Environmental Radioactivity in Different Climate Types: Measurement, Terrestrial Transport Process and Radiation Exposure
Total Page:16
File Type:pdf, Size:1020Kb
Environmental Radioactivity in Different Climate Types: Measurement, Terrestrial Transport Process and Radiation Exposure Vom Fachbereich für Physik und Elektrotechnik der Universität Bremen Zur Erlangung des akademischen Grades eines Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Ahmed Ali Husein Qwasmeh Eingerich am: 22.05.2008 Tag des Promotionskolloquiums: 01.07.08 Gutachter: Prof. Dr. Justus Notholt Prof. Dr. Gerald Kirchner Prüfer: Prof. Dr. Jörn Bleck-Neuhaus Prof. Dr. Stefan Bornholdt I Table of Contents List of Figures V List of Tables VIII Abstract 1 1 Environmental Radioactivity and its Measurements 4 1.1 Introduction 4 1.1.1 Natural and Man-Made Radiation 4 1.1.2 Radioactivity 5 1.1.2.1 Types of Radiation 6 1.1.2.2 Radiation Levels and Their Effects 7 1.2 Measurement of Radiation 8 1.2.1 Gamma Detection 8 1.2.1.1 Types of Gamma Detectors 10 1.2.1.2 General Characteristics of Gamma Detectors 10 1.2.1.2.1 Detector Efficiency 11 1.2.1.2.2 Detector Resolution 12 1.2.1.3 Semiconductor Detectors 13 1.2.2 Beta Measurement 17 1.2.2.1 Gas-Filled Detectors 17 1.2.2.2 Proportional Counters 18 1.2.3 Sample Geometry 23 1.2.4 Evaluation of Gamma Spectra 24 1.2.4.1 Energy Calibration 24 1.2.4.2 Efficiency Calibration 25 1.2.4.3 Counting Statistics 26 1.2.4.4 Soil Sample Spectra 28 1.3 Cesium-137 and Strontium-90 in the Environment 29 1.3.1 Cesium 29 1.3.2 Strontium 31 1.3.3 90Sr and 137Cs Sources 32 1.3.3.1 Global Fallout 32 1.3.3.2 Chernobyl Fallout 35 1.3.4 Chernobyl Impact on Jordan and its Neighboring Countries 40 1.3.4.1 Syria 41 1.3.4.2 Egypt 45 1.3.4.3 Lebanon 46 1.3.4.4 Jordan 47 1.4 Effects of Soil Characteristics on the Depth Distribution of 137Cs 49 1.4.1 Organic Matter Content 50 1.4.2 Particle Size Distribution 51 1.4.3 Cation Exchange Capacity (CEC) and K, Mg and Ca Concentrations 52 II 1.4.4 Soil pH 53 2 Radioactivity Concentrations in Jordanian Soil and Plants Samples 54 2.1 Introduction 54 2.2 Motivation and Goals 57 2.3 Sampling, Samples Locations and Identification and Sampling Preparation 58 2.3.1 Sampling Procedure 61 2.3.2 Sample Preparation 67 2.3.2.1 Preparation of Samples for Gamma Measurements 67 2.3.2.1.1 Preparation of the First Set of Samples 67 2.3.2.1.2 Preparation of the second Set of Samples 68 2.3.2.2 Radiochemical Separation to Determine 90Sr Concentrations (Beta Measurements) 69 2.3.2.2.1 Introduction 69 2.3.2.2.2 Sample Preparation 69 2.3.2.2.3 Radiochemical Separation 70 2.4 Measurements and Analysis 71 2.4.1 Gamma Analysis 71 2.4.1.1 Measuring the Activities 71 2.4.1.2 Determining and Building the Efficiencies 73 2.4.1.3 Results and Discussion of Gamma Analysis 74 2.4.1.4 Soil-to-Plant Transfer Factors 87 2.4.2 Beta Analysis 88 2.4.2.1 Measuring the Activities 88 2.4.2.2 Results of Beta Analysis 89 137 2.5 Comparison of Cs Concentrations in Soil in Jordan with Some European and Middle East Countries 91 2.6 External Dose 93 3 Depth Distribution and Migration of 137Cs in Jordanian Soils 98 3.1 Introduction 98 3.2 Soil Analysis and the Effect of its Characteristics on 137Cs Migration in Soil 98 3.3 Determining the Origin of 137Cs in the Jordanian Soils 101 3.3.1 137Cs-90Sr Ratio 101 3.3.2 Convection Dispersion Migration Model of 137Cs in Soil 104 3.3.2.1 Introduction 104 3.3.2.2 Theory 105 3.3.2.3 Results and Discussion 108 3.3.2.4 Statistical Evaluations of Fit1 and Fit2 122 3.3.2.5 Comparison with migration parameters from other studies 123 3.3.3 Correlation between the Annual Rainfall in the Sites and 137Cs Inventories (Climate Effects) 128 3.3.4 Correlation between the Sites Altitudes and 137Cs Inventories 129 III 4 Conclusions and Outlook 130 5 References 132 IV List of Figures Figure 1-1: Decay chain of 238U [Gentry 2003]................................................................ 5 Figure 1-2: Spectrum of a radioactive source collected by germanium detector (left) and NaI(Tl) detector (right) [CANBERRA (a)]. ................................................ 11 Figure 1-3: FWHM for a peak whose shape is Gaussian................................................ 13 Figure 1-4: Band structure of electron energies in insulators and semiconductors. ....... 14 Figure 1-5: Cross-sectional view of a Ge-semiconductor detector [CANBERRA (a)].. 15 Figure 1-6: Schematic drawing of a multichannel analyzer (MCA)............................... 16 Figure 1-7: Expanded view of a photo peak [CANBERRA (b)].................................... 16 Figure 1-8: Gamma spectrum obtained with a 137Cs calibration source......................... 16 Figure 1-9: The basic components of ionization chamber.............................................. 17 Figure 1-10: Gas Detector Output vs. Anode Voltage...................................................... 19 Figure 1-11: Avalanche formation by a charged particle traversing the detector gas. ..... 20 Figure 1-12: The solid angle (Ω) subtended by the frontal area (A) of the detector at source (S) position (D) [Knoll 1999]........................................................... 22 Figure 1-13: 2π gas flow proportional counter [Knoll 1999]. .......................................... 22 Figure 1-14: 4π gas flow proportional counters [Knoll 1999].......................................... 22 Figure 1-15: Marinelli-beaker........................................................................................... 24 Figure 1-16: Efficiency calibration curve for a high purity semiconductor detector. ...... 26 Figure 1-17: Peak and background areas for background subtraction [Gedcke].............. 28 Figure 1-18: Gamma spectrum obtained from a soil sample............................................ 29 Figure 1-19: Decay scheme of 137Cs [Firestone 1996]. .................................................... 30 Figure 1-20: Decay scheme of 134Cs [Firestone 1996]. .................................................... 31 Figure 1-21: Tests of nuclear weapons in the atmosphere and underground [UNSCEAR 2000; Annex C]............................................................................................ 33 Figure 1-22: Annual deposition of radionuclides produced in atmospheric nuclear testingin the northern hemisphere [UNSCEAR 2000; Annex C]. ............... 34 Figure 1-23: The site of Chernobyl power plant and the surrounding regions [UNSCEAR 2000; Annex J]............................................................................................. 36 Figure 1-24: The contamination plumes from Chernobyl and the corresponding arrival dates in the European contries [UNSCEAR 1988; Annex D]. .................... 37 Figure 1-25: Surface ground deposition of 137Cs in the immediate vicinity of the Chernobyl reactor in the closest zones (30 km and 60 km)of Chernobyl nuclear power plant [IAC 1991]. ................................................................. 38 Figure 1-26: Surface ground deposition of 90Sr Released from Chernobyl reactor [IAC 1991]. ........................................................................................................... 39 V Figure 1-27: Soil contamination with 137Cs in the Federal Republic of Germany in 1986 according to the Department of Federal Health [Bundesgesundheitsamt 2000]. ........................................................................................................... 40 Figure 1-28: Map of Jordan and its neighbouring countries............................................. 41 Figure 1-29: The estimated trajectories of radioactive plume, ------, and clean air mass. -.- .-.-, air mass trajectories were constructed by Department of Meteorology in Syria using satellite photographs [Othman 1990]........................................ 42 Figure 1-30: The coastal Syrian mountains with the studied sites (dots) [Al-Rayyes 1999]. ...................................................................................................................... 43 Figure 1-31: Mapping of 137Cs inventory in Syria[Al-Masri 2006(a)]............................. 44 Figure 1-32: A comparison between total 137Cs inventory and mathematically derived nuclear bomb tests 137Cs [Al-Masri 2006(a)]............................................... 44 Figure 1-33: Nile Delta and the north coast [Shawky 1997]. ........................................... 45 Figure 1-34: Burullus Lake location in Egypt [El-Reefy 2006]. ...................................... 45 Figure 1-35: The map of Lebanon with locations of sampling sites [El Samad 2007]. ... 47 Figure 1-36: Jordan’s map with sample locations [Al Hamarneh 2003].......................... 49 Figure 2-1: 137Cs profile in a sediment core from kinneret lake [Kirchner 1997]. ......... 55 Figure 2-2: Jordan's map with samples locations. .......................................................... 59 Figure 2-3: Population density of Jordan........................................................................ 60 Figure 2-4: Soil sampling plans [Jacobsen].................................................................... 61 Figure 2-5: Hand auger used in soil sampling. ............................................................... 62 Figure 2-6: Plastic containers used to collect the samples.............................................. 63 Figure 2-7: The sampling area in Kufrsum (AQ1). ........................................................ 63 Figure 2-8: The sampling area in Foua'ra (AQ2)............................................................ 64 Figure 2-9: The sampling area in Baliela (AQ3). ........................................................... 64 Figure 2-10: The sampling