Illustrated Holocene Era Timeline

Total Page:16

File Type:pdf, Size:1020Kb

Illustrated Holocene Era Timeline Illustrated Holocene Era Timeline: Human Achievements, Advancements, Innovations, and Understanding in Science using EMILIANI’s HE calendar Ruthie S. Premack Author / Compiler Technical Advisor Paul Premack Phone Edition 12,019 HE I dedicate this book To: the wonderful man who is my husband Paul Premack, our adult children Tiffany and Benjamin, his wife Kira, my mother Jo Ann Simons Stier for their love, brains, attention to detail, laughter, and thoughtfulness and to my dad Herb Stier; To: CESARE EMILIANI, who first had the idea for the Holocene Era (HE) calendar; and To: any human who can open their mind to seeing the (HE) flow of human accomplishment and to being enchanted, shocked, disappointed, or amazed by the wonders and realities of science. © 2019 (12,019 HE), Ruthie S. Premack, all rights reserved. Any portion, but not the entirety, of this book may be reproduced without permission from the author so long as this book is cited as the source and entries are not altered. Some text in this Timeline is from or based upon entries in Wikipedia. Use is permitted because we have provided credit to the authors by including a URL to the page or pages used. All entries based upon Wikipedia materials is released under CC BY-SA: https://creativecommons.org/licenses/by-sa/3.0/ Table of Contents ABOUT THE HE CALENDAR AND FORMATTING ............................... 7 AUTHOR / COMPILER’S PREFACE ........................................................ 10 CHAPTER ONE APPETIZERS ............................................................. 12 CHAPTER TWO BEFORE THE HOLOCENE ERA: THE BIG BANG TO THE STONE AGE .............................................. 45 CHAPTER THREE 1 HE: BEGINNING OF THE HOLOCENE ERA ..................................................................................... 152 CHAPTER FOUR THE BRONZE AGE: CIRCA 6,401 HE - CIRCA 9,001 HE (LASTING CIRCA 2,600 YEARS) . 175 CHAPTER FIVE THE IRON AGE: CIRCA 9,001 HE- CIRCA 11,543 HE (LASTING CIRCA 2,760 YEARS) ..................................................................................... 293 CHAPTER SIX THE SCIENTIFIC REVOLUTION: CIRCA 11,543 HE - NOW (LASTING, SO FAR, LESS THAN 600 YEARS) ............................................... 567 CHAPTER SEVEN THE INDUSTRIAL REVOLUTION: CIRCA 11,760 HE - NOW (LASTING, SO FAR, LESS THAN 300 YEARS, PART OF THE SCIENTIFIC REVOLUTION) ....................................................... 780 CHAPTER EIGHT THE MODERN SCIENTIFIC ERA: CIRCA 11,859 HE (LASTING, SO FAR, LESS THAN 175 YEARS) ................................................................... 1037 ABOUT THE AUTHOR / COMPILER ................................................. 1772 About the HE Calendar and Formatting This eBook, Illustrated Holocene Era Timeline: Human Achievements, Advancements, Innovations, and Understanding in Science using EMILIANI’s HE calendar uses HE (Holocene Era) to count years. The word “Holocene” means “entirely recent”. The Holocene Era (HE) encompasses the growth, history, and impacts of the human species worldwide. Some argue that the period should be referred to as the “Human Era” instead of the “Holocene Era”, but when the HE Calendar was first proposed by scientist CESARE (Chay-se-ree) EMILIANI in 1993 (think 11,993 HE) he chose the label “Holocene”. We’ll stay with Holocene instead of Human in order to be consistent with EMILIANI’s proposal. EMILIANI died before he was able to make his proposal a reality. We want to help bring his proposal into wide-spread use. The HE calendar places year 1 at a time when humans were settling into agricultural communities. It loosely matches the beginning of the “Holocene epoch” of geology. Admittedly, the choice of a particular moment in time must be arbitrary, but a point must be chosen. EMILIANI for his calendar reform idea chose a point that would make the current AD/CE year numbers match with the addition of 10,000. Conversion from AD/CE years into HE is done by adding 10,000 to the AD/CE year. The year 2015 AD/CE is 12,015 HE. Conversion from BC/BCE years to HE is done by subtracting 10,001 from the BC/BCE year. The year 2015 BCE would be 7,986 HE. My husband, Paul Premack, the technological advisor for this undertaking, built an Excel calculator to do the math. Find it at: www.premack.com/timeline.html • Note that in the Gregorian calendar there is no year “0”; it went from 1 BC/BCE to 1 AD/CE with no intervening year. Hence, the year 1 BC/BCE is 10,000 HE and the year 1 AD/CE is 10,001 HE. • The years before recorded human history are “Before Holocene Era” (BHE). BHE begins with the Big Bang, and all of the listed items are estimations based on research, evidence, and conclusions refined by modern scientists. • BHE and HE dates are in bold. • Books and texts are bold, italicized, and underlined. • SCIENTIST NAMES are in ALL CAPITAL LETTERS. About the confusion of using the standard calendar now in use: John Cleese said of his early experience teaching history before his Monty Python days, “I still got confused how dates with 16 on the front could occur in the 17th 1 century. That’s about as basic as history gets.” 1 Autobiography of John Cleese, So, Anyway…, 12,015 HE Author / Compiler’s Preface I started a timeline on paper, in 12,014 HE, to align various scientists with the dates they lived, as we learned about various scientists introduced by CERN Scientist PROFESSOR BRIAN COX in the BBC program “The Science of Dr. Who”. It was my husband who researched, sifted through, and presented to me all the different calendars from which we decided that CESARE EMILIANI’S HOLOCENE ERA HE CALENDAR reforming idea was most fair and made the most sense for every human! Thank you, Paul! After a year of compiling information our son said: “You must footnote everything, because you are compiling the work of others.” At the time I was not happy about it. Now it was a fundamental factor in the success of this quest. Thank you, Benjamin! This is by no means a complete list. We consider it a Work in Progress done by amateurs, not professional researchers. It was so exciting for me to have these puzzle pieces of human accomplishments flow together! It makes sense to see Human progress using EMILIANI’s HE Calendar reform timeline! The goals of Illustrated Holocene Era Timeline: Human Achievements, Advancements, Innovations, and Understanding in Science using EMILIANI’s HE calendar are to: 1) Present historical information in a new light through the flowing lens of the Holocene Era, and 2) Perhaps grant a new perspective on the history of human accomplishments. Chapter One Appetizers Details are fun… so Chapter Two launches the body of the Illustrated Holocene Era Timeline. But here are some “Bites of Holocene Era Highlights” to whet your appetite! (Please note: date given for each entry/culture/person is that entry/culture/person’s either circa start date or birth; obviously, their important works were achieved in the years following.) • Circa 300,000 BHE: At a site near Marrakesh, modern miners uncovered fossils which suggest our species may have emerged more than 100,000 years earlier than previously thought.2 2 https://www.history.com/news/how-homo-sapiens-fossils-found-in-morocco-may-rewrite-the-human- story • Circa 39,999 BHE: Sydney, Australia - Aboriginal stone tools.3 • Circa 32,000 BHE: Germany, Paleolithic flute from animal bone.4 • Circa 30,000 BHE: Spain, Altamira Cave, El Castillo, oldest known cave paintings.5 • Circa 29,999 BHE – Current times HE: Africa, San People inhabit the Kalahari Desert.6 3 ISAAC ASIMOV: ASIMOV’S Chronology of the World 4 https://en.wikipedia.org/wiki/Paleolithic_flutes 5 http://whc.unesco.org/en/list/310 6 https://en.wikipedia.org/wiki/San_people • Circa 24,999 BHE: Discovered in the Lebombo Mountains located between South Africa and Swaziland, The Lebombo bone is the oldest mathematical fossil.7 • Circa 23,000 BHE: France, the Venus of Laussel is one of the oldest examples of carved figurative art of a human figure.8 • Circa 22,000 BHE: Republic of Georgia: Twisted rope fibers and flax fibers discovered, which were made by early humans.9 • Circa 21,000 BHE: Domestication of dogs.10 7 http://www.math.buffalo.edu/mad/Ancient-Africa/lebombo.html 8 https://en.wikipedia.org/wiki/Venus_of_Laussel 9 http://news.harvard.edu/gazette/story/2009/09/oldest-known-fibers-discovered/ 10 https://www.sciencedaily.com/releases/2012/01/120123152528.htm • Circa 16,000 BHE: Fired Clay; Czech Republic; or between Southern Russia and Spain.11 The Venus of Dolni Vestonice figurine survives.12 • Circa 13,000 BHE: Africa: The Ishango Bone portrays what are believed to be a series of Prime numbers, and a lunar phase calendar.13 • Circa 5,300 BHE: Lascaux, France: cave painting of the Magdalenian Culture.14 11 http://news.bbc.co.uk/2/hi/science/nature/790569.stm 12 https://en.wikipedia.org/wiki/Venus_of_Doln%C3%AD_V%C4%9Bstonice 13 https://en.wikipedia.org/wiki/Ishango_bone 14 http://www.ancient-wisdom.com/francelascaux.htm • Circa 1 HE – Circa 6,401 HE: THE STONE AGE • Circa 1 HE: The End of the Last Ice Age • Circa 1 HE: This is a rough approximation of the start of the current geologic epoch, the Holocene Epoch.15 • Circa 1 HE: The world-wide population of humans is approximately 5 million.16 • Circa 1 HE: Organized agriculture begins.17 15 https://en.wikipedia.org/wiki/Holocene_calendar 16 https://www.worldometers.info/world-population/ 17 ISAAC ASIMOV: ASIMOV’S Chronology of the World • Circa 500 HE: Göbekli Tepe, an archaeological site in the Southeastern Turkey.18 • Circa 2,000 HE: Scotland, Lunar Calendar.19 • Circa 3,000 HE: China: fermentation.20 • Circa 3,000 HE: The Chinchorro culture in Chile and southern Peru.21 • Circa 4,000 HE: Sumeria, beginning of priest-kings and organized religion.22 18 https://en.wikipedia.org/wiki/Gobekli_Tepe 19 http://www.bbc.com/news/uk-scotland-north-east-orkney-shetland-23286928 20 https://en.wikipedia.org/wiki/List_of_Chinese_inventions 21 https://en.wikipedia.org/wiki/Chinchorro_culture 22 ISAAC ASIMOV: ASIMOV’S Chronology of the World • Circa 4,001 HE: China; a canoe-shaped pottery and six wooden oars dating from the 4,001 HE has been discovered in a Hemudu culture site at Yuyao, Zhejiang.

  1772
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • BERMAN-THESIS-2020.Pdf (4.226Mb)
    The Attributes and Formation Mechanisms of Kallistos Vallis, Venus by Derek A. Berman, B.S. A Thesis In Geosciences Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved David W. Leverington, Ph.D. Chair of Committee Haraldur R. Karlsson, Ph.D. Harold Gurrola, Ph.D. Dr. Mark Sheridan Dean of the Graduate School December, 2020 Copyright 2020, Derek A. Berman Texas Tech University, Derek A. Berman, December 2020 ACKNOWLEDGMENTS I would like give my heartfelt gratitude and thanks to all my committee members. I would like to thank Dr. David Leverington for working with me these past years to accomplish this research and further my knowledge of planetary geology, geomorphology, and remote sensing. I hope this will be just the start to future collaborations, and that in 20 years we can still consider each other friends and colleagues in science. Thank you to Dr. Hal Karlsson for all your thoughtful comments and feedback on my thesis and a thank you to Dr. Harold Gurrola for serving on my thesis committee. I would also like to thank Lucia Barbato, Cameron Griffith, and Dr. Callum Hetherington for all the thoughtful advice, mentoring, and academic training. The three of you definitely helped to enrich my academic experience at TTU. The past several years have represented a huge personal growth period, full of challenges and triumphs. I want to thank all my friends and family members who lent me their undying support and motivation. I especially want to thank my sister Nicole, who was with me through the toughest of times, and my friends Giovanni, Luka, and Matteo, as well as all the members of the “Italian Club”, for your camaraderie and kind words of encouragement.
    [Show full text]
  • Health Concerns of Heavy Metals (Pb; Cd; Hg) and Metalloids (As)
    Health concerns of the heavy metals and metalloids Chris Cooksey • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Toxicity - acute and chronic Acute - LD50 Trevan, J. W., 'The error of determination of toxicity', Proc. Royal Soc., 1927, 101B, 483-514 LD50 (rat, oral) mg/kg CdS 7080 NaCl 3000 As 763 HgCl 210 NaF 52 Tl2SO4 16 NaCN 6.4 HgCl2 1 Hodge and Sterner Scale (1943) Toxicity Commonly used term LD50 (rat, oral) Rating 1 Extremely Toxic <=1 2 Highly Toxic 1 - 50 3 Moderately Toxic 50 - 500 4 Slightly Toxic 500 - 5000 5 Practically Non-toxic 5000 - 15000 6 Relatively Harmless >15000 GHS - CLP LD50 Category <=5 1 Danger 5 - 50 2 Danger 50 - 300 3 Danger 300 - 2000 4 Warning Globally Harmonised System of Classification and Labelling and Packaging of Chemicals CLP-Regulation (EC) No 1272/2008 Toxicity - acute and chronic Chronic The long-term effect of sub-lethal exposure • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Arsenic • Pesticide o Inheritance powder • Taxidermy • Herbicide o Agent Blue • Pigments • Therapeutic uses Inorganic arsenic poisoning kills by allosteric inhibition of essential metabolic enzymes, leading to death from multi- system organ failure. Arsenicosis - chronic arsenic poisoning. Arsenic LD50 rat oral mg/kg 10000 1000 LD50 100 10 1 Arsine Arsenic acid Trimethylarsine Emerald green ArsenicArsenious trisulfide oxideSodium arsenite MethanearsonicDimethylarsinic acid acid Arsenic poisoning by volatile arsenic compounds from mouldy wall paper in damp rooms • Gmelin (1839) toxic mould gas • Selmi (1874) AsH3 • Basedow (1846) cacodyl oxide • Gosio (1893) alkyl arsine • Biginelli (1893) Et2AsH • Klason (1914) Et2AsO • Challenger (1933) Me3As • McBride & Wolfe (1971) Me2AsH or is it really true ? William R.
    [Show full text]
  • Historical Group
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 61 Winter 2012 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield, School of Education, | Prof J Betteridge (Twickenham, Middlesex) Health and Sciences, University of Derby, | Dr N G Coley (Open University) Derby, DE22 1GB [e-mail [email protected]] | Dr C J Cooksey (Watford, Hertfordshire) Secretary: | Prof E Homburg (University of Maastricht) Prof W P Griffith, Department of Chemistry, | Prof F James (Royal Institution) Imperial College, South Kensington, London, | Dr D Leaback (Biolink Technology) SW7 2AZ [e-mail [email protected]] | Dr P J T Morris (Science Museum) Treasurer; Membership Secretary: | Prof. J. W. Nicholson (University of Greenwich) Dr J A Hudson, Graythwaite, Loweswater, | Mr P N Reed (Steensbridge, Herefordshire) Cockermouth, Cumbria, CA13 0SU | Dr V Quirke (Oxford Brookes University) [e-mail [email protected]] | Dr S Robinson (Ham, Surrey) Newsletter Editor: | Prof. H. Rzepa (Imperial College) Dr A Simmons, Epsom Lodge, | Dr. A Sella (University College) La Grande Route de St Jean,St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Production: Dr G P Moss, School of Biological and Chemical, Sciences Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp Contents From the Editor 2 RSC Historical Group News - Bill Griffith 3 Identification Query - W. H. Brock 4 Members’ Publications 5 NEWS AND UPDATES 6 USEFUL WEBSITES AND ADDRESSES 7 SHORT ESSAYS 9 The Copperas Works at Tankerton - Chris Cooksey 9 Mauveine - the final word? (3) - Chris Cooksey and H.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Charles Galton Darwin's 1922 Quantum Theory of Optical Dispersion
    Eur. Phys. J. H https://doi.org/10.1140/epjh/e2020-80058-7 THE EUROPEAN PHYSICAL JOURNAL H Charles Galton Darwin's 1922 quantum theory of optical dispersion Benjamin Johnson1,2, a 1 Max Planck Institute for the History of Science Boltzmannstraße 22, 14195 Berlin, Germany 2 Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4, 14195 Berlin, Germany Received 13 October 2017 / Received in final form 4 February 2020 Published online 29 May 2020 c The Author(s) 2020. This article is published with open access at Springerlink.com Abstract. The quantum theory of dispersion was an important concep- tual advancement which led out of the crisis of the old quantum theory in the early 1920s and aided in the formulation of matrix mechanics in 1925. The theory of Charles Galton Darwin, often cited only for its reliance on the statistical conservation of energy, was a wave-based attempt to explain dispersion phenomena at a time between the the- ories of Ladenburg and Kramers. It contributed to future successes in quantum theory, such as the virtual oscillator, while revealing through its own shortcomings the limitations of the wave theory of light in the interaction of light and matter. After its publication, Darwin's theory was widely discussed amongst his colleagues as the competing inter- pretation to Compton's in X-ray scattering experiments. It also had a pronounced influence on John C. Slater, whose ideas formed the basis of the BKS theory. 1 Introduction Charles Galton Darwin mainly appears in the literature on the development of quantum mechanics in connection with his early and explicit opinions on the non- conservation (or statistical conservation) of energy and his correspondence with Niels Bohr.
    [Show full text]
  • A Review of Nanostructured Non-Titania Photocatalysts and Hole Scavenging Agents for CO2 Photoreduction Processes
    Heriot-Watt University Research Gateway A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO2 photoreduction processes Citation for published version: Tan, JZY & Maroto-Valer, MM 2019, 'A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO photoreduction processes', Journal of Materials Chemistry A, vol. 7, no. 16, pp. 9368-9385. https://doi.org/10.1039/C8TA10410G2 Digital Object Identifier (DOI): 10.1039/C8TA10410G Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Materials Chemistry A General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Journal of Materials Chemistry A View Article Online REVIEW View Journal | View Issue A review of nanostructured non-titania photocatalysts and hole scavenging agents for CO Cite this: J. Mater. Chem. A,2019,7, 2 9368 photoreduction processes Jeannie Z. Y. Tan * and M. Mercedes Maroto-Valer The imperative for the development of sustainable energy technologies to alleviate the heavy reliance on fossil fuels as well as to mitigate the serious environmental issues associated with CO2 emission has fostered the development of solar fuels through CO2 photoreduction.
    [Show full text]
  • The Grand Challenges in the Chemical Sciences
    The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade.
    [Show full text]
  • Geochronology Database for Central Colorado
    Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1
    [Show full text]
  • Vaughn Next Century Learning Center
    2020 VAUGHN 2021 NEXT CENTURY LEARNING CENTER July/julio 2020 JULY-JULIO January/enero 2021 S M T W Th F S 1-31 Summer Vacation S M T W Th F S 1 2 3 4 30-31 Staff Development 1 2 5 6 7 8 9 10 11 3 SPED SPED SPED ESY ESY 9 12 13 14 15 16 17 18 AUGUST-AGOSTO 10 ESY ESY ESY ESY ESY 16 19 20 21 22 23 24 25 1 Compact Signing 17 18 ESY ESY ESY ESY 23 26 27 28 29 SD SD 3 Staff Development 24 ESY ESY ESY ESY SPED 30 0 4 FIRST DAY OF SCHOOL 31 August/agosto 2020 0 S M T W Th F S SEPTEMBER-SEPTIEMBRE February/febrero 2021 CS 4 Minimum Day (Comp Time) S M T W Th F S 2 SD 4 5 6 7 8 7 Labor Day Holiday SD 2 3 4 5 6 9 10 11 12 13 14 15 7 8 9 10 11 12 13 16 17 18 19 20 21 22 OCTOBER-OCTUBRE 14 15 16 17 18 19 20 23 24 25 26 27 28 29 5-9 Fall Break 21 22 23 24 25 26 27 30 31 28 20 NOVEMBER-NOVIEMBRE 18 September/septiembre 2020 3 Election Day - No Committee Meeting March/marzo 2021 S M T W Th F S 11 Veteran's Day Holiday S M T W Th F S 1 2 3 4 5 25 Minimum Day (Comp Time) 1 2 3 4 5 6 6 7 8 9 10 11 12 26-27 Thanksgiving Day Holiday 7 8 9 10 11 12 13 13 14 15 16 17 18 19 14 15 16 17 18 19 20 20 21 22 23 24 25 26 DECEMBER-DICIEMBRE 21 22 23 24 25 26 27 27 28 29 30 17 Minimum Day 28 29 30 31 21 18-31 Winter Vacation 20 October/octubre 2020 April/abril 2021 S M T W Th F S JANUARY-ENERO S M T W Th F S 1 2 3 1-6 Winter Vacation 1 2 3 4 5 6 7 8 9 10 4-6, 29 SpEd ESY (ID'd SPED Only) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 7-28 ESY 11 12 13 14 15 16 17 18 19 20 21 22 23 24 18 Martin Luther King Jr Holiday 18 19 20 21 22 23 24 25 26 27 28 29 30 31 29 No School (Except
    [Show full text]
  • Special Supplement to the Bulletin of the American Meteorological Society Vol
    J. Blunden, D. S. Arndt, and M. O. Baringer, Eds. Associate Eds. H. J. Diamond, A. J. Dolman, R. L. Fogt, B. D. Hall, M. Jeffries, J. M. Levy, J. M. Renwick, J. Richter-Menge, P. W. Thorne, L. A. Vincent, and K. M. Willett Special Supplement to the Bulletin of the American Meteorological Society Vol. 92, No. 6, June 2011 STATE OF THE CLIMATE IN 2010 STATE OF THE CLIMATE IN 2010 JUNE 2011 | S1 HOW TO CITE THIS DOCUMENT __________________________________________________________________________________________ Citing the complete report: Blunden, J., D. S. Arndt, and M. O. Baringer, Eds., 2011: State of the Climate in 2010. Bull. Amer. Meteor. Soc., 92 (6), S1 –S­­­266. Citing a chapter (example): Fogt, R. L., Ed., 2011: Antarctica [in “State of the Climate in 2010”]. Bull. Amer. Meteor. Soc., 92 (6), S161 –S171. Citing a section (example): Wovrosh, A. J., S. Barreira, and R. L. Fogt, 2011: [Antarctica] Circulation [in “State of the Climate in 2010”]. Bull. Amer. Meteor. Soc., 92 (6), S161 –S163. S2 | JUNE 2011 Editor & Author Affiliations (ALPHABETICAL BY NAME ) Achberger, Christine, Earth Sciences Centre, University of Belward, Alan S., Global Environment Monitoring Unit, IES, EC Gothenburg, Gothenburg, Sweden Joint Research Centre, Ispra, Italy Ackerman, Steven A., CIMSS University of Wisconsin - Madi- Benedetti, Angela, European Centre for Medium-Range son, Madison, Wisconsin Weather Forecasts, Reading, United Kingdom Ahlstrøm, A., Geological Survey of Denmark and Greenland Berrisford, Paul, NCAS-Climate, European Centre for Medi- (GEUS),
    [Show full text]
  • Package 'Lubridate'
    Package ‘lubridate’ February 26, 2021 Type Package Title Make Dealing with Dates a Little Easier Version 1.7.10 Maintainer Vitalie Spinu <[email protected]> Description Functions to work with date-times and time-spans: fast and user friendly parsing of date-time data, extraction and updating of components of a date-time (years, months, days, hours, minutes, and seconds), algebraic manipulation on date-time and time-span objects. The 'lubridate' package has a consistent and memorable syntax that makes working with dates easy and fun. Parts of the 'CCTZ' source code, released under the Apache 2.0 License, are included in this package. See <https://github.com/google/cctz> for more details. License GPL (>= 2) URL https://lubridate.tidyverse.org, https://github.com/tidyverse/lubridate BugReports https://github.com/tidyverse/lubridate/issues Depends methods, R (>= 3.2) Imports generics, Rcpp (>= 0.12.13) Suggests covr, knitr, testthat (>= 2.1.0), vctrs (>= 0.3.0), rmarkdown Enhances chron, timeDate, tis, zoo LinkingTo Rcpp VignetteBuilder knitr Encoding UTF-8 LazyData true RoxygenNote 7.1.1 SystemRequirements A system with zoneinfo data (e.g. /usr/share/zoneinfo) as well as a recent-enough C++11 compiler (such as g++-4.8 or later). On Windows the zoneinfo included with R is used. 1 2 R topics documented: Collate 'Dates.r' 'POSIXt.r' 'RcppExports.R' 'util.r' 'parse.r' 'timespans.r' 'intervals.r' 'difftimes.r' 'durations.r' 'periods.r' 'accessors-date.R' 'accessors-day.r' 'accessors-dst.r' 'accessors-hour.r' 'accessors-minute.r' 'accessors-month.r'
    [Show full text]