S41467-021-21178-4.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Variants of PIEZO1 Associate with COVID-19 Fatality
medRxiv preprint doi: https://doi.org/10.1101/2020.06.01.20119651; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Genetic variants of PIEZO1 associate with COVID-19 fatality Cheng, C.W., Deivasikamani, V., Ludlow, M.J., De Vecchis, D., Kalli, A.C., Beech, D.J., Sukumar, P. School of Medicine, University of Leeds, Leeds, LS2 9JT, UK. *Authors for correspondence: Dr Piruthivi Sukumar (Lead Author) and Professor David J Beech (Senior Author), Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom. Emails: [email protected]; [email protected]. ABSTRACT Fatality from coronavirus disease 19 (COVID-19) is a major problem globally and so identification of its underlying molecular mechanisms would be helpful. The combination of COVID-19 clinical data and genome sequence information is providing a potential route to such mechanisms. Here we took a candidate gene approach to UK Biobank data based on the suggested roles of endothelium and membrane proteins in COVID-19. We focussed on the PIEZO1 gene, which encodes a non-selective cation channel that mediates endothelial responses to blood flow. The analysis suggests 3 missense PIEZO1 single nucleotide polymorphisms (SNPs) associated with COVID-19 fatality independently of risk factors. All of them affect amino acids in the proximal N-terminus of PIEZO1, which is an unexplored region of the protein. -
Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry
pp. 1–14 (2017) Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry F. A. Syomin∗ and A. K. Tsaturyan∗ Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent- ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of heartbeats the finite element method was implemented. The model reproduces well changes in vent- ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial pressure typical for normal human heart. The model also reproduces well the dependence of the stroke volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect). The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale 3D simulation of the heart. Keywords: Heart, cardiac muscle, muscle contraction, mathematical model, finite elements. MSC 2010: 74L15, 92C10, 92C30, 74S05 Computer modelling of the heart mechanics is a fast developing field of computa- tional physiology. During the last two decades a number of electromechanical mod- els of the whole heart or its left ventricle has been developed [26]. Such multiscale models usually combine several models that describe electrical and chemical pro- cesses at the level of a single cell with mechanical properties of cardiac muscle tissue. Generally, a model of the heart consists of a model of ionic currents in the cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae- modynamics model), and a geometrical approximation of the heart. -
Heart Failure Therapy: Potential Lessons Heart: First Published As 10.1136/Heartjnl-2015-309110 on 23 December 2016
Heart Online First, published on December 23, 2016 as 10.1136/heartjnl-2015-309110 Review ‘End-stage’ heart failure therapy: potential lessons Heart: first published as 10.1136/heartjnl-2015-309110 on 23 December 2016. Downloaded from from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation Dietmar Schranz, Hakan Akintuerk, Norbert F Voelkel ▸ Additional material is ABSTRACT reflected by the calculated transpulmonary gradient published online only. To view The final therapy of ‘end-stage heart failure’ is (TPG=mean PAP−LAP) and in particular the dia- please visit the journal online (http://dx.doi.org/10.1136/ orthotopic heart, lung or heart-lung transplantation. stolic PAP to LAP difference, the so-called diastolic heartjnl-2015-309110). However, these options are not available for many pressure gradient (DPG=diastolic PAP−LAP). Both patients worldwide. Therefore, novel therapeutical parameters become even more important in the Pediatric Heart Center, Justus Liebig University Giessen, strategies are needed. Based on pathophysiological setting of heart failure: pulmonary hypertension Virginia Commonwealth insights regarding (1) the long-term impact of an (PH) associated with an increased LAP, but normal University, School of Pharmacy, obstructive pulmonary outflow tract in neonates with TPG (<12 mm Hg) and in particular DPG Richmond, Virginia, USA congenitally corrected transposition of the great arteries, (<7 mm Hg)—labelled isolated postcapillary pul- — Correspondence to (2) the importance of a restrictive versus a non-restrictive monary hypertension may increase RV afterload Professor Dietmar Schranz, atrial septum in neonates born with a borderline left and negatively affect right (subpulmonary) ven- Pediatric Heart Center, Justus ventricle and (3) the significance of both, a patent tricular function. -
Core Topics in Cardiac Anesthesia, Second Edition
Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index abciximab 465–6 airway management, postoperative endocarditis therapy 449 abdominal arteries 79 resuscitation 416 multi-resistant bacteria 450–2 accessory conducting pathways aldosterone 31–2 surgical prophylaxis 246, 342, 362, 9–10 alfentanil 36–7 447–8 acetylcholine (ACh) 25 allograft vasculopathy 280 anticoagulation acid-base management 391, 403–4, allostasis 29 atrial fibrillation 412 441 alpha-1-microalbumin 435 CPB 64–7, 175 actin 13–15 alpha-adrenergic receptors (a-ARs) ECMO 364 action potentials (APs), cardiac 8–11 25, 41, 48 endogenous 367–8 activated clotting time (ACT) 64, 67, alpha-stat blood-gas management 391, intra-aortic balloon pump 357 175, 370 403–4, 441 monitoring 67, 175 activated partial thromboplastin time e-aminocaproic acid (EACA) 68, 69, off-pump coronary surgery (APPT) 67 175, 368 190–1 acute coronary syndromes (ACS) amiodarone 57, 60 preoperative cessation 169 257–60 amitriptyline 463 prosthetic valve recipients 127, anesthetic management 258 Amplatzer muscular VSD 129–30 pathogenesis 257 occluder 264 antidepressants 463 acute kidney injury (AKI) 431–6 Amplatzer septal occluder 262–3 antidiuretic hormone (ADH) 31–2 acute lung injury (ALI) 421 analgesia anti-dysrhythmic drugs 57–62, 256, acute normovolemic hemodilution chronic pain 463 409 (ANH) 372, 468 postoperative 182, 191, 238–9, antifibrinolytics 68–9, 368–9 acute renal failure -
The Role of Heart Rate on Functional Capacity In
The role of heart rate on functional capacity in chronic heart failure: association or contribution? Haqeel Ahmed Jamil Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Leeds Institute for Cardiovascular and Metabolic Medicine School of Medicine September 2015 - ii - Intellectual Property and Publication Statements: The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Haqeel Ahmed Jamil to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Haqeel Ahmed Jamil - iii - Dedication This thesis is affectionately dedicated to my parents, Mohammed and Azra Jamil for their unremitting love and wisdom, and without whom none of my career would have been possible; to my brothers, Adeel and Nabeel for always providing a mixture of encouragement and welcome distractions; to my wife Sana for her selfless support and understanding throughout: and to my son Zackaria, for the joy he brings to all of our lives. - iv - Acknowledgements I would like to start by thanking my supervisors, Klaus Witte and Mark Kearney for recognising my potential, constantly inspiring me and allowing me the opportunity to undertake research at the Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM). I would also like to sincerely thank the LICAMM research team and all the staff at the Leeds Cardiac Investigations Unit, for their assistance and support. -
Pharmacological Activation of PIEZO1 in Human Red Blood Cells Prevents Plasmodium Falciparum Invasion
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446171; this version posted May 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion Rakhee Lohia1, Jordy Le Guet1, Laurence Berry1, Hélène Guizouarn2, Roberto Bernal3, Rachel Cerdan1, Manouk Abkarian4, Dominique Douguet5, Eric Honoré5*, Kai Wengelnik6* 1 LPHI, University of Montpellier, CNRS UMR5235, Montpellier, France 2 iBV, University Côte d’Azur, CNRS UMR7277, INSERM U1091, Nice, France 3 Departamento de Física, SMAT-C, Universidad de Santiago de Chile, Santiago, Chile 4 Centre de Biologie Structurale, CNRS UMR5048—INSERM U1054, University of Montpellier, Montpellier, France 5 IPMC, University Côte d’Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France. 6 LPHI, University of Montpellier, CNRS UMR5235, INSERM, Montpellier, France * Correspondence to: [email protected]; [email protected] Abstract An inherited gain-of–function variant (E756 del) in the mechanosensitive cationic channel PIEZO1 was recently shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. The PIEZO1 activator Yoda1 inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. RBC dehydration, echinocytosis and intracellular Na+/K+ imbalance are unrelated to the mechanism of protection. Inhibition of invasion is maintained, even after a prolonged wash out of Yoda1. -
Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes
fnagi-10-00332 October 17, 2018 Time: 13:57 # 1 ORIGINAL RESEARCH published: 22 October 2018 doi: 10.3389/fnagi.2018.00332 Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes María Velasco-Estevez1,2, Myrthe Mampay1, Hervé Boutin3, Aisling Chaney3,4, Peter Warn5, Andrew Sharp5, Ellie Burgess5, Emad Moeendarbary6,7*, Kumlesh K. Dev2* and Graham K. Sheridan1* 1 Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom, 2 Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, 3 Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom, 4 Department of Radiology, Stanford University, Stanford, CA, United States, 5 Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom, 6 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States, 7 Department of Mechanical Engineering, University College London, London, United Kingdom A defining pathophysiological hallmark of Alzheimer’s disease (AD) is the amyloid plaque; Edited by: an extracellular deposit of aggregated fibrillar Ab1−42 peptides. Amyloid plaques are Alberto Javier Ramos, hard, brittle structures scattered throughout the hippocampus and cerebral cortex Consejo Nacional de Investigaciones and are thought to cause hyperphosphorylation of tau, neurofibrillary tangles, and Científicas y Técnicas (CONICET), Argentina progressive neurodegeneration. Reactive astrocytes and microglia envelop the exterior Reviewed by: of amyloid plaques and infiltrate their inner core. Glia are highly mechanosensitive cells Jingwen Niu, and can almost certainly sense the mismatch between the normally soft mechanical Temple University, United States Vladimir Parpura, environment of the brain and very stiff amyloid plaques via mechanosensing ion The University of Alabama channels. -
The Function and Regulation of Piezo Ion Channels Jason Wu,1 Amanda[13 TD$IF]H
TIBS 1305 No. of Pages 15 Series: Fresh Perspectives from Emerging Experts Review Touch, Tension, and Transduction – The Function and Regulation of Piezo Ion Channels Jason Wu,1 Amanda[13_TD$IF]H. Lewis,1 and Jörg Grandl1,* In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought Trends molecular carriers of an excitatory mechanically activated current found in many Piezo proteins were identified in 2010 cells. This discovery has opened the floodgates for studying a vast number of as the pore-forming subunits of excita- mechanotransduction processes. Over the past 6 years, groundbreaking tory mechanosensitive ion channels. research has identified Piezos as ion channels that sense light touch, proprio- Piezo ion channels play essential roles ception, and vascular blood flow, ruled out roles for Piezos in several other in diverse physiological processes ran- mechanotransduction processes, and revealed the basic structural and func- ging from regulation of red blood cell fi volume to sensation of gentle touch, tional properties of the channel. Here, we review these ndings and discuss the and are associated with a number of many aspects of Piezo function that remain mysterious, including how Piezos diseases. convert a variety of mechanical stimuli into channel activation and subsequent A recent medium-resolution structure inactivation, and what molecules and mechanisms modulate Piezo function. gives insight into the overall architec- ture of Piezo1, but does not give straight answers as to how the channel Piezo Proteins: True Mechanically Activated Ion Channels? transduces mechanical force into pore Piezo proteins are pore-forming subunits of ion channels that open in response to mechanical opening. -
Piezo1 Incorporates Mechanical Force Signals Into the Genetic Program That Governs Lymphatic Valve Development and Maintenance
Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance Dongwon Choi, … , Il-Taeg Cho, Young-Kwon Hong JCI Insight. 2019;4(5):e125068. https://doi.org/10.1172/jci.insight.125068. Research Article Vascular biology The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema. Find the latest version: https://jci.me/125068/pdf RESEARCH ARTICLE Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance Dongwon Choi,1,2 Eunkyung Park,1,2 Eunson Jung,1,2 Boksik Cha,3 Somin Lee,4 James Yu,4 Paul M. -
Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H
Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H. Cingolani, Jonathan A. Kirk, Kinya Seo, Norimichi Koitabashi, Dong-ik Lee, Genaro Ramirez-Correa, Djahida Bedja, Andreas S. Barth, An L. Moens and David A. Kass Circ Res. 2011;109:1410-1414; originally published online October 27, 2011; doi: 10.1161/CIRCRESAHA.111.256743 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/109/12/1410 Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2011/10/27/CIRCRESAHA.111.256743.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/ Downloaded from http://circres.ahajournals.org/ at SWETS SUBSCRIPTION SERVICE on November 25, 2013 Integrative Physiology Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Short Communication Oscar H. -
1 Piezo2 Mechanosensitive Ion Channel Is Located to Sensory
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427483; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Piezo2 mechanosensitive ion channel is located to sensory neurons and non-neuronal cells in rat peripheral sensory pathway: implications in pain Seung Min Shin1, Francie Moehring2, Brandon Itson-Zoske1, Fan Fan3, Cheryl L. Stucky2, Quinn H. Hogan1, 4, and Hongwei Yu1, 4* 1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 2. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226 3. Department of Pharmacology and Toxicology, Mississippi University Medical Center, Jackson, Mississippi 39216 4. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295 * Correspondence author: [email protected], phone: 414-955-5745 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427483; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Piezo2 mechanotransduction channel is a crucial mediator of sensory neurons for sensing and transducing touch, vibration, and proprioception. We here characterized Piezo2 expression and cell specificity in rat peripheral sensory pathway using a validated Piezo2 antibody. Immunohistochemistry using this antibody revealed Piezo2 expression in pan primary sensory neurons (PSNs) of dorsal rood ganglia (DRG) in naïve rats, which was actively transported along afferent axons to both central presynaptic terminals innervating the spinal dorsal horn (DH) and peripheral afferent terminals in skin. -
The Anrep Effect Reconsidered
The Anrep Effect Reconsidered R. G. Monroe, … , C. Phornphutkul, M. Davis J Clin Invest. 1972;51(10):2573-2583. https://doi.org/10.1172/JCI107074. Research Article Evidence is presented supporting the hypothesis that the positive inotropic effect after an abrupt increase in systolic pressure (Anrep effect) is the recovery from subendocardial ischemia induced by the increase and subsequently corrected by vascular autoregulation of the coronary bed. Major evidence consists of data obtained from an isolated heart preparation showing that the Anrep effect can be abolished with coronary vasodilation, and that with an abrupt increase in systolic pressure there is a significant reduction in the distribution of coronary flow to subendocardial layers of the ventricle. Furthermore, the intracardiac electrocardiogram shows S-T segment and T wave changes after an abrupt increase in ventricular pressure similar to that noted after coronary constriction. Major implications are that normally there may be ischemia of the subendocardial layers tending to reduce myocardial contractility which may account, in part, for the positive inotropic effect of various coronary vasodilators; that with an abrupt increase in ventricular pressure the subendocardium is rendered temporarily ischemic, placing the heart in jeopardy from arrhythmias until this is corrected; and that end-diastolic pressure and the intracardiac electrocardiogram may provide a means of evaluating the adequacy of circulation to subendocardial layers in diseased ventricles when systolic pressure is abruptly increased. Find the latest version: https://jci.me/107074/pdf rhe Anrep Effect Reconsidered R. G. MONROE, W. J. GAMBLE, C. G. LAFARGE, A. E. KUMAR, J. STARK, G. L. SANDERS, C.