Core Topics in Cardiac Anesthesia, Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

Core Topics in Cardiac Anesthesia, Second Edition Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index abciximab 465–6 airway management, postoperative endocarditis therapy 449 abdominal arteries 79 resuscitation 416 multi-resistant bacteria 450–2 accessory conducting pathways aldosterone 31–2 surgical prophylaxis 246, 342, 362, 9–10 alfentanil 36–7 447–8 acetylcholine (ACh) 25 allograft vasculopathy 280 anticoagulation acid-base management 391, 403–4, allostasis 29 atrial fibrillation 412 441 alpha-1-microalbumin 435 CPB 64–7, 175 actin 13–15 alpha-adrenergic receptors (a-ARs) ECMO 364 action potentials (APs), cardiac 8–11 25, 41, 48 endogenous 367–8 activated clotting time (ACT) 64, 67, alpha-stat blood-gas management 391, intra-aortic balloon pump 357 175, 370 403–4, 441 monitoring 67, 175 activated partial thromboplastin time e-aminocaproic acid (EACA) 68, 69, off-pump coronary surgery (APPT) 67 175, 368 190–1 acute coronary syndromes (ACS) amiodarone 57, 60 preoperative cessation 169 257–60 amitriptyline 463 prosthetic valve recipients 127, anesthetic management 258 Amplatzer muscular VSD 129–30 pathogenesis 257 occluder 264 antidepressants 463 acute kidney injury (AKI) 431–6 Amplatzer septal occluder 262–3 antidiuretic hormone (ADH) 31–2 acute lung injury (ALI) 421 analgesia anti-dysrhythmic drugs 57–62, 256, acute normovolemic hemodilution chronic pain 463 409 (ANH) 372, 468 postoperative 182, 191, 238–9, antifibrinolytics 68–9, 368–9 acute renal failure (ARF) 430–6 460–2 antihypertensives 53–6 acute respiratory distress syndrome anasarca 77 antioxidants 116 (ARDS) 421–3 anatomy, normal 4–6 antiphospholipid syndrome 466–7 adenosine ancrod 66 antiplatelet therapy 169, 465–6 coronary blood flow regulation 24 anemia antithrombin deficiency 467–8 pharmacological use 61 dilutional 176–7, 404–5 aorta adenosine receptors 41 failure to wean from CPB 357 anatomy 223 adhesion molecules 40 anesthetic agents atheroma 440–1 adrenaline see epinephrine cardiac conduction effects cannulation 109, 175–6 adrenoreceptors 48 254–5 clamping, MICS 217–19 see also a-adrenergic receptors; cardiovascular effects 33–7 coarctation 239, 314 b-adrenergic receptors anesthetic preconditioning 122 cross-clamping 109, 113, 233, adult congenital heart disease aneurysms 235–6 (ACHD) 339–43 aortic see aortic aneurysms decannulation 110, 179 anesthetic management 341–2 ventricular 271–2 descending thoracic see descending postoperative care 342–3 angina pectoris 76 thoracic aorta preoperative assessment aortic stenosis 193–4 imaging 91, 93, 441 339–41 CCS scale 76 management during CPB 379 advanced life support (ALS), adult chronic refractory 463–4 traumatic injuries 296–7 413–16 unstable (UA) 257–8 aortic aneurysms afterdrop hypothermia 385, 390 angiotensin II 25–6, 31 aortic arch 228–30 afterload 18–19 angiotensin II receptors 41 descending thoracic aorta post-bypass management 410 Anrep effect 28 232–9 agonists 43–4 antacids, prophylactic 425 etiology 229 air embolism (AE) 355–6, 395–7 antagonists 43–4 aortic arch 228–31 air entrainment antibiotics aneurysms 228–30 482 CPB 398 ARDS therapy 423 surgery 230–1 ECMO 365 endocarditis prophylaxis 448–9 traumatic rupture 228 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index aortic dissection 223–7 arterial switch procedure 323 Bjork-Shiley valve 125 classification 223–4 arteries, auscultation 79 Blalock-Taussig (B-T) shunt, modified during CPB 398 artery of Adamkiewicz 237 305, 329–30 descending thoracic aorta 239 aspirin 129–30, 169, 465–6 bleeding see hemorrhage pregnancy 301 asymmetrical septal hypertrophy bleeding tendency, increased 465–6 aortic interruption 314 (ASH) 268–9 blood conservation, perioperative aortic regurgitation (AR) 196–8 atelectasis 420 371–3, 467–8 indications for surgery 104 atherosclerosis 257 blood donation, preoperative non-cardiac surgery 476 ATP 15, 119 autologous (PAD) 372 aortic stenosis (AS) 104, 193–6 atracurium 35 blood flow non-cardiac surgery 476 atrial fibrillation (AF) 12, 250–1 effects of CPB 71 percutaneous interventions 262, 264 electrophysiological interventions inadequate, during CPB 398 pregnancy 300 253, 255 metabolic control 24, 29 aortic syndrome 232 mitral valve disease 202, 207 myogenic control 25–6, 29 aortic valve (AV) 193 postoperative 411–12, 441 velocity, measurement 148–9 disease 193–9 atrial flutter 251 blood-gas management 391, 403–4, orifice area (AVA) 193, 195 atrial natriuretic peptide (ANP) 31, 32, 441 transcatheter implantation (TAVI) 434 blood loss, postoperative 183–4, 264–6 atrial septal defects (ASDs) 315–16 335 aortic valve surgery 110 percutaneous closure 262–3 blood pressure (BP) anesthetic management 195–6, 198 atrioventricular (A-V) canal 2 control, aortic dissection 226 indications 104 atrioventricular node (AVN) 9 invasive monitoring 141–3 Ross procedure 127, 333–4 atrioventricular septal defect non-invasive monitoring 136–7 aortic valvuloplasty, balloon 262 (AVSD) 318–19 pediatric patients 303 aortography 97, 100, 229 auscultation 78–80 blood pumps see pumps, blood APJ (apelin) receptors 41 autonomic nervous system (ANS) 29–31 blood transfusion 442 apoptosis 120 coronary blood flow 25 algorithms 371 aprotinin 67–8, 311, 379 efferents 5–6, 30 autologous 372–3 arachidonic acid metabolites 376, 378 heart rate 11 during CPB 404–5 argatroban 65 autoregulation 29 pediatric patients 335 L-arginine 117 cerebral blood flow 161, 400 reduction strategies 222, 371–3 b-arrestin 43–4 coronary blood flow 23, 24–6 blunt chest trauma 293–6 arrhythmias 11–12, 249–52 heterometric 28 Bowditch effect 28–9 adult congenital heart disease 341 homeometric 28 Boyle’s law 396 anesthesia-related 34 AVID mnemonic 176, 177 bradycardia, postoperative 182, electrophysiological interventions 336, 415 252–6 baclofen 463 bradydysrhythmias 252 pediatric patients 336 Bainbridge reflex 31 bradykinin 25 perioperative diagnosis 135–6 baroreceptor reflexes 30–1 brain natriuretic peptide (BNP) post-infarction 258–9 baroreceptors 29 434, 474 postoperative 409 basic life support (BLS), adult 413 breathlessness 194, 203 redo surgery 221 benzodiazepines 35, 73 bretylium 57, 60 weaning from CPB 356 Bernoulli equation 149 bronchus blocker 235 arrhythmogenic right ventricular beta-adrenergic blockers 44 bubble oxygenators 348–9 cardiomyopathy (ARVC) 274 anti-dysrhythmic 57, 59–60 bubble traps, CPB 352–3 arterial blood pressure cardioplegic solutions 116 bulbis cordis 1, 2 during CPB 176 postoperative use 409 bundle of His 10 monitoring 141–3 beta-adrenergic receptor kinase bupivacaine 36 arterial cannulae 352 (b-ARK) 43 buprenorphine 463 arterial cannulation beta-adrenergic receptors (b-ARs) 25, aortic surgery 234 41–2, 48 cesarean section 299 CPB 141–2, 175–6, 215 genetic polymorphisms 43–4 calcium (Ca2þ) ECMO 364 regulation 41–4 cardiac action potential 10–11 arterial elastance (AE) 21 Bezold-Jarisch reflex 31 excitation–contraction coupling arterial injuries, traumatic 296 bi-directional cavopulmonary shunt 15–16 arterial line filters 352–3, 379, 441 331–3 pharmacological use 52, 310, 410 arterial lines, removal 185 BioMedicus® centrifugal blood calcium channel blockers 57, 61 arterial shunt (modified Blalock- pump 347 capsaicin 463 Taussig shunt) 305, 329–30 bivalirudin 65 carbamazepine 463 483 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index carbon dioxide recipient selection 276–7 cardiotomy reservoir 350–1 operative field insufflation 442 ventricular assist device cardiovascular disease, non-cardiac production 380 explantation 363 surgery 469–77 carcinoid heart disease 212–14 cardiac tumors 288–92 cardiovascular problems, cardiac arrest cardiac veins 6–7 postoperative 409–12 CPB for resuscitation 408 cardiomyopathies 268–74 cardioversion postoperative 413–19 cardioplegia 113–17, 178 DC 253, 256 therapeutic hypothermia 385, cold vs. warm 116, 402 postoperative atrial fibrillation 412 418–19 delivery methods 115–17 cariporide 116–17 traumatic 297 see also resuscitation minimally invasive surgery 217–19 Carney syndrome 288 cardiac catheterization 95–100 redo surgery 221 catecholamines 16, 31, 49–51 cardiac cycle 18, 22 solution components 114–17 catheter laboratory, cardiac arrests cardiac disease cardiopulmonary bypass (CPB) 37, in 418 invasive diagnostic techniques 108–10, 175–80 catheter laboratory procedures 95–101 air embolism 355–6, 395–7 261–7 non-cardiac surgery 469–77 anesthesia during 177–8 anesthesia for 255–6, 266–7 non-invasive diagnostic tests blood-gas management 403–4 occlusion devices 262–4 81–94 cardiovascular management 176–7 percutaneous valve devices 264–6 pregnancy 299–300 coagulation management stenotic lesions 261–2 symptoms and signs 75–80 64–70, 175 celecoxib 463 cardiac failure see heart failure coagulopathy 368–71 cell salvage 373, 441–2, 468 cardiac glycosides 16 controversies 400–5 central venous cannulation 142–3 cardiac masses 288–92 de-airing 110, 178 pacemaker recipients 246 imaging 93 deep hypothermic circulatory arrest pediatrics 309 management 291–2 389–90 central venous pressure (CVP) cardiac myocytes drug pharmacokinetics 71–3 monitoring 142–4, 185 conducting system 8–10
Recommended publications
  • S41467-021-21178-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21178-4 OPEN The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction Fan Jiang1, Kunlun Yin2, Kun Wu 1,5, Mingmin Zhang1, Shiqiang Wang3, Heping Cheng 4, Zhou Zhou2 & ✉ Bailong Xiao 1 The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank–Starling law and Anrep effect have documented that 1234567890():,; stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) sig- naling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases. 1 State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/ McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
    [Show full text]
  • Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry
    pp. 1–14 (2017) Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry F. A. Syomin∗ and A. K. Tsaturyan∗ Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent- ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of heartbeats the finite element method was implemented. The model reproduces well changes in vent- ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial pressure typical for normal human heart. The model also reproduces well the dependence of the stroke volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect). The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale 3D simulation of the heart. Keywords: Heart, cardiac muscle, muscle contraction, mathematical model, finite elements. MSC 2010: 74L15, 92C10, 92C30, 74S05 Computer modelling of the heart mechanics is a fast developing field of computa- tional physiology. During the last two decades a number of electromechanical mod- els of the whole heart or its left ventricle has been developed [26]. Such multiscale models usually combine several models that describe electrical and chemical pro- cesses at the level of a single cell with mechanical properties of cardiac muscle tissue. Generally, a model of the heart consists of a model of ionic currents in the cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae- modynamics model), and a geometrical approximation of the heart.
    [Show full text]
  • Heart Failure Therapy: Potential Lessons Heart: First Published As 10.1136/Heartjnl-2015-309110 on 23 December 2016
    Heart Online First, published on December 23, 2016 as 10.1136/heartjnl-2015-309110 Review ‘End-stage’ heart failure therapy: potential lessons Heart: first published as 10.1136/heartjnl-2015-309110 on 23 December 2016. Downloaded from from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation Dietmar Schranz, Hakan Akintuerk, Norbert F Voelkel ▸ Additional material is ABSTRACT reflected by the calculated transpulmonary gradient published online only. To view The final therapy of ‘end-stage heart failure’ is (TPG=mean PAP−LAP) and in particular the dia- please visit the journal online (http://dx.doi.org/10.1136/ orthotopic heart, lung or heart-lung transplantation. stolic PAP to LAP difference, the so-called diastolic heartjnl-2015-309110). However, these options are not available for many pressure gradient (DPG=diastolic PAP−LAP). Both patients worldwide. Therefore, novel therapeutical parameters become even more important in the Pediatric Heart Center, Justus Liebig University Giessen, strategies are needed. Based on pathophysiological setting of heart failure: pulmonary hypertension Virginia Commonwealth insights regarding (1) the long-term impact of an (PH) associated with an increased LAP, but normal University, School of Pharmacy, obstructive pulmonary outflow tract in neonates with TPG (<12 mm Hg) and in particular DPG Richmond, Virginia, USA congenitally corrected transposition of the great arteries, (<7 mm Hg)—labelled isolated postcapillary pul- — Correspondence to (2) the importance of a restrictive versus a non-restrictive monary hypertension may increase RV afterload Professor Dietmar Schranz, atrial septum in neonates born with a borderline left and negatively affect right (subpulmonary) ven- Pediatric Heart Center, Justus ventricle and (3) the significance of both, a patent tricular function.
    [Show full text]
  • The Role of Heart Rate on Functional Capacity In
    The role of heart rate on functional capacity in chronic heart failure: association or contribution? Haqeel Ahmed Jamil Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Leeds Institute for Cardiovascular and Metabolic Medicine School of Medicine September 2015 - ii - Intellectual Property and Publication Statements: The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Haqeel Ahmed Jamil to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Haqeel Ahmed Jamil - iii - Dedication This thesis is affectionately dedicated to my parents, Mohammed and Azra Jamil for their unremitting love and wisdom, and without whom none of my career would have been possible; to my brothers, Adeel and Nabeel for always providing a mixture of encouragement and welcome distractions; to my wife Sana for her selfless support and understanding throughout: and to my son Zackaria, for the joy he brings to all of our lives. - iv - Acknowledgements I would like to start by thanking my supervisors, Klaus Witte and Mark Kearney for recognising my potential, constantly inspiring me and allowing me the opportunity to undertake research at the Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM). I would also like to sincerely thank the LICAMM research team and all the staff at the Leeds Cardiac Investigations Unit, for their assistance and support.
    [Show full text]
  • Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H
    Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H. Cingolani, Jonathan A. Kirk, Kinya Seo, Norimichi Koitabashi, Dong-ik Lee, Genaro Ramirez-Correa, Djahida Bedja, Andreas S. Barth, An L. Moens and David A. Kass Circ Res. 2011;109:1410-1414; originally published online October 27, 2011; doi: 10.1161/CIRCRESAHA.111.256743 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/109/12/1410 Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2011/10/27/CIRCRESAHA.111.256743.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/ Downloaded from http://circres.ahajournals.org/ at SWETS SUBSCRIPTION SERVICE on November 25, 2013 Integrative Physiology Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Short Communication Oscar H.
    [Show full text]
  • The Anrep Effect Reconsidered
    The Anrep Effect Reconsidered R. G. Monroe, … , C. Phornphutkul, M. Davis J Clin Invest. 1972;51(10):2573-2583. https://doi.org/10.1172/JCI107074. Research Article Evidence is presented supporting the hypothesis that the positive inotropic effect after an abrupt increase in systolic pressure (Anrep effect) is the recovery from subendocardial ischemia induced by the increase and subsequently corrected by vascular autoregulation of the coronary bed. Major evidence consists of data obtained from an isolated heart preparation showing that the Anrep effect can be abolished with coronary vasodilation, and that with an abrupt increase in systolic pressure there is a significant reduction in the distribution of coronary flow to subendocardial layers of the ventricle. Furthermore, the intracardiac electrocardiogram shows S-T segment and T wave changes after an abrupt increase in ventricular pressure similar to that noted after coronary constriction. Major implications are that normally there may be ischemia of the subendocardial layers tending to reduce myocardial contractility which may account, in part, for the positive inotropic effect of various coronary vasodilators; that with an abrupt increase in ventricular pressure the subendocardium is rendered temporarily ischemic, placing the heart in jeopardy from arrhythmias until this is corrected; and that end-diastolic pressure and the intracardiac electrocardiogram may provide a means of evaluating the adequacy of circulation to subendocardial layers in diseased ventricles when systolic pressure is abruptly increased. Find the latest version: https://jci.me/107074/pdf rhe Anrep Effect Reconsidered R. G. MONROE, W. J. GAMBLE, C. G. LAFARGE, A. E. KUMAR, J. STARK, G. L. SANDERS, C.
    [Show full text]
  • Cardiac Pump Function
    Left Ventricular Pump Function Michael R. Pinsky, MD, Dr hc Department of Critical Care Medicine University of Pittsburgh Left Ventricular Pump Function • Maintain a constant and high organ input pressure • Eject Stroke Volume into a low compliance high resistance arterial circuit • Transfer all blood received with a minimal back pressure • Match cardiac output to venous return on a beat-to-beat basis Bedside Assessment of Ventricular Pump Function Assessing Left Ventricular Performance Commonly Used Measures of Cardiovascular Function: Heart Rate Blood Pressure Cardiac Output Stroke Volume LV ejection fraction Frank-Starling Relationship • Frank: Force of fiber contraction proportional to length prior to excitation • Frank. Z Biol 32:370-437, 1895 • Starling: Fiber length proportional to end-diastolic volume • Patterson & Starling. J Physiol (Lon) 48:465-513,1914 • Frank-Starling: Systolic function proportional to end- diastolic volume Primacy of Preload in Determining Systolic Performance Otto Frank Isometric contractions of a frog ventricle at increasing filling pressures Frank O, Z Biol 1895; 32:370 Ernest Starling Stroke volume increases with end-diastolic volume End-diastolic Volume Increased End-diastolic Volume Patterson & Starling. J Physiol 48:357-87, 1914 Starling versus Anrep Heterometric v. Homeometric autoregulation of the heart Increased Preload Starling EDV Preload Afterload Heart Rate Anrep Contractility ESV Increased Contractility Sudden increase and decrease in venous return Rosenblueth et al. Arch Int Physiol 67: 358, 1959 Frank-Starling Relationship LV Ejection Hyper-effective Phase Indies: Ejection Fraction Stroke Volume Stroke Work Hypo-effective LV dP/dt Vcf Preload (end-diastolic volume) Sarnoff & Berglund. Circulation 9:706-18, 1954 Frank-Starling Relationship Is heart A “better” than heart B? A B Stroke Volume Stroke Preload (end-diastolic volume) Arterial pressure increases with end-diastolic volume Patterson & Starling.
    [Show full text]
  • Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes
    life Article Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes Leighton Izu 1,*, Rafael Shimkunas 1, Zhong Jian 1, Bence Hegyi 1 , Mohammad Kazemi-Lari 1 , Anthony Baker 2, John Shaw 3 , Tamas Banyasz 1,4 and Ye Chen-Izu 1,5,6 1 Department of Pharmacology, University of California, Davis, CA 95616, USA; [email protected] (R.S.); [email protected] (Z.J.); [email protected] (B.H.); [email protected] (M.K.-L.); [email protected] (T.B.); [email protected] (Y.C.-I.) 2 Department of Medicine, University of California, San Francisco, CA 94121, USA; [email protected] 3 Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary 5 Department of Biomedical Engineering, University of California, Davis, CA 95616, USA 6 Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA 95616, USA * Correspondence: [email protected] Abstract: The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility Citation: Izu, L.; Shimkunas, R.; Jian, even after the cell length has recovered its initial length? Here we propose a surface mechanosensor Z.; Hegyi, B.; Kazemi-Lari, M.; Baker, model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical A.; Shaw, J.; Banyasz, T.; Chen-Izu, Y.
    [Show full text]
  • Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy Thomas M. Joudinaud The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Joudinaud, Thomas M., "Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9567. https://scholarworks.umt.edu/etd/9567 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. '*Please check "Yes" or "No" and provide signature Yes, I grant permission K No, I do not grant permission _________ Author's Signature: -------- Date :_______ 03 wA oS Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner.
    [Show full text]
  • Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants
    antioxidants Review Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants Sun-Hee Woo 1,*, Joon-Chul Kim 2 , Nipa Eslenur 1, Tran Nguyet Trinh 1 and Long Nguyen Hoàng Do 1 1 College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; [email protected] (N.E.); [email protected] (T.N.T.); [email protected] (L.N.H.D.) 2 NEXEL Co., 8F 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-5924; Fax: +82-42-823-6566 Abstract: Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts.
    [Show full text]
  • The Lack of Slow Force Response in Failing Rat Myocardium: Role of Stretch‑Induced Modulation of Ca–Tnc Kinetics
    The Journal of Physiological Sciences (2019) 69:345–357 https://doi.org/10.1007/s12576-018-0651-3 ORIGINAL PAPER The lack of slow force response in failing rat myocardium: role of stretch‑induced modulation of Ca–TnC kinetics Oleg Lookin1,2 · Yuri Protsenko1 Received: 20 September 2018 / Accepted: 8 December 2018 / Published online: 18 December 2018 © The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018 Abstract The slow force response (SFR) to stretch is an important adaptive mechanism of the heart. The SFR may result in ~ 20–30% extra force but it is substantially attenuated in heart failure. We investigated the relation of SFR magnitude with Ca­ 2+ tran- sient decay in healthy (CONT) and monocrotaline-treated rats with heart failure (MCT). Right ventricular trabeculae were stretched from 85 to 95% of optimal length and held stretched for 10 min at 30 °C and 1 Hz. Isometric twitches and ­Ca2+ transients were collected on 2, 4, 6, 8, 10 min after stretch. The changes in peak tension and ­Ca2+ transient decay charac- teristics during SFR were evaluated as a percentage of the value measured immediately after stretch. The amount of Ca­ 2+ utilized by TnC was indirectly evaluated using the methods of Ca­ 2+ transient “bump” and “diference curve.” The muscles of CONT rats produced positive SFR and they showed prominent functional relation between SFR magnitude and the magni- tude (amplitude, integral intensity) of Ca­ 2+ transient “bump” and “diference curve.” The myocardium of MCT rats showed negative SFR to stretch (force decreased in time) which was not correlated well with the characteristics of ­Ca2+ transient decay, evaluated by the methods of “bump” and “diference curve.” We conclude that the intracellular mechanisms of Ca­ 2+ balancing during stretch-induced slow adaptation of myocardial contractility are disrupted in failing rat myocardium.
    [Show full text]
  • N 1912, Anrep1) As Well As Knowlton and Starling2) Reported That An
    Afterloading Increases the Left Ventricular End- Systolic Force-Length Relation Slope in Dogs Ryutaro KADOTA, M.D., Kouichi TAKEDA, M.D., Takahiko SHIMIZU, M.D., Yasuyuki NAKAMURA, M.D., and Shigeru YAGI, M.D. SUMMARY We evaluated the effects of pressure loading produced by gradual aortic occlusion on left ventricular (LV) myocardial contractility by as- sessing changes in the slope of the LV end-systolic force-diameter (Fes- Des) relation. Eleven adult mongrel dogs were prepared with ultra- sonic crystals for measuring LV diameter and a micromanometer for measuring LV pressure. Preload was decreased by vena caval occlusion (VCO), and afterload was increased by aortic occlusion (AOO). The slopes (Ec) and extrapolated diameter intercepts (Do) of the LV Fes-Des relation were determined for each dog from the end-systolic data obtained during VCO and AOO. During VCO and also AOO, the heart rate showed little change (134•}18 vs. 134•}16bpm in VCO, 135•}16 vs. 132 •} 17bpm in AOO). The values of Ec and Do during VCO were 62.8•} 15.6g/cm and 1.20•}0.36cm, respectively, while during AOO the respec- tive values were 122.6•}18.6g/cm and 1.66•}0.38cm. Ec and Do were both significantly increased during AOO in comparison with VCO (p< 0.001). These results suggest that gradual aortic occlusion increases LV myocardial contractility in anesthetized, open-chest dogs under autonomic blockade. This phenomenon might be related to length-dependent cal- cium activation. Key Words: Cylinder model Myocardial contractility Loading intervention Anrep effect Length-dependent calcium activation N 1912, Anrep1) as well as Knowlton and Starling2) reported that an abrupt increase in left ventricular (LV) pressure had a delayed positive inotropic effect on the LV myocardium of the isolated heart.
    [Show full text]