 Dacrydium cupressinum (unchanged) these changes have been summarised in the Nomina Nova (v)Dacrydium bidwillii Halocarpus bidwillii series published in the New Zealand Journal of Botany (Edgar Dacrydium bijorme Halocarpus bijormis 1971, Edgar and Connor 1978, 1983) and are included in re- Dacrydium kirkii Halocarpus kirkii cent books on New Zealand plants ie.g. Eagle 1982, Wilson (vi)Dacydium colensoi Lagarostrobos colensoi 1982). A number of these name changes affect important (vii)Dacrydium intermediurn Lepidothamnus intermedius forest plants and as several of these new names are now start- Dacrydium laxijolium Lepidotbamnus laxijolius ing to appear in the scientific literature, a list of changes af- (viii)Phyllocladus trichomanoidi~(unchanged) fecting tree and shrub taxa are given here. As a large number Phyllocladus glaucus (unchanged) of the readers of New Zealand Forestry are likely to use Poole Phyllocladus alpinus Phyllocladus aspleniijolius and Adams' "Trees and Shrubs of New Zealand" as their var. alpinus* * main reference for New Zealand forest plants, all the name changes are related to the fourth impression of this book. * It has been suggested that the Colenso name P, cunnin- it is important to realise that not all botanists necessarily ghamii (1884)should take precedence over the later (18891 ark agree with one particular name and you are not obliged to use name (P. -
Agathis Macrophylla Araucariaceae (Lindley) Masters
Agathis macrophylla (Lindley) Masters Araucariaceae LOCAL NAMES English (pacific kauri); Fijian (da‘ua,dakua dina,makadri,makadre,takua makadre,dakua,dakua makadre) BOTANIC DESCRIPTION Agathis macrophylla is a tall tree typically to about 30–40 m tall, 3 m in bole diameter, with a broad canopy of up to 36 m diameter. Branches may be erect to horizontal and massive. Mature specimens have wide, spreading root systems whereas seedlings and young specimens have a vigorous taproot with one or more whorls of lateral roots. Leaves simple, entire, elliptic to lanceolate, leathery, and dark green, and shiny above and often glaucous below; about 7–15 cm long and 2–3.5 cm wide, with many close inconspicuous parallel veins. The leaves taper to a more or less pointed tip, rounded at the base, with the margins curved down at the edge. Petioles short, from almost sessile up to 5 mm long. Cones egg-shaped at the end of the first year, about 5 cm long, and 3 cm in diameter, more or less round at the end of the second year, 8–10 cm in diameter. Female cones much larger than males, globular, on thick woody stalks, green, slightly glaucous, turning brownish during ripening. Seeds brown, small, ovoid to globose, flattened, winged, and attached to a triangular cone scale about 2.5 cm across. BIOLOGY Pacific kauri is monoecious and produces cones instead of flowers. The first female cones begin to be produced at about 10 years old and take up to 2 years to mature (more often in 12-15 months). -
Ecological Assessments in the B+WISER Sites
Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March -
Fossil Pollen Records Indicate That Patagonian Desertification Was Not Solely a Consequence of Andean Uplift
ARTICLE Received 25 Oct 2013 | Accepted 4 Mar 2014 | Published 28 Mar 2014 DOI: 10.1038/ncomms4558 Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift L. Palazzesi1,2, V.D. Barreda1, J.I. Cuitin˜o3, M.V. Guler4, M.C. Tellerı´a5 & R. Ventura Santos6 The Patagonian steppe—a massive rain-shadow on the lee side of the southern Andes—is assumed to have evolved B15–12 Myr as a consequence of the southern Andean uplift. However, fossil evidence supporting this assumption is limited. Here we quantitatively estimate climatic conditions and plant richness for the interval B10–6 Myr based on the study and bioclimatic analysis of terrestrially derived spore–pollen assemblages preserved in well-constrained Patagonian marine deposits. Our analyses indicate a mesothermal climate, with mean temperatures of the coldest quarter between 11.4 °C and 16.9 °C (presently B3.5 °C) and annual precipitation rarely below 661 mm (presently B200 mm). Rarefied richness reveals a significantly more diverse flora during the late Miocene than today at the same latitude but comparable with that approximately 2,000 km further northeast at mid-latitudes on the Brazilian coast. We infer that the Patagonian desertification was not solely a consequence of the Andean uplift as previously insinuated. 1 Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470 (C1405DJR), Buenos Aires, Argentina. 2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK. 3 Universidad de Buenos Aires, Departamento de Ciencias Geolo´gicas, Facultad de Ciencias Exactas y Naturales. Intendente Gu¨iraldes 2160 (C1428EHA), Buenos Aires, Argentina. -
Evolution of the Female Conifer Cone Fossils, Morphology and Phylogenetics
DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES EVOLUTION OF THE FEMALE CONIFER CONE FOSSILS, MORPHOLOGY AND PHYLOGENETICS Daniel Bäck Degree project for Bachelor of Science with a major in Biology BIO602, Biologi: Examensarbete – kandidatexamen, 15 hp First cycle Semester/year: Spring 2020 Supervisor: Åslög Dahl, Department of Biological and Environmental Sciences Examiner: Claes Persson, Department of Biological and Environmental Sciences Front page: Abies koreana (immature seed cones), Gothenburg Botanical Garden, Sweden Table of contents 1 Abstract ............................................................................................................................... 2 2 Introduction ......................................................................................................................... 3 2.1 Brief history of Florin’s research ............................................................................... 3 2.2 Progress in conifer phylogenetics .............................................................................. 4 3 Aims .................................................................................................................................... 4 4 Materials and Methods ........................................................................................................ 4 4.1 Literature: ................................................................................................................... 4 4.2 RStudio: ..................................................................................................................... -
Pollination Drop in Relation to Cone Morphology in Podocarpaceae: a Novel Reproductive Mechanism Author(S): P
Pollination Drop in Relation to Cone Morphology in Podocarpaceae: A Novel Reproductive Mechanism Author(s): P. B. Tomlinson, J. E. Braggins, J. A. Rattenbury Source: American Journal of Botany, Vol. 78, No. 9 (Sep., 1991), pp. 1289-1303 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2444932 . Accessed: 23/08/2011 15:47 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org AmericanJournal of Botany 78(9): 1289-1303. 1991. POLLINATION DROP IN RELATION TO CONE MORPHOLOGY IN PODOCARPACEAE: A NOVEL REPRODUCTIVE MECHANISM' P. B. TOMLINSON,2'4 J. E. BRAGGINS,3 AND J. A. RATTENBURY3 2HarvardForest, Petersham, Massachusetts 01366; and 3Departmentof Botany, University of Auckland, Auckland, New Zealand Observationof ovulatecones at thetime of pollinationin the southernconiferous family Podocarpaceaedemonstrates a distinctivemethod of pollencapture, involving an extended pollinationdrop. Ovules in all generaof the family are orthotropousand singlewithin the axil of each fertilebract. In Microstrobusand Phyllocladusovules are-erect (i.e., the micropyle directedaway from the cone axis) and are notassociated with an ovule-supportingstructure (epimatium).Pollen in thesetwo genera must land directly on thepollination drop in theway usualfor gymnosperms, as observed in Phyllocladus.In all othergenera, the ovule is inverted (i.e., the micropyleis directedtoward the cone axis) and supportedby a specializedovule- supportingstructure (epimatium). -
Newsletter #84 Winter 2015
NEWSLETTER WINTER 2015 FRIENDS OF THE WAITE ARBORETUM INC. NUMBER 84 www.waite.adelaide.edu.au/waite-historic/arboretum Patron: Sophie Thomson President: Beth Johnstone OAM, Vice-President: Marilyn Gilbertson OAM FORTHCOMING EVENTS Secretary: vacant, Treasurer: Dr Peter Nicholls FRIENDS OF THE WAITE Editor: Eileen Harvey, email: [email protected] ARBORETUM EVENTS Committee: Henry Krichauff, Robert Boardman, Norma Lee, Ron Allen, Dr Wayne Harvey, Terry Langham, Dr Jennifer Gardner (ex officio) Free Guided Arboretum walks Address: Friends of the Waite Arboretum, University of Adelaide, Waite Campus, The first Sunday of every month PMB1, GLEN OSMOND 5064 at 11.00 am. Phone: (08) 8313 7405, Email: [email protected] Walks meet at Urrbrae House Photography: Eileen Harvey Jacob and Gideon Cordover Guitar Concert, Wed. August 26 at Urrbrae House Ballroom. Refreshments 6 pm. 6.30 - 7.30 pm Performance of classical guitar and narration of the story of a little donkey and the simple joy of living. Enquiries and bookings please contact Beth Johnstone on 8357 1679 or [email protected] Spring visit to the historic house and grounds of Anlaby. Booking deadline extended. Unveiling of Bee Hotel Signage 11 am Tuesday 18 August Hakea francisiana, Grass-leaf Hakea More details at: http://www.adelaide.edu.au/ Table of contents waite-historic/whatson/ 2. From the President, Beth Johnstone OAM 3. From the Curator, Dr Jennifer Gardner. 4. Friends News: 5. Bee Hotel, Terry Langham. 6. Geijera parviflora, Wilga, Ron Allen. 7. Cork, Jean Bird. 8. Cork and the discovery of cells, Diarshul Sandhu. 9. The Conifers, Robert Boardman. -
Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R. -
2. DACRYCARPUS (Endlicher) De Laubenfels, J. Arnold Arbor. 50: 315
Flora of China 4: 79. 1999. 2. DACRYCARPUS (Endlicher) de Laubenfels, J. Arnold Arbor. 50: 315. 1969. 鸡毛松属 ji mao song shu Podocarpus L’Héritier ex Persoon sect. Dacrycarpus Endlicher, Syn. Conif. 221. 1847; Bracteocarpus A. V. Bobrov & Melikyan. Trees or shrubs evergreen, dioecious (very rarely monoecious); trunk straight; main branches spreading or drooping; branchlets drooping or ascending, dense. Leaves dimorphic: juvenile leaves 2-ranked and forming an oblong-ovate branchlet outline, linear, not scalelike; adult leaves needlelike or scalelike, falcate, bilaterally or bifacially flattened, or not flattened, 0.8–1.5 mm. Pollen cones lateral (rarely terminal), solitary or few together; microsporophylls numerous, imbricate; microsporangia 2, abaxial. Seed-bearing structures terminal and often borne on short, lateral branchlets, pedunculate, with appressed or spreading, bractlike leaves at base of peduncle; apical 1 or 2 bracts fertile; basal bracts fused to form a succulent, warty receptacle; ovule inverted. Epimatium wholly enveloping seed, united with fertile bract(s) and together bearing a short, free apex forming an asymmetrically projecting crest on immature seed-bearing structure. Seed large. Nine species: from China and Myanmar to Fiji Islands and New Zealand; one species in China. 1. Dacrycarpus imbricatus (Blume) de Laubenfels var. patulus de Laubenfels, J. Arnold Arbor. 50: 320. 1969. 鸡毛松 ji mao song Bracteocarpus kawaii (Hayata) A. V. Bobrov & Meli- kyan; Podocarpus kawaii Hayata. Trees to 40 m tall; trunk to 2 m d.b.h.; bark superficially dark brown or blackish, weathering gray, red-brown and granular fibrous within, flaking in thin strips; crown spreading; branchlets stiff, erect. Juvenile leaves borne at 60–75° to branchlet axis, 0.2– 0.7 mm apart (branchlets 3–4 × 1.2–1.6 cm in outline), sessile, green or ± glaucous, linear, falcate to “S”- shaped, 6–10(–17) × 0.9–1.2 mm, stomata arranged in 2 whitish rows on abaxial surface, base decurrent, margin entire, apex obliquely incurved-apiculate, apiculus 0.2–0.3 mm.