Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry pp. 1–14 (2017) Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry F. A. Syomin∗ and A. K. Tsaturyan∗ Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent- ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of heartbeats the finite element method was implemented. The model reproduces well changes in vent- ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial pressure typical for normal human heart. The model also reproduces well the dependence of the stroke volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect). The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale 3D simulation of the heart. Keywords: Heart, cardiac muscle, muscle contraction, mathematical model, finite elements. MSC 2010: 74L15, 92C10, 92C30, 74S05 Computer modelling of the heart mechanics is a fast developing field of computa- tional physiology. During the last two decades a number of electromechanical mod- els of the whole heart or its left ventricle has been developed [26]. Such multiscale models usually combine several models that describe electrical and chemical pro- cesses at the level of a single cell with mechanical properties of cardiac muscle tissue. Generally, a model of the heart consists of a model of ionic currents in the cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae- modynamics model), and a geometrical approximation of the heart. In spite of the presence of 3D models with patient-specific geometry of hearts and very detailed description of ionic currents, those models do not provide accurate description of cardiac muscle mechanics. The problem is that fine detailed models of actin-myosin interaction that underlies development of active stress in cardiac muscle are spe- cified by systems of partial differential equations, and thus they are too complicated for numerical simulation. On the other hand, prevailed simple models that are set by the systems of a few ODEs do not reproduce some major properties of cardiac muscle. To overcome the problem stated above, we have developed a mechanical model of myocardium specified by a system of ODEs. The model is based on a kinetic ∗Institute of mechanics MSU, Mitchurinsky prosp. 1, Moscow 119192, Russia. E-mail: [email protected], [email protected] The work was supported by the RFBR (grants 15-04-02174 and 16-04-00693). 2 F. A. Syomin and A. K. Tsaturyan model of muscle contraction and its regulation [21, 22]. The model reproduces a series of different uniaxial experiments performed on striated muscles. Some of them are steady-state shortening and lengthening at full activation, steady-state force-calcium dependencies, responses of force or length to step-like changes in muscle length or load, isometric and isotonic contractions at full activation and with consideration of regulation processes. Later we have applied this model to the sim- ulation of contraction of the left ventricle approximated by a thick-walled cylin- der [23], describing blood circulation by a simple compartmental model (Windkes- sel model). This approbation of the model has shown satisfactory results. We were able to reproduce the time course of the major haemodynamical and geometrical values during a heartbeat of an average ’healthy’ heart and under conditions that are typical for hypertrophic and dilated cardiomyopathies. After improving our circula- tion model, we have also investigated numerically the dependence of ventricular per- formance (ejection fraction of the ventricle) on the ventricle preload (end-diastolic pressure) and afterload (peripheral resistance or arterial pressure) [24]. The simula- tion reproduces the Frank–Starling law of the heart, pressure-volume loops, and the Anrep effect. At the next step of 3D modelling of the heart with patient-specific geometry we approximated the ventricle shape by a thick-walled body of revolution more similar to real heart than a cylinder. Here we describe a finite element model of pumping function of the ventricle based on our model of cardiac muscle. 1. Statement of the problem 1.1. Material and geometry We approximated the ventricle by a thick-walled body of revolution with the shape close to semi-ellipsoid. To set up the geometry we used curvilinear coordinate sys- tem (g, y) introduced in [17]. Here g corresponds to the position of a point in the wall of the ventricle: g = 0 for inner points of the ventricle (subendocardium), and g = 1 for outer points of the ventricle (subepicardium). Coordinate y corresponds to the position of the point between base (y = 0) and apex (y = p=2) of the ventricle. These coordinates can be expressed in terms of cylindrical coordinates as follows r =(r + g (r − r ))(e cosy + (1 − e)(1 − siny)) in out in (1.1) z =(hin + g (hout − hin))(1 − siny) + (1 − g)(hout − hin) where rin and rout are the inner and outer radii at y = 0, hin and hout are the lengths of the ventricle axis between the ventricular base and the inner and outer axial point, respectively. Parameter e sets the curvature of the ventricle. The shape is conic for e = 0, and when e = 1 the shape is a body of revolution with y being inclination angle of a point. We have chosen e > 1 in order to approximate the region of tapering from the widest part of the ventricle to its region of fibrous valve. The myocardium was considered to be hyperelastic incompressible transversely- isotropic medium with active stress caused by mechanochemical processes. The Mechanical model of the left ventricle of the heart 3 constitutive equation in its general form looks like Fact + Ftit T = Tis − pE + · B: (1.2) Ls=Ls0 Here Ls0 is a length of unstrained sarcomere, Ls is a length of deformed sarcomere, T is Cauchy stress tensor, Tis is an isotropic part of passive stress tensor, p is a Lagrange multiplier, or pressure, E is a unit tensor, B is a tensor of fibres orienta- tion, which is equal to dyadic product of deformed unit vectors aligned with muscle fibres. The scalar Fact is active tension of cardiac muscle, and Ftit is a component of passive tension caused by non-linearly elastic titin fibres. Both tensions are caused by the forces aligned with fibres and applied at the cross-section of a fibre. Passive stress of hyperelastic material was expressed using strain energy function W, which depends on the first and second invariants I1 and I2 of the right Cauchy–Green de- formation tensor G: i j ¶W Tis = ¶ei j 1 Q(I1;I2) (1.3) W = cise 2 2 Q = cis · 0:25(I1 − 3) − 0:5(I2 − 2I1 + 3) : 1 2 Here ei j are the components of the Gauchy–Green strain tensor, cis and cis are the material parameters. The strain energy function was based on that suggested in [5]. The general forms of expressions for the first and the second invariants are as fol- lows: i 2 2 I1 (G) = E ••G = ∑Gi; I2 (G) = I1 (G) − I1 G =2 i where ‘••’ is a notation for double tensor contraction. Titin force Ftit was specified by so-called worm-like chain model [13], which is often used for description of stresses in long molecular chains, and was set by equation ! 6k Tr 0:25 0:5 · (L − L ) F = B m · − 0:25 + s s0 : (1.4) tit L 2 L p 1 − 0:5 · (Ls − Ls0) Lc c Here Lc is a contour length of titin, Lp is a persistent length of titin, rm is a number of myosin filaments per unit of cross-section area of unstrained muscle, kB is a Boltzmann constant, and T is an absolute temperature. Active force Fact is defined by a kinetic model of cardiac muscle [21, 22] based on the following concept. Muscle contraction is caused by relative sliding of two sets of protein filaments in an elementary contractile unit of muscle—sarcomere. These filaments are thick myosin filament and thin actin filament. Myosin heads protruding from the backbone of thick filaments are molecular motors, which pro- duce force during their interaction with actin molecules. During contraction these 4 F. A. Syomin and A. K. Tsaturyan myosin heads go through Lymn–Taylor cycle. According to the cycle a myosin head can be in detached from actin state (state 0), or it can attach to actin and form a cross-bridge. A cross-bridge can attach actin weakly (state 1), or strongly (state 2). In the latter case, it generates active force and/or causes displacement. Our model of contraction is based on the Lymn–Taylor cycle and considers muscle activation as well. In the absence of calcium ions, Ca2+, a complex of regulatory proteins covers myosin binding sites on actin and causes muscle relaxation. The binding of Ca2+ to regulatory protein troponin-C and formation of CaTnC (calcium-troponin C) complex suspends the inhibition and opens actin filaments for myosin binding. The formation and dissociation of the CaTnC complexes depends on a number of factors. The affinity of the complexes to Ca2+ ions increases with an increase in sar- comere length (length-dependent activation), a number of already formed CaTnC complexes, and a number of strongly bound cross-bridges [4]. These cooperative effects are also taken into consideration in our model. Main variables of our con- traction model are: 1. n is a probability of a myosin head to be attached to thin filament.
Recommended publications
  • S41467-021-21178-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21178-4 OPEN The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction Fan Jiang1, Kunlun Yin2, Kun Wu 1,5, Mingmin Zhang1, Shiqiang Wang3, Heping Cheng 4, Zhou Zhou2 & ✉ Bailong Xiao 1 The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank–Starling law and Anrep effect have documented that 1234567890():,; stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) sig- naling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases. 1 State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/ McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
    [Show full text]
  • Heart Failure Therapy: Potential Lessons Heart: First Published As 10.1136/Heartjnl-2015-309110 on 23 December 2016
    Heart Online First, published on December 23, 2016 as 10.1136/heartjnl-2015-309110 Review ‘End-stage’ heart failure therapy: potential lessons Heart: first published as 10.1136/heartjnl-2015-309110 on 23 December 2016. Downloaded from from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation Dietmar Schranz, Hakan Akintuerk, Norbert F Voelkel ▸ Additional material is ABSTRACT reflected by the calculated transpulmonary gradient published online only. To view The final therapy of ‘end-stage heart failure’ is (TPG=mean PAP−LAP) and in particular the dia- please visit the journal online (http://dx.doi.org/10.1136/ orthotopic heart, lung or heart-lung transplantation. stolic PAP to LAP difference, the so-called diastolic heartjnl-2015-309110). However, these options are not available for many pressure gradient (DPG=diastolic PAP−LAP). Both patients worldwide. Therefore, novel therapeutical parameters become even more important in the Pediatric Heart Center, Justus Liebig University Giessen, strategies are needed. Based on pathophysiological setting of heart failure: pulmonary hypertension Virginia Commonwealth insights regarding (1) the long-term impact of an (PH) associated with an increased LAP, but normal University, School of Pharmacy, obstructive pulmonary outflow tract in neonates with TPG (<12 mm Hg) and in particular DPG Richmond, Virginia, USA congenitally corrected transposition of the great arteries, (<7 mm Hg)—labelled isolated postcapillary pul- — Correspondence to (2) the importance of a restrictive versus a non-restrictive monary hypertension may increase RV afterload Professor Dietmar Schranz, atrial septum in neonates born with a borderline left and negatively affect right (subpulmonary) ven- Pediatric Heart Center, Justus ventricle and (3) the significance of both, a patent tricular function.
    [Show full text]
  • Core Topics in Cardiac Anesthesia, Second Edition
    Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index abciximab 465–6 airway management, postoperative endocarditis therapy 449 abdominal arteries 79 resuscitation 416 multi-resistant bacteria 450–2 accessory conducting pathways aldosterone 31–2 surgical prophylaxis 246, 342, 362, 9–10 alfentanil 36–7 447–8 acetylcholine (ACh) 25 allograft vasculopathy 280 anticoagulation acid-base management 391, 403–4, allostasis 29 atrial fibrillation 412 441 alpha-1-microalbumin 435 CPB 64–7, 175 actin 13–15 alpha-adrenergic receptors (a-ARs) ECMO 364 action potentials (APs), cardiac 8–11 25, 41, 48 endogenous 367–8 activated clotting time (ACT) 64, 67, alpha-stat blood-gas management 391, intra-aortic balloon pump 357 175, 370 403–4, 441 monitoring 67, 175 activated partial thromboplastin time e-aminocaproic acid (EACA) 68, 69, off-pump coronary surgery (APPT) 67 175, 368 190–1 acute coronary syndromes (ACS) amiodarone 57, 60 preoperative cessation 169 257–60 amitriptyline 463 prosthetic valve recipients 127, anesthetic management 258 Amplatzer muscular VSD 129–30 pathogenesis 257 occluder 264 antidepressants 463 acute kidney injury (AKI) 431–6 Amplatzer septal occluder 262–3 antidiuretic hormone (ADH) 31–2 acute lung injury (ALI) 421 analgesia anti-dysrhythmic drugs 57–62, 256, acute normovolemic hemodilution chronic pain 463 409 (ANH) 372, 468 postoperative 182, 191, 238–9, antifibrinolytics 68–9, 368–9 acute renal failure
    [Show full text]
  • The Role of Heart Rate on Functional Capacity In
    The role of heart rate on functional capacity in chronic heart failure: association or contribution? Haqeel Ahmed Jamil Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Leeds Institute for Cardiovascular and Metabolic Medicine School of Medicine September 2015 - ii - Intellectual Property and Publication Statements: The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Haqeel Ahmed Jamil to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Haqeel Ahmed Jamil - iii - Dedication This thesis is affectionately dedicated to my parents, Mohammed and Azra Jamil for their unremitting love and wisdom, and without whom none of my career would have been possible; to my brothers, Adeel and Nabeel for always providing a mixture of encouragement and welcome distractions; to my wife Sana for her selfless support and understanding throughout: and to my son Zackaria, for the joy he brings to all of our lives. - iv - Acknowledgements I would like to start by thanking my supervisors, Klaus Witte and Mark Kearney for recognising my potential, constantly inspiring me and allowing me the opportunity to undertake research at the Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM). I would also like to sincerely thank the LICAMM research team and all the staff at the Leeds Cardiac Investigations Unit, for their assistance and support.
    [Show full text]
  • Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H
    Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H. Cingolani, Jonathan A. Kirk, Kinya Seo, Norimichi Koitabashi, Dong-ik Lee, Genaro Ramirez-Correa, Djahida Bedja, Andreas S. Barth, An L. Moens and David A. Kass Circ Res. 2011;109:1410-1414; originally published online October 27, 2011; doi: 10.1161/CIRCRESAHA.111.256743 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/109/12/1410 Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2011/10/27/CIRCRESAHA.111.256743.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/ Downloaded from http://circres.ahajournals.org/ at SWETS SUBSCRIPTION SERVICE on November 25, 2013 Integrative Physiology Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Short Communication Oscar H.
    [Show full text]
  • The Anrep Effect Reconsidered
    The Anrep Effect Reconsidered R. G. Monroe, … , C. Phornphutkul, M. Davis J Clin Invest. 1972;51(10):2573-2583. https://doi.org/10.1172/JCI107074. Research Article Evidence is presented supporting the hypothesis that the positive inotropic effect after an abrupt increase in systolic pressure (Anrep effect) is the recovery from subendocardial ischemia induced by the increase and subsequently corrected by vascular autoregulation of the coronary bed. Major evidence consists of data obtained from an isolated heart preparation showing that the Anrep effect can be abolished with coronary vasodilation, and that with an abrupt increase in systolic pressure there is a significant reduction in the distribution of coronary flow to subendocardial layers of the ventricle. Furthermore, the intracardiac electrocardiogram shows S-T segment and T wave changes after an abrupt increase in ventricular pressure similar to that noted after coronary constriction. Major implications are that normally there may be ischemia of the subendocardial layers tending to reduce myocardial contractility which may account, in part, for the positive inotropic effect of various coronary vasodilators; that with an abrupt increase in ventricular pressure the subendocardium is rendered temporarily ischemic, placing the heart in jeopardy from arrhythmias until this is corrected; and that end-diastolic pressure and the intracardiac electrocardiogram may provide a means of evaluating the adequacy of circulation to subendocardial layers in diseased ventricles when systolic pressure is abruptly increased. Find the latest version: https://jci.me/107074/pdf rhe Anrep Effect Reconsidered R. G. MONROE, W. J. GAMBLE, C. G. LAFARGE, A. E. KUMAR, J. STARK, G. L. SANDERS, C.
    [Show full text]
  • Cardiac Pump Function
    Left Ventricular Pump Function Michael R. Pinsky, MD, Dr hc Department of Critical Care Medicine University of Pittsburgh Left Ventricular Pump Function • Maintain a constant and high organ input pressure • Eject Stroke Volume into a low compliance high resistance arterial circuit • Transfer all blood received with a minimal back pressure • Match cardiac output to venous return on a beat-to-beat basis Bedside Assessment of Ventricular Pump Function Assessing Left Ventricular Performance Commonly Used Measures of Cardiovascular Function: Heart Rate Blood Pressure Cardiac Output Stroke Volume LV ejection fraction Frank-Starling Relationship • Frank: Force of fiber contraction proportional to length prior to excitation • Frank. Z Biol 32:370-437, 1895 • Starling: Fiber length proportional to end-diastolic volume • Patterson & Starling. J Physiol (Lon) 48:465-513,1914 • Frank-Starling: Systolic function proportional to end- diastolic volume Primacy of Preload in Determining Systolic Performance Otto Frank Isometric contractions of a frog ventricle at increasing filling pressures Frank O, Z Biol 1895; 32:370 Ernest Starling Stroke volume increases with end-diastolic volume End-diastolic Volume Increased End-diastolic Volume Patterson & Starling. J Physiol 48:357-87, 1914 Starling versus Anrep Heterometric v. Homeometric autoregulation of the heart Increased Preload Starling EDV Preload Afterload Heart Rate Anrep Contractility ESV Increased Contractility Sudden increase and decrease in venous return Rosenblueth et al. Arch Int Physiol 67: 358, 1959 Frank-Starling Relationship LV Ejection Hyper-effective Phase Indies: Ejection Fraction Stroke Volume Stroke Work Hypo-effective LV dP/dt Vcf Preload (end-diastolic volume) Sarnoff & Berglund. Circulation 9:706-18, 1954 Frank-Starling Relationship Is heart A “better” than heart B? A B Stroke Volume Stroke Preload (end-diastolic volume) Arterial pressure increases with end-diastolic volume Patterson & Starling.
    [Show full text]
  • Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes
    life Article Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes Leighton Izu 1,*, Rafael Shimkunas 1, Zhong Jian 1, Bence Hegyi 1 , Mohammad Kazemi-Lari 1 , Anthony Baker 2, John Shaw 3 , Tamas Banyasz 1,4 and Ye Chen-Izu 1,5,6 1 Department of Pharmacology, University of California, Davis, CA 95616, USA; [email protected] (R.S.); [email protected] (Z.J.); [email protected] (B.H.); [email protected] (M.K.-L.); [email protected] (T.B.); [email protected] (Y.C.-I.) 2 Department of Medicine, University of California, San Francisco, CA 94121, USA; [email protected] 3 Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary 5 Department of Biomedical Engineering, University of California, Davis, CA 95616, USA 6 Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA 95616, USA * Correspondence: [email protected] Abstract: The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility Citation: Izu, L.; Shimkunas, R.; Jian, even after the cell length has recovered its initial length? Here we propose a surface mechanosensor Z.; Hegyi, B.; Kazemi-Lari, M.; Baker, model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical A.; Shaw, J.; Banyasz, T.; Chen-Izu, Y.
    [Show full text]
  • Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy Thomas M. Joudinaud The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Joudinaud, Thomas M., "Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9567. https://scholarworks.umt.edu/etd/9567 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. '*Please check "Yes" or "No" and provide signature Yes, I grant permission K No, I do not grant permission _________ Author's Signature: -------- Date :_______ 03 wA oS Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner.
    [Show full text]
  • Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants
    antioxidants Review Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants Sun-Hee Woo 1,*, Joon-Chul Kim 2 , Nipa Eslenur 1, Tran Nguyet Trinh 1 and Long Nguyen Hoàng Do 1 1 College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; [email protected] (N.E.); [email protected] (T.N.T.); [email protected] (L.N.H.D.) 2 NEXEL Co., 8F 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-5924; Fax: +82-42-823-6566 Abstract: Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts.
    [Show full text]
  • The Lack of Slow Force Response in Failing Rat Myocardium: Role of Stretch‑Induced Modulation of Ca–Tnc Kinetics
    The Journal of Physiological Sciences (2019) 69:345–357 https://doi.org/10.1007/s12576-018-0651-3 ORIGINAL PAPER The lack of slow force response in failing rat myocardium: role of stretch‑induced modulation of Ca–TnC kinetics Oleg Lookin1,2 · Yuri Protsenko1 Received: 20 September 2018 / Accepted: 8 December 2018 / Published online: 18 December 2018 © The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018 Abstract The slow force response (SFR) to stretch is an important adaptive mechanism of the heart. The SFR may result in ~ 20–30% extra force but it is substantially attenuated in heart failure. We investigated the relation of SFR magnitude with Ca­ 2+ tran- sient decay in healthy (CONT) and monocrotaline-treated rats with heart failure (MCT). Right ventricular trabeculae were stretched from 85 to 95% of optimal length and held stretched for 10 min at 30 °C and 1 Hz. Isometric twitches and ­Ca2+ transients were collected on 2, 4, 6, 8, 10 min after stretch. The changes in peak tension and ­Ca2+ transient decay charac- teristics during SFR were evaluated as a percentage of the value measured immediately after stretch. The amount of Ca­ 2+ utilized by TnC was indirectly evaluated using the methods of Ca­ 2+ transient “bump” and “diference curve.” The muscles of CONT rats produced positive SFR and they showed prominent functional relation between SFR magnitude and the magni- tude (amplitude, integral intensity) of Ca­ 2+ transient “bump” and “diference curve.” The myocardium of MCT rats showed negative SFR to stretch (force decreased in time) which was not correlated well with the characteristics of ­Ca2+ transient decay, evaluated by the methods of “bump” and “diference curve.” We conclude that the intracellular mechanisms of Ca­ 2+ balancing during stretch-induced slow adaptation of myocardial contractility are disrupted in failing rat myocardium.
    [Show full text]
  • N 1912, Anrep1) As Well As Knowlton and Starling2) Reported That An
    Afterloading Increases the Left Ventricular End- Systolic Force-Length Relation Slope in Dogs Ryutaro KADOTA, M.D., Kouichi TAKEDA, M.D., Takahiko SHIMIZU, M.D., Yasuyuki NAKAMURA, M.D., and Shigeru YAGI, M.D. SUMMARY We evaluated the effects of pressure loading produced by gradual aortic occlusion on left ventricular (LV) myocardial contractility by as- sessing changes in the slope of the LV end-systolic force-diameter (Fes- Des) relation. Eleven adult mongrel dogs were prepared with ultra- sonic crystals for measuring LV diameter and a micromanometer for measuring LV pressure. Preload was decreased by vena caval occlusion (VCO), and afterload was increased by aortic occlusion (AOO). The slopes (Ec) and extrapolated diameter intercepts (Do) of the LV Fes-Des relation were determined for each dog from the end-systolic data obtained during VCO and AOO. During VCO and also AOO, the heart rate showed little change (134•}18 vs. 134•}16bpm in VCO, 135•}16 vs. 132 •} 17bpm in AOO). The values of Ec and Do during VCO were 62.8•} 15.6g/cm and 1.20•}0.36cm, respectively, while during AOO the respec- tive values were 122.6•}18.6g/cm and 1.66•}0.38cm. Ec and Do were both significantly increased during AOO in comparison with VCO (p< 0.001). These results suggest that gradual aortic occlusion increases LV myocardial contractility in anesthetized, open-chest dogs under autonomic blockade. This phenomenon might be related to length-dependent cal- cium activation. Key Words: Cylinder model Myocardial contractility Loading intervention Anrep effect Length-dependent calcium activation N 1912, Anrep1) as well as Knowlton and Starling2) reported that an abrupt increase in left ventricular (LV) pressure had a delayed positive inotropic effect on the LV myocardium of the isolated heart.
    [Show full text]