The Function and Regulation of Piezo Ion Channels Jason Wu,1 Amanda[13 TD$IF]H

Total Page:16

File Type:pdf, Size:1020Kb

The Function and Regulation of Piezo Ion Channels Jason Wu,1 Amanda[13 TD$IF]H TIBS 1305 No. of Pages 15 Series: Fresh Perspectives from Emerging Experts Review Touch, Tension, and Transduction – The Function and Regulation of Piezo Ion Channels Jason Wu,1 Amanda[13_TD$IF]H. Lewis,1 and Jörg Grandl1,* In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought Trends molecular carriers of an excitatory mechanically activated current found in many Piezo proteins were identified in 2010 cells. This discovery has opened the floodgates for studying a vast number of as the pore-forming subunits of excita- mechanotransduction processes. Over the past 6 years, groundbreaking tory mechanosensitive ion channels. research has identified Piezos as ion channels that sense light touch, proprio- Piezo ion channels play essential roles ception, and vascular blood flow, ruled out roles for Piezos in several other in diverse physiological processes ran- mechanotransduction processes, and revealed the basic structural and func- ging from regulation of red blood cell fi volume to sensation of gentle touch, tional properties of the channel. Here, we review these ndings and discuss the and are associated with a number of many aspects of Piezo function that remain mysterious, including how Piezos diseases. convert a variety of mechanical stimuli into channel activation and subsequent A recent medium-resolution structure inactivation, and what molecules and mechanisms modulate Piezo function. gives insight into the overall architec- ture of Piezo1, but does not give straight answers as to how the channel Piezo Proteins: True Mechanically Activated Ion Channels? transduces mechanical force into pore Piezo proteins are pore-forming subunits of ion channels that open in response to mechanical opening. stimuli, allowing positively charged ions, including calcium, to flow into the cell (Figure 1) [1]. Piezo orthologs have thus far been identified in numerous eukaryotes. Most vertebrates have two The function of Piezos, including the inactivation mechanism, can be modu- channel isoforms, Piezo1 and Piezo2, whereas Drosophila melanogaster has a single ortholog lated by many factors both intrinsic and (sharing equal homology to Piezo1 and Piezo2) that has also been confirmed to form a channel extrinsic to the channel. [1–3]. Genomic analysis predicts single Piezo orthologs in most lower organisms, including Caenorhabditis elegans, plants, and slime mold, although zebrafish have three and protozoa have up to six predicted isoforms [1,2,4–6]. No homologs have been identified in bacteria or yeast, suggesting the evolutionary need for a novel mechanosensor in higher organisms. Across species, Piezos are very large proteins (2521 and 2752 amino acids for human Piezo1 and human Piezo2, respectively) with numerous (>14) predicted transmembrane (TM) domains per subunit and, strikingly, no homology to other known proteins [1]. In near-physiological solutions, Piezos permeate cations with a single-channel conductance of approximately 29 pS and approximately 24 pS for mouse Piezo1 and mouse Piezo2, respectively [3,7]. In the presence of a constant stimulus, Piezo-mediated currents decay on a millisecond timescale 1Duke University Medical Center, due to a poorly understood mechanism, likely including channel inactivation (see Glossary), Department of Neurobiology, Durham, that is subject to genetic and physiological modulation (Box 1 and Figure 1). Piezos fulfill many NC 27710, USA requirements for true mechanically activated ion channels, as they are pore-forming sub- units, confer mechanically activated currents when expressed in a heterologous system, and are *Correspondence: necessary for mechanical responses in many cells [8]. However, no one has yet demonstrated [email protected] (J. Grandl). Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy http://dx.doi.org/10.1016/j.tibs.2016.09.004 1 © 2016 Elsevier Ltd. All rights reserved. TIBS 1305 No. of Pages 15 (A) (B) Glossary Pipee Blunt probe Arthrogryposis: a family of disorders including distal arthrogryposis type 5, Negave pressure Indenon Gordon syndrome, and Marden– Walker syndrome. Patients with these + Piezo1 Na Na+ disorders all exhibit congenital joint Ca2+ 2+ Ca contractures (or abnormal stiffness of joints), but can be distinguished by other, specific symptoms. Channel inactivation: a process in which a channel initially opens in Cell-aached patch Whole-cell patch response to a stimulus but over time, despite the continued presence of 6 μm 0 mmHg the stimulus, ceases to conduct ions (closes). 0 μm Channelopathy: a disease caused (first contact) by dysfunction of an ion channel, –70 mmHg often resulting from a mutation in the channel gene. Congenital lymphatic dysplasia: a disease characterized by severe swelling, or lymphedema, in the 40 pA 1 nA limbs. Dehydrated hereditary 50 ms 50 ms xerocytosis: a disease characterized by dehydration of red blood cells, Pressure (mmHg) Displacement (μm) resulting in increased fragility of these 0 –10 –20 –30 –40 –50 –60 –70 0 1 2 3 4 5 6 cells and subsequent anemia. The 0 0 dehydrated cells have a cup shape, and are often referred to as –40 –1 stomatocytes. –2 Dorsal root ganglia neurons: –80 sensory neurons with afferents that Current (pA) Current (nA) –3 terminate in the spinal cord, and with –120 sensitivity to mechanical touch, temperature, and specific chemicals. (C) High-speed pressure clamp: an experimental device allowing precise Æ 8 μm poke ( 1 mmHg) and rapid ( 10 ms) control of pressure (both negative 2 and positive). It is used to mechanically stimulate a channel- +100 mV 1 containing membrane patch within a Current (nA) pipette during an electrophysiological –100 –50 50 100 recording (Figure 1). –100 mV –1 Voltage (mV) Hydrophobic mismatch: a difference in length between the 1 nA –2 hydrophobic segment of a protein 50 ms and the hydrophobic thickness of a membrane, a situation that results in energetically unfavorable exposure of Figure 1. Piezos Are Mechanically Activated Ion Channels. (A) Schematic of ‘stretch’ setup, in which negative hydrophobic protein residues to the suction is applied to a cell-attached patch with a high-speed pressure clamp through the patch pipette, stimulating only hydrophilic environment. those channels contained within the patch dome (above). Piezo1 peak current amplitudes initially rise with increasing Mechanically activated ion magnitudes of pressure before reaching saturation (middle). The pressure–response relationship can be fit with a sigmoidal channel: to fulfill this definition, a function to measure pressure sensitivity (below). Data are from J. Wu and J. Grandl, unpublished. (B) Schematic of ‘poke’ protein must form a channel, and setup depicting cell deformation by a blunt probe (typically a fire-polished glass pipette) during a whole-cell recording, which confer mechanically activated activates a larger population of channels throughout the cell (above). Piezo1 current amplitudes increase with increasing currents when expressed steps of displacement beginning a few micrometers beyond first contact of the probe with the cell membrane. From these heterologously. Further, to be experiments, a current–displacement curve can be generated. Typically, currents do not plateau before cell rupture (below). considered a mechanosensor in vivo, Data are from A. Lewis and J. Grandl, unpublished. (C) Voltage step protocol with a single ‘poke’ displacement during each the protein must additionally be step (left). A family of currents from a single cell illustrates the voltage dependence of channel inactivation, with severely expressed in mechanosensory cells, slowed decay times at positive voltages (middle). An I–V curve plotted from peak current amplitudes reveals a reversal and be necessary and sufficient for potential near 0 mV, demonstrating cationic nonselectivity (right). Data are from[4_TD$IF]A. Lewis and[5_TD$IF]J. Grandl, unpublished. 2 Trends in Biochemical Sciences, Month Year, Vol. xx, No. yy TIBS 1305 No. of Pages 15 Box 1. Inactivation versus Adaptation mechanically activated currents in In the presence of a constant stimulus, Piezo currents decay with a characteristic time constant that could arise from two those cells. distinct mechanisms:[12_TD$IF] inactivation and adaptation (Figure I). Inactivation refers to a process where after initial response Mechanotransduction: the process and decay to a given stimulus, a further increase in stimulus intensity is not sufficient to elicit an increase in open by which a mechanical stimulus is probability; the stimulus must be completely removed and channels must deactivate in a time-dependent manner and transduced into biological signals return to a basal state, where they are available for new stimulation. By contrast, adaptation is a process where after an within a cell. initial response and decay to a given stimulus, a further increase in stimulus intensity increases open probability, even if no Membrane tension: the lateral (in- time is given for channels to recover. plane) force (N/m) in a membrane bilayer. Membrane tension has been demonstrated to be an activating For Piezo1, the contribution of adaptation was tested using the ‘stretch’ assay: after currents decayed in response to a stimulus for Piezo1 [44,45]. moderate pressure stimulus, only a small amount of additional current was elicited upon a step to a stronger pressure, Merkel cell: specialized skin cell which is consistent with inactivation as the process driving the loss of current [67]. Moreover, after removal of a stimulus, type that is sensitive to light both Piezo1
Recommended publications
  • Genetic Variants of PIEZO1 Associate with COVID-19 Fatality
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.01.20119651; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Genetic variants of PIEZO1 associate with COVID-19 fatality Cheng, C.W., Deivasikamani, V., Ludlow, M.J., De Vecchis, D., Kalli, A.C., Beech, D.J., Sukumar, P. School of Medicine, University of Leeds, Leeds, LS2 9JT, UK. *Authors for correspondence: Dr Piruthivi Sukumar (Lead Author) and Professor David J Beech (Senior Author), Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom. Emails: [email protected]; [email protected]. ABSTRACT Fatality from coronavirus disease 19 (COVID-19) is a major problem globally and so identification of its underlying molecular mechanisms would be helpful. The combination of COVID-19 clinical data and genome sequence information is providing a potential route to such mechanisms. Here we took a candidate gene approach to UK Biobank data based on the suggested roles of endothelium and membrane proteins in COVID-19. We focussed on the PIEZO1 gene, which encodes a non-selective cation channel that mediates endothelial responses to blood flow. The analysis suggests 3 missense PIEZO1 single nucleotide polymorphisms (SNPs) associated with COVID-19 fatality independently of risk factors. All of them affect amino acids in the proximal N-terminus of PIEZO1, which is an unexplored region of the protein.
    [Show full text]
  • S41467-021-21178-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21178-4 OPEN The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction Fan Jiang1, Kunlun Yin2, Kun Wu 1,5, Mingmin Zhang1, Shiqiang Wang3, Heping Cheng 4, Zhou Zhou2 & ✉ Bailong Xiao 1 The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank–Starling law and Anrep effect have documented that 1234567890():,; stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) sig- naling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases. 1 State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/ McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
    [Show full text]
  • Genome Wide Association Study of Response to Interval and Continuous Exercise Training: the Predict‑HIIT Study Camilla J
    Williams et al. J Biomed Sci (2021) 28:37 https://doi.org/10.1186/s12929-021-00733-7 RESEARCH Open Access Genome wide association study of response to interval and continuous exercise training: the Predict-HIIT study Camilla J. Williams1†, Zhixiu Li2†, Nicholas Harvey3,4†, Rodney A. Lea4, Brendon J. Gurd5, Jacob T. Bonafglia5, Ioannis Papadimitriou6, Macsue Jacques6, Ilaria Croci1,7,20, Dorthe Stensvold7, Ulrik Wislof1,7, Jenna L. Taylor1, Trishan Gajanand1, Emily R. Cox1, Joyce S. Ramos1,8, Robert G. Fassett1, Jonathan P. Little9, Monique E. Francois9, Christopher M. Hearon Jr10, Satyam Sarma10, Sylvan L. J. E. Janssen10,11, Emeline M. Van Craenenbroeck12, Paul Beckers12, Véronique A. Cornelissen13, Erin J. Howden14, Shelley E. Keating1, Xu Yan6,15, David J. Bishop6,16, Anja Bye7,17, Larisa M. Haupt4, Lyn R. Grifths4, Kevin J. Ashton3, Matthew A. Brown18, Luciana Torquati19, Nir Eynon6 and Jef S. Coombes1* Abstract Background: Low cardiorespiratory ftness (V̇O2peak) is highly associated with chronic disease and mortality from all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training. Methods: Participant change in objectively measured V̇O2peak from 18 diferent interventions was obtained from a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n 507), and a polygenic predictor score (PPS) was developed using alleles from single nucleotide polymorphisms= (SNPs) signifcantly associ- –5 ated (P < 1 ­10 ) with the magnitude of V̇O2peak response.
    [Show full text]
  • Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea
    8976 • The Journal of Neuroscience, November 18, 2020 • 40(47):8976–8993 Cellular/Molecular Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea Jorge Fernández-Trillo, Danny Florez-Paz, Almudena Íñigo-Portugués, Omar González-González, Ana Gómez del Campo, Alejandro González, Félix Viana, Carlos Belmonte, and Ana Gomis Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Alicante,Spain Mammalian Piezo2 channels are essential for transduction of innocuous mechanical forces by proprioceptors and cutaneous touch receptors. In contrast, mechanical responses of somatosensory nociceptor neurons evoking pain, remain intact or are only partially reduced in Piezo2-deficient mice. In the eye cornea, comparatively low mechanical forces are detected by polymodal and pure mecha- nosensory trigeminal ganglion neurons. Their activation always evokes ocular discomfort or pain and protective reflexes, thus being a unique model to study mechanotransduction mechanisms in this particular class of nociceptive neurons. Cultured male and female mouse mechano- and polymodal nociceptor corneal neurons display rapidly, intermediately and slowly adapting mechanically activated currents. Immunostaining of the somas and peripheral axons of corneal neurons responding only to mechanical force (pure mechano-nociceptor) or also exhibiting TRPV1 (transient receptor potential cation channel subfamily V member 1) immunoreactivity (polymodal nociceptor) revealed that they express
    [Show full text]
  • Pharmacological Activation of PIEZO1 in Human Red Blood Cells Prevents Plasmodium Falciparum Invasion
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446171; this version posted May 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion Rakhee Lohia1, Jordy Le Guet1, Laurence Berry1, Hélène Guizouarn2, Roberto Bernal3, Rachel Cerdan1, Manouk Abkarian4, Dominique Douguet5, Eric Honoré5*, Kai Wengelnik6* 1 LPHI, University of Montpellier, CNRS UMR5235, Montpellier, France 2 iBV, University Côte d’Azur, CNRS UMR7277, INSERM U1091, Nice, France 3 Departamento de Física, SMAT-C, Universidad de Santiago de Chile, Santiago, Chile 4 Centre de Biologie Structurale, CNRS UMR5048—INSERM U1054, University of Montpellier, Montpellier, France 5 IPMC, University Côte d’Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France. 6 LPHI, University of Montpellier, CNRS UMR5235, INSERM, Montpellier, France * Correspondence to: [email protected]; [email protected] Abstract An inherited gain-of–function variant (E756 del) in the mechanosensitive cationic channel PIEZO1 was recently shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. The PIEZO1 activator Yoda1 inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. RBC dehydration, echinocytosis and intracellular Na+/K+ imbalance are unrelated to the mechanism of protection. Inhibition of invasion is maintained, even after a prolonged wash out of Yoda1.
    [Show full text]
  • Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes
    fnagi-10-00332 October 17, 2018 Time: 13:57 # 1 ORIGINAL RESEARCH published: 22 October 2018 doi: 10.3389/fnagi.2018.00332 Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes María Velasco-Estevez1,2, Myrthe Mampay1, Hervé Boutin3, Aisling Chaney3,4, Peter Warn5, Andrew Sharp5, Ellie Burgess5, Emad Moeendarbary6,7*, Kumlesh K. Dev2* and Graham K. Sheridan1* 1 Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom, 2 Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, 3 Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom, 4 Department of Radiology, Stanford University, Stanford, CA, United States, 5 Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom, 6 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States, 7 Department of Mechanical Engineering, University College London, London, United Kingdom A defining pathophysiological hallmark of Alzheimer’s disease (AD) is the amyloid plaque; Edited by: an extracellular deposit of aggregated fibrillar Ab1−42 peptides. Amyloid plaques are Alberto Javier Ramos, hard, brittle structures scattered throughout the hippocampus and cerebral cortex Consejo Nacional de Investigaciones and are thought to cause hyperphosphorylation of tau, neurofibrillary tangles, and Científicas y Técnicas (CONICET), Argentina progressive neurodegeneration. Reactive astrocytes and microglia envelop the exterior Reviewed by: of amyloid plaques and infiltrate their inner core. Glia are highly mechanosensitive cells Jingwen Niu, and can almost certainly sense the mismatch between the normally soft mechanical Temple University, United States Vladimir Parpura, environment of the brain and very stiff amyloid plaques via mechanosensing ion The University of Alabama channels.
    [Show full text]
  • Novel Mutations in TPM2 and PIEZO2 Are Responsible for Distal
    Li et al. BMC Medical Genetics (2018) 19:179 https://doi.org/10.1186/s12881-018-0692-8 RESEARCH ARTICLE Open Access Novel mutations in TPM2 and PIEZO2 are responsible for distal arthrogryposis (DA) 2B and mild DA in two Chinese families Shan Li1†, Yi You1†, Jinsong Gao2, Bin Mao1, Yixuan Cao1, Xiuli Zhao1* and Xue Zhang1* Abstract Background: Distal arthrogryposis (DA) is a group of clinically and genetically heterogeneous disorders that involve multiple congenital limb contractures and comprise at least 10 clinical subtypes. Here, we describe our findings in two Chinese families: Family 1 with DA2B (MIM 601680) and Family 2 with mild DA. Methods: To map the disease locus, two-point linkage analysis was performed with microsatellite markers closed to TPM2, TNNI2/TNNT3 and TNNC2. In Family 1, a positive LOD (logarithm of odds) score was only obtained at the microsatellite marker close to TPM2 and mutation screening was performed using direct sequencing of TPM2 in the proband. In Family 2, for the LOD score that did not favor linkage to any markers, whole-exome sequencing (WES) was performed on the proband. PCR–restriction fragment length polymorphism (RFLP) and bioinformatics analysis were then applied to identify the pathogenic mutations in two families. In order to correlate genotype with phenotype in DA, retrospective analyses of phenotypic features according to the TPM2 and PIEZO2 mutation spectrums were carried out. Results: A heterozygous missense mutation c.308A > G (p.Q103R) in TPM2 in Family 1, and a novel variation c.8153G > A (p.R2718Q) in PIEZO2 in Family 2 were identified.
    [Show full text]
  • Piezo1 Incorporates Mechanical Force Signals Into the Genetic Program That Governs Lymphatic Valve Development and Maintenance
    Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance Dongwon Choi, … , Il-Taeg Cho, Young-Kwon Hong JCI Insight. 2019;4(5):e125068. https://doi.org/10.1172/jci.insight.125068. Research Article Vascular biology The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema. Find the latest version: https://jci.me/125068/pdf RESEARCH ARTICLE Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance Dongwon Choi,1,2 Eunkyung Park,1,2 Eunson Jung,1,2 Boksik Cha,3 Somin Lee,4 James Yu,4 Paul M.
    [Show full text]
  • 1 Piezo2 Mechanosensitive Ion Channel Is Located to Sensory
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427483; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Piezo2 mechanosensitive ion channel is located to sensory neurons and non-neuronal cells in rat peripheral sensory pathway: implications in pain Seung Min Shin1, Francie Moehring2, Brandon Itson-Zoske1, Fan Fan3, Cheryl L. Stucky2, Quinn H. Hogan1, 4, and Hongwei Yu1, 4* 1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 2. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226 3. Department of Pharmacology and Toxicology, Mississippi University Medical Center, Jackson, Mississippi 39216 4. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295 * Correspondence author: [email protected], phone: 414-955-5745 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427483; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Piezo2 mechanotransduction channel is a crucial mediator of sensory neurons for sensing and transducing touch, vibration, and proprioception. We here characterized Piezo2 expression and cell specificity in rat peripheral sensory pathway using a validated Piezo2 antibody. Immunohistochemistry using this antibody revealed Piezo2 expression in pan primary sensory neurons (PSNs) of dorsal rood ganglia (DRG) in naïve rats, which was actively transported along afferent axons to both central presynaptic terminals innervating the spinal dorsal horn (DH) and peripheral afferent terminals in skin.
    [Show full text]
  • Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences
    Centre for Arab Genomic Studies A Division of Sheikh Hamdan Award for Medical Sciences The Catalogue for Transmission Genetics in Arabs CTGA Database Piezo-Type Mechanosensitive Ion Channel Component 2 Alternative Names autosomal recessive disorder of Distal PIEZO2 Arthrogryposis with Impaired Proprioception and Family with Sequence Similarity 38, Member B Touch (DAIPT). FAM38B Molecular Genetics Record Category The PIEZO2 gene is located on the short arm of Gene locus chromosome 18. It spans a length of 482 kb of DNA and its coding sequence is spread across 55 WHO-ICD exons. The protein product encoded by this gene N/A to gene loci has a molecular mass of 318 kDa and consists of 2752 amino acids. Several additional isoforms of Incidence per 100,000 Live Births the PIEZO2 protein exist due to alternatively N/A to gene loci spliced transcript variants. The gene is found to be overexpressed in the brain, spinal cord, pancreas, OMIM Number liver and lung. Heterozygous mutations in the 613629 PIEZO2 gene, including missense variants and deletions, have been linked to the disorders of Mode of Inheritance MWKS, DA3 and DA5. So far only one mutation N/A to gene loci (R2686C) has been identified in MWKS. Homozygous and compound heterozygous Gene Map Locus mutations in the gene associated with Distal 18p11.22-p11.21 Arthrogryposis, with Impaired Proprioception and Touch (DAIPT) mainly include nonsense variants Description and deletions that cause frameshift and premature The PIEZO2 gene encodes a large protein truncation, often resulting in a non-functioning containing 31 transmembrane domains. This protein PIEZO2 protein.
    [Show full text]
  • Piezo1 Regulates Mechanotransductive Release of ATP from Human Rbcs
    Piezo1 regulates mechanotransductive release of ATP from human RBCs Eyup Cinara,1, Sitong Zhoua,1, James DeCourceyb, Yixuan Wanga,c, Richard E. Waughd, and Jiandi Wana,2 aMicrosystems Engineering, Rochester Institute of Technology, Rochester, NY 14623; bDepartment of Biology, Rochester Institute of Technology, Rochester, NY 14623; cSchool of Mechanical Engineering, University of Science and Technology, Beijing 100083, China; and dDepartment of Biomedical Engineering, University of Rochester, Rochester, NY 14627 Edited by Nancy E. Kleckner, Harvard University, Cambridge, MA, and approved August 19, 2015 (received for review April 16, 2015) Piezo proteins (Piezo1 and Piezo2) are recently identified mechani- RBCs (9, 17). Pannexin-1, however, is a channel-forming protein cally activated cation channels in eukaryotic cells and associated with and has been suggested as a mechanosensing ATP release channel physiological responses to touch, pressure, and stretch. In particular, (18). Under osmotic stress, for example, ATP released from RBCs human RBCs express Piezo1 on their membranes, and mutations of was attenuated by carbenoxolone, a highly effective pannexin Piezo1 have been linked to hereditary xerocytosis. To date, however, channel blocker, suggesting that pannexin-1 might be one of the physiological functions of Piezo1 on normal RBCs remain poorly un- conductance channels responsible for the mechanotransductive derstood. Here, we show that Piezo1 regulates mechanotransductive release of ATP (18). Although progress has been made in un- release of ATP from human RBCs by controlling the shear-induced derstanding mechanotransductive ATP release from RBCs, many 2+ calcium (Ca ) influx. We find that, in human RBCs treated with questions remain about the signal transduction pathways. For Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of + example, how does mechanical force transduce signals to ATP shear-induced ATP release and Ca2 influx decrease significantly.
    [Show full text]
  • Touching Upon Regulators of Piezo2 in Mouse Somatosensation
    Touching upon regulators of Piezo2 in mouse somatosensation Dissertation for the award of the degree “Doctor rerum naturalium” (Dr.rer.nat.) of the Georg-August-Universität Göttingen within the International Max Planck Research School (IMPRS), Neuroscience of the Georg-August University School of Science (GAUSS) submitted by Pratibha Narayanan from New Delhi Göttingen, 2017 Thesis Committee Dr. Manuela Schmidt Somatosensory signaling and Systems Biology group, Max Planck Institute for Experimental Medicine Prof. Dr. Martin Göpfert Dept. of Cellular Neurobiology, Schwann- Schleiden Research Centre Prof. Dr. Luis A. Pardo Dept. of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Members of the Examination Board Dr. Manuela Schmidt Somatosensory signaling and Systems Biology group, Max Planck Institute for Experimental Medicine Prof. Dr. Martin Göpfert Dept. of Cellular Neurobiology, Schwann- Schleiden Research Centre Further members of the Examination Board Prof. Dr. Luis A. Pardo Dept. of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine Prof. Dr. Tobias Moser Institute for Auditory Neuroscience & InnerEarLab Prof. Dr. Silvio O. Rizzoli Dept. of Neuro-and Sensory Physiology, University Medical Center Prof. Dr. Michael Sereda Molecular and Translational Neurology group, Max Planck Institute for Experimental Medicine Date of oral examination: 23 November 2017 TABLE OF CONTENTS List of figures..............................................................................................
    [Show full text]