Dacrydium Spp. Family: Podocarpaceae Rimu

Total Page:16

File Type:pdf, Size:1020Kb

Dacrydium Spp. Family: Podocarpaceae Rimu Dacrydium spp. Family: Podocarpaceae Rimu Other Common Names: Huon Pine (Australia), Sempilor (Sabah), Melor (Sarawak), Ru Bukit, Ekor Kuda (Malaya). Distribution: New Zealand, Australia, New Caledonia, Malay Archipelago, and Borneo. The Tree: Usually 60 to 100 ft in height, with a long, straight, clear bole with little taper diameters mostly 2 to 4 ft. Heights of 120 ft and trunk diameters of 8 ft are reported. The Wood: General Characteristics: Heartwood pale yellow, yellowish brown or reddish brown, varying with species, irregular dark streaks in D. cupressinum; sapwood paler, not always clearly differentiated. Texture fine and even; grain straight; sometimes with resinous odor. Weight: Basic specific gravity (ovendry weight/green volume) varies with species 0.40 to 0.52; air- dry density 30 to 40 pcf. Mechanical Properties: (2-in. standard) Moisture content Bending strength Modulus of elasticity Maximum crushing strength (%) (Psi) (1,000 psi) (Psi) Green (16) 7,440 1,220 3,290 12% 11,100 1,310 5,430 Green (10) 6,440 790 3,050 12% 8,500 1,070 5,830 Janka side hardness 625 lb for green material and 785 lb for dry. Drying and Shrinkage: Reported to dry readily without serious degrade; green moisture contents, though, are very high. Kiln schedule T13-C4S is suggested for 4/4 stock and T11-D3S for 8/4. Shrinkage green to 12% moisture content: radial 3.0%; tangential 4.2%; volumetric 6.2%. Working Properties: Easy to work with hand and machine tools; turns well, and takes good finish. Dry wood tends to split on nailing so green wood is used in framing or is prebored. Durability: Not durable in ground contact. Preservation: Heartwood is resistant to preservative treatments but sapwood is responsive to pressure and nonpressure systems. Uses: Light construction, joinery, furniture components, flooring, boxes and crates, plywood. Additional Reading: (9), (16), (82) 9. Burgess, P. F. 1966. Timbers of Sabah. Sabah For. Rec. No. 6. 16. Entrican, A. R., W. C. Ward, and J. S. Reid. 1951. The physical and mechanical properties of the principal indigenous woods of New Zealand. New Zealand Forest Service, Wellington. 82. Ward, W. C., revised by J. S. Reid. 1949. The properties and uses of Rimu (Dacrydium cupressinum). inform. Ser. N.Z. For. Serv. No. 2. From: Chudnoff, Martin. 1984. Tropical Timbers of the World. USDA Forest Service. Ag. Handbook No. 607. 2.
Recommended publications
  • Agathis Macrophylla Araucariaceae (Lindley) Masters
    Agathis macrophylla (Lindley) Masters Araucariaceae LOCAL NAMES English (pacific kauri); Fijian (da‘ua,dakua dina,makadri,makadre,takua makadre,dakua,dakua makadre) BOTANIC DESCRIPTION Agathis macrophylla is a tall tree typically to about 30–40 m tall, 3 m in bole diameter, with a broad canopy of up to 36 m diameter. Branches may be erect to horizontal and massive. Mature specimens have wide, spreading root systems whereas seedlings and young specimens have a vigorous taproot with one or more whorls of lateral roots. Leaves simple, entire, elliptic to lanceolate, leathery, and dark green, and shiny above and often glaucous below; about 7–15 cm long and 2–3.5 cm wide, with many close inconspicuous parallel veins. The leaves taper to a more or less pointed tip, rounded at the base, with the margins curved down at the edge. Petioles short, from almost sessile up to 5 mm long. Cones egg-shaped at the end of the first year, about 5 cm long, and 3 cm in diameter, more or less round at the end of the second year, 8–10 cm in diameter. Female cones much larger than males, globular, on thick woody stalks, green, slightly glaucous, turning brownish during ripening. Seeds brown, small, ovoid to globose, flattened, winged, and attached to a triangular cone scale about 2.5 cm across. BIOLOGY Pacific kauri is monoecious and produces cones instead of flowers. The first female cones begin to be produced at about 10 years old and take up to 2 years to mature (more often in 12-15 months).
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Pollination Drop in Relation to Cone Morphology in Podocarpaceae: a Novel Reproductive Mechanism Author(S): P
    Pollination Drop in Relation to Cone Morphology in Podocarpaceae: A Novel Reproductive Mechanism Author(s): P. B. Tomlinson, J. E. Braggins, J. A. Rattenbury Source: American Journal of Botany, Vol. 78, No. 9 (Sep., 1991), pp. 1289-1303 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2444932 . Accessed: 23/08/2011 15:47 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org AmericanJournal of Botany 78(9): 1289-1303. 1991. POLLINATION DROP IN RELATION TO CONE MORPHOLOGY IN PODOCARPACEAE: A NOVEL REPRODUCTIVE MECHANISM' P. B. TOMLINSON,2'4 J. E. BRAGGINS,3 AND J. A. RATTENBURY3 2HarvardForest, Petersham, Massachusetts 01366; and 3Departmentof Botany, University of Auckland, Auckland, New Zealand Observationof ovulatecones at thetime of pollinationin the southernconiferous family Podocarpaceaedemonstrates a distinctivemethod of pollencapture, involving an extended pollinationdrop. Ovules in all generaof the family are orthotropousand singlewithin the axil of each fertilebract. In Microstrobusand Phyllocladusovules are-erect (i.e., the micropyle directedaway from the cone axis) and are notassociated with an ovule-supportingstructure (epimatium).Pollen in thesetwo genera must land directly on thepollination drop in theway usualfor gymnosperms, as observed in Phyllocladus.In all othergenera, the ovule is inverted (i.e., the micropyleis directedtoward the cone axis) and supportedby a specializedovule- supportingstructure (epimatium).
    [Show full text]
  • Republic of Fiji: the State of the World's Forest Genetic Resources
    REPUBLIC OF FIJI This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. STATE OF THE FOREST GENETIC RESOURCES IN FIJI Department of Forests Ministry of Fisheries and Forests for The Republic of Fiji Islands and the Secreatriat of Pacific Communities (SPC) State of the Forest Genetic Resources in Fiji _____________________________________________________________________________________________________________________ Table of Contents Executve Summary ………………………………………………………………………………………………………………………..…….. 5 Introduction ………………………………………………………………………………………………………………………………..…….. 6 Chapter 1: The Current State of the Forest Genetic Resources in Fiji ………………………………………………………………….…….
    [Show full text]
  • Falcatifolium Angustum
    Falcatifolium angustum Falcatifolium is a genus of conifers belonging to the family Podocarpaceae. The genus includes evergreen dioecious shrubs and large trees of up to 36 metres (118 ft). Five species are presently recognized. The genus was first described by de Laubenfels in 1969, and is composed of species formerly classified in genus Dacrydium. Genus Facatifolium ranges from New Caledonia to the Malay Peninsula, including New Guinea, the Indonesian islands of Sulawesi, Borneo, and the Obi and Riau Islands, and the Falcatifolium angustum Falcatifolium falciforme Falcatifolium gruezoi Falcatifolium papuanum Falcatifolium sleumeri Falcatifolium taxoides. There are no photos for this record yet. There is no description for this record yet. "Falcatifolium angustum" is a species of conifer in the Podocarpaceae family found only in Malaysia. It is threatened by habitat loss. ource. * Conifer Specialist Group 1998. [http://www.iucnredlist.org/search/details.php/34150/all Falcatifolium angustum] . [http://www.iucnredlist.org 2006 IUCN Red List of Threatened Species. ] Downloaded on 10 July 2007. Wikimedia Foundation. 2010. Dacrydium xanthandrum. Falcatifolium falciforme. Look at other dictionaries: Falcatifolium angustum ┠Saltar a navegación, búsqueda ? Falcatifolium angustum ┠Overview. learn more about names for this taxon. Add to a collection. Falcatifolium angustum Trusted. © Discover Life and original sources. Source: Discover Life. Falcatifolium angustum is an evergreen tree growing up to 20 metres tall. The straight, cylindrical bole can be 6 - 25cm in diameter[. 329. ]. The wood of various species of Falcatifolium is traded as 'sempilor' timber. We do not have a specific description for the wood of this species, but the generic description of sempilor timber is as follows:- The heartwood is buff in colour, sometimes with a pink tinge or golden brown; it is not differentiated from the sapwood.
    [Show full text]
  • Ecology and Distribution of the Malesian Podocarps Neal J
    4 Ecology and Distribution of the Malesian Podocarps Neal J. Enright and Tanguy Jaffré ABSTRACT. Podocarp species and genus richness is higher in the Malesian region than anywhere else on earth, with maximum genus richness in New Guinea and New Caledo- nia and maximum species richness in New Guinea and Borneo. Members of the Podo- carpaceae occur across the whole geographic and altitudinal range occupied by forests and shrublands in the region. There is a strong tendency for podocarp dominance of vegetation to be restricted either to high- altitude sites close to the limit of tree growth or to other sites that might restrict plant growth in terms of water relations and nutri- ent supply (e.g., skeletal soils on steep slopes and ridges, heath forests, ultramafic parent material). Although some species are widespread in lowland forests, they are generally present at very low density, raising questions concerning their regeneration ecology and competitive ability relative to co- occurring angiosperm tree species. A number of species in the region are narrowly distributed, being restricted to single islands or mountain tops, and are of conservation concern. Our current understanding of the distribution and ecology of Malesian podocarps is reviewed in this chapter, and areas for further research are identified. INTRODUCTION The Malesian region has the highest diversity of southern conifers (i.e., Podocarpaceae and Araucariaceae) in the world (Enright and Hill, 1995). It is a large and heterogeneous area, circumscribing tropical and subtropical lowland to montane forest (and some shrubland) assemblages, extending from Tonga in Neal J. Enright, School of Environmental Science, the east to India in the west and from the subtropical forests of eastern Australia Murdoch University, Murdoch, Western Austra- in the south to Taiwan and Nepal in the north (Figure 4.1).
    [Show full text]
  • Summary Report on Forests of the Mataqali Nadicake Kilaka, Kubulau District, Bua, Vanua Levu
    SUMMARY REPORT ON FORESTS OF THE MATAQALI NADICAKE KILAKA, KUBULAU DISTRICT, BUA, VANUA LEVU By Gunnar Keppel (Biology Department, University of the South Pacific) INTRODUCTION I was approached by Dr. David Olson of the Wildlife Conservation Society (WCS) to assess the type, status and quality of the forest in Kubulau District, Bua, Vanua Levu. I initially spent 2 days, Friday (28/10/2005) afternoon and the whole of Saturday (29/10/2005), in Kubulau district. This invitation was the result of interest by some landowning family clans (mataqali) to protect part of their land and the offer by WCS to assist in reserving part of their land for conservation purposes. On Friday I visited two forest patches (one logged about 40 years ago and another old-growth) near the coast and Saturday walking through the forests in the center of the district. Because of the scarcity of data obtained (and because the forest appeared suitable for my PhD research), I decided to return to the district for a more detailed survey of the northernmost forests of Kubulau district from Saturday (12/11/2005) to Tuesday (22/11/2005). Upon returning, I found out that the mataqali Nadicake Nadi had abandoned plans to set up a reserve and initiated steps to log their forests. Therefore, I decided to focus my research on the land of the mataqali Nadicake Kilaka only. My objectives were the following: 1) to determine the types of vegetation present 2) to produce a checklist of the flora and, through this list, identify rare and threatened species in the reserve 3) to undertake a quantitative survey of the northernmost forests (lowland tropical rain forest) by setting up 4 permanent 50 ×50m plots 4) to assess the status of the forests 5) to determine the state and suitability of the proposed reserve 6) to assess possible threats to the proposed reserve.
    [Show full text]
  • Distribution and Ecology of the Conifers of New Caledonia
    I 1 extrait de : EGOLQGY OP THE SOUTHERN CONIFERS Edited by : Neal J. ENRIGHT and Robert S. HILL MELBOW WVERSITY PRESS - 1935 5. - I Distribution and Ecology 8 of the Conifers of - New Caledonia T. JAFFRÉ ESPITE ITS small area (19 O00 km2) New Caledonia possesses a rich and distinctive flora, totalling 3000 species of phanerogams of which 75 to 80 per cent are endemic. Among these are 43 conifers (all endemic) belonging D (1 to four families: Taxaceae (one sp.), Podocarpaceae (18 spp.), Araucariaceae 8 spp.), Cupressaceae (six spp.). \ The sole species of the family Taxaceae belongs to the endemic genus Austrotaxus. The Podocarpaceae is divided among eight genera: Podocarpus (seven ii spp.), Dacrydium (four spp.), Retrophyllum (twospp.), Falcatifolium, Dacrycarpus, Acmopyb, Prumnopitys and Parasitaxus (one sp. each), the last being endemic to New Caledonia (Page 1988). The Araucariaceae comprises two genera, Araucaria (13 spp.) and Agathis (five spp.), and the Cupressaceae the genera Libocedrus (three spp.), Callitris (two spp.), and the monotypic and endemic Neocallitropsis (de Laubenfels 1972). No other region of the world with such a small area possesses such a rich and distinctive conifer flora. Growth forms The majority of New Caledonian conifers are tall trees but there are also small trees and shrubs. The Araucariaceae, all arborescent, includes nine species exploited for their timber (Agatbis corbassonii, A. lanceolata, A. moorei, A. ovata, Araucaria columnaris, A. bernieri, A. laubenfelsii, A. luxurians, A. subulata). The Agatbis species are among the most massive forest trees; some individuals I of the tallest species, Agatbis lanceolata, have trunks more than 2.5 m in diameter and attain a height of 30-40 m.
    [Show full text]
  • First Record of Podocarpoid Fossil Wood in South China Long Li1, Jian-Hua Jin1, Cheng Quan2 & Alexei A
    www.nature.com/scientificreports OPEN First record of Podocarpoid fossil wood in South China Long Li1, Jian-Hua Jin1, Cheng Quan2 & Alexei A. Oskolski3,4 A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Received: 24 May 2016 Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is Accepted: 04 August 2016 characterized by distinct growth rings, circular to oval tracheids in cross section, 1–2-seriate opposite Published: 30 August 2016 pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3–4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. As the second largest family within the conifers, the modern Podocarpaceae largely comprises evergreen trees and shrubs belonging to 194 species within 19 genera1. This family is mainly distributed in tropical and subtropical regions from central to South America, Africa (include Madagascar), Indochina through Malesia to Australia and Oceania1,2, extending as far north as China and Japan as well as to Mexico and the Caribbean3–5.
    [Show full text]
  • Podocarp Evolution: a Molecular Phylogenetic Perspective Edward Biffin, John G
    1 Podocarp Evolution: A Molecular Phylogenetic Perspective Edward Biffin, John G. Conran, and Andrew J. Lowe ABSTRACT. Phylogenetic reconstructions of the relationships among extant taxa can be used to infer the nature of the processes that have generated contemporary patterns of biotic diversity. In this study, we present a molecular phylogenetic hypothesis for the conifer family Podocarpaceae based upon three DNA fragments that have been sampled for approximately 90 taxa. We use Bayesian relaxed- clock methods and four fossil con- straints to estimate divergence times among the lineages of Podocarpaceae. Our dating analyses suggest that although the family is old (Triassic–Jurassic), the extant species groups are of recent evolutionary origin (mid- to late Cenozoic), a pattern that could reflect a temporal increase in the rate lineage accumulation or, alternatively, a high and constant rate of extinction. Our data do not support the hypothesis that Podocarpaceae have diversified at a homogeneous rate, instead providing strong evidence for a three- to eightfold increase in diversification associated with the Podocarpoid– Dacrydioid clade, which radiated in the mid- to late Cretaceous to the earliest Cenozoic, around 60–94 mya. This group includes a predominance of taxa that develop broad leaves and/or leaf- like shoots and are distributed predominantly throughout the tropics. Tropical podocarps with broad leaves may have experienced reduced extinction and/or increased speciation coincident with the radiation of the angiosperms, the expansion of megathermal forests, and relatively stable tropical climates that were widespread through the Tertiary. Edward Biffin, John G. Conran, and Andrew J. INTRODUCTION Lowe, Australian Centre for Evolutionary Biol- ogy and Biodiversity, School of Earth and Envi- Patterns of species diversity reflect the balance of speciation and extinction ronmental Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
    [Show full text]
  • Characteristics of Green Rimu Fruit That Might Trigger Breeding in Kakapo
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Characteristics of green rimu fruit that might trigger breeding in kakapo A thesis presented in partial fulfilment of the requirements for the degree of Masters in Zoology at Massey University, Turitea Campus, Palmerston North New Zealand Yvette Heather Cottam 2010 ABSTRACT Species living in unpredictable habitats cannot prepare for a regular reproductive year, and must reproduce when conditions are favourable. The timing of reproduction of the seed predators involves anticipating an abundant food supply by tracking cues or triggers which initiate reproduction. These cues are poorly understood. The most supported theory is that a cue or cues is the size or abundance of the developing fruit crop, and possibly involves nutritional compounds in the crop. The rimu (Dacrydium cupressinum) is a masting podocarp tree strongly linked to reproduction in kakapo (Strigops habroptilus). On Codfish Island kakapo only breed in rimu mast years and nesting is timed so chicks hatch when the rimu fruit crop (the sole food source for chicks) is due to ripen. This thesis investigates the theory that some component in unripe rimu fruit is involved in timing of nesting in kakapo. I characterised seasonal changes (over one year) in nutritional components (gross nutrients), polyphenolic compounds and other potential target polyphenolic substances with possible hormonal activity, including isoflavones and antioxidants, during rimu fruit development. A number of the compounds found in rimu fruit are known to affect reproduction in other species and could be potential triggers for reproduction in kakapo.
    [Show full text]
  • Paleogene Imbricate-Leaved Podocarps from King George Island (Antarctica): Assessing the Geological Context and Botanical Affinities
    Rev. bras. paleontol. 13(3):189-204, Setembro/Dezembro 2010 © 2010 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2010.3.04 PALEOGENE IMBRICATE-LEAVED PODOCARPS FROM KING GEORGE ISLAND (ANTARCTICA): ASSESSING THE GEOLOGICAL CONTEXT AND BOTANICAL AFFINITIES DAIANA FONTES & TÂNIA LINDNER DUTRA Programa de Pós-Graduação em Geologia, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, 93022-000, São Leopoldo, RS, Brasil. [email protected], [email protected] ABSTRACT – Imbricate-leaved podocarps (Dacrydium s.l.) are the dominant conifer remains in the Upper Cretaceous and Cenozoic successions of King George Island, increasing its abundance in the post-Late Paleocene strata and maintained until the Early Oligocene times, with poor taphoflora registered in the last. However, a more precise taxonomic relationship of their remains was ever difficult given the fragmentary nature of the fossils and most known from ex situ material. In new field works and collections looking for the original levels, the recent phylogenetic approaches proposed and comparisons with extant floras have been applied to these fossils, and have helped to clarify their taxonomic status and their preferable association with the Upper Paleocene-Lower Eocene levels. The two kinds of foliage discussed here initiated the taxonomic revision of the Podocarpaceae related fossils on the island and attest to a modern affinity with Dacrydium vel Halocarpus and Dacrycarpus, which was in part proposed by previous works. Those genera comprise today an important component of the eastern Southern Hemisphere forests, and their occurrence in the Antarctic Peninsula areas during the Paleogene supports a broader distribution in the past and attests to the importance of the ancient Antarctic coastal areas in the modern distribution of the Podocarpaceae.
    [Show full text]