Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy Thomas M. Joudinaud The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Joudinaud, Thomas M., "Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9567. https://scholarworks.umt.edu/etd/9567 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. '*Please check "Yes" or "No" and provide signature Yes, I grant permission K No, I do not grant permission _________ Author's Signature: -------- Date :_______ 03 wA oS Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy By Thomas M Joudinaud M.D. University of Paris-Versailles-Saint Quentin en Yvelines, France, 2003 Presented in partial fulfillment of the requirements For the degree of Doctor of Philosophy The University of Montana July 2005 Approved by: Dean, Graduate School g -3 Q - 05" Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3184231 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3184231 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Joudinaud, Thomas M., Ph.D., July 2005 IIP Mechanisms of Functional Tricuspid Valve Regurgitatiçtn in Ischemic Cardiomyopathy. Chairperson: Carlos M.G. Duran, M.D., Ph.D. In heart failure, the presence of functional mitral r%#gitation secondary to a myocardial infarction (MI) is known to double mortality. While the mechanism of functional mitral regurgitation has been extensively studied, the mechanism of a concomitant functional tricuspid regurgitation has been neglected. We hypothesizedthat MI alters not only the geometry of the left ventricle but also of the right ventricle leading to both ischemic mitral and tricuspid regurgitation (IMR & ITR). We also hypothesized that these geometric alterations modulate mechanical stresses resulting in molecular changes. To answer these hypotheses, the following Aims were designed: 1) complete an anatomy study of the normal tricuspid valve following the established principles applied to the mitral valve; 2) perform an in vivo sonometric study of the functional anatomy of the atrioventricular valves in order to clarify their relationships; 3) compare in sheep the data obtained with transthoracic echocardiography (TTE) with those acquired with sonomicrometry. Evaluation of the reliability of the echo geometric data is essential given its value because of its non-invasiveness. 4) develop a reproducible animal model of IMR and ITR and analyze the resulting geometrical changes 5) search for variations in eNOS and nNOS expression at increasing distance from the MI as an indicator of cardiomyocyte stretch. Results 1) An original terminology of the tricuspid valve useful to surgeons and cardiologists was developed; 2) we showed how the mitral and tricuspid valves are linked by the septum; 3) TTE in sheep provides precise information needed for the non invasive follow up of the LV remodeling; 4) an original animal model of IMR and ITR was developed with the percutaneous selective injection of ethanol. Specific geometrical distortions of both ventricles that resulted in IMR and ITR were found; 5) we showed that the expression of eNOS was correlated with the distance from the MI and thus the amount of stress. Conclusion: This data suggest that IMR and ITR are caused by a geometrical distortion of both atrioventricular valves and that this macroscopic remodeling was associated with an up-regulation of eNOS that may be correlated with an adapatative process of the stretched cardiomyocytes. 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Content Abstract ii Table of Contents ill List of Tables v List of Figures vi List of abbreviations vii Ackno-wledgements ix INTRODUCTION I BACKGROUND 2 1 : ISCHEMIC HEART FAILURE WITH MITRAL AND TRICUSPID REGURGITATION 2 I -1 : Heart Failure : A Maj or Health Problem. 2 1-2: Ischemic Heart Failure 3 1-3: Ischemic Mitral Regurgitation 4 1-4: Functional Tricuspid Regurgitation in Cases of Ischemic Heart Failure 12 1 -5 : Surgical Approach of Ischemic Heart Failure 16 2 : ULTRASTRUCTURE OF THE MYOCARDIUM 24 2-1: The Sarcomere 24 2-2: Myocardial Excitation-contraction Coupling 26 2-3 : Sarcomere Stretch and Cardiac Function 27 AIM OF THE STUDY 30 EXPERIMENT I: A UNIFIED FUNCTIONAL TERMINOLOGY FOR THE MITRAL AND TRICUSPID VALVES 34 1: BACKGROUND: ANATOMY OF THE HUMAN MITRAL AND TRICUSPID VALVES 34 I -1 : Mitral Valve Anatomy 34 1-2: Tricuspid Valve Anatomy 44 2: MATERIALS AND METHODS 48 3: RESULTS 52 3-1 : The Leaflets and Their Commissures 52 3-2: The Papillary Muscles and Chordae Tendinae 53 3-3: Proposed Terminology and Classification 55 4: DISCUSSION 58 4-1: A New Nomenclature for the Tricuspid Valve 5 8 4-2: Clinical Relevance and Limitations of the Study 61 EXPERIMENT 2: GEOMETRICAL CHANGES OF THE MITRAL AND TRICUSPID VALVES DURING THE CARDIAC CYCLE 64 1: INTRODUCTION 64 2: MATERIALS AND METHODS 64 2-1 : Definition of the Different Phases of the Cardiac Cycle 64 2-2: Digital Sonomicrometry 65 2-3 : Data Acquisition 66 2-4: Surgical Preparation 67 111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2-5: Definition of Anatomical Regions 70 2-6: Measurement and Statistical Analysis Methods 72 3: RESULTS 72 3-1 : Geometrical changes in Tricuspid and Mitral annuli 73 3-2: Geometrical Changes in Tricuspid and Mitral Annulo-papillary Muscle Planes 85 3-3: Geometrical Changes in the Mitral and Tricuspid Papillary Muscle Planes 97 4: DISCUSSION 103 4-1 : Mitral and Tricuspid Valve Annuli 103 4-2: Annulo-papillary Muscle Apparatus of Mitral and Tricuspid Valves 105 4-3 : Papillary Muscle Motion 108 EXPERIMENT 3: COMPARISON OF SONOMICROMETRY AND TTE DATA IN SHEEP 110 1 : TRANS-THORACIC ECHOCARDIOGRAPHY IN SHEEP 110 2 : MATERIALS AND METHODS 110 2-1 : Echo Data Acquisition 110 2-2: Surgical Experiment 111 2-3: Statistical Analysis 112 3: RESULTS 112 3 -1 : Data Comparison 112 3-2: Correlation of Trans-thoracic Echocardiography and Sonomicrometry Measurements 116 4: DISCUSSION 118 EXPERIMENT 4: PERCUTANEOUS INDUCTION OF A POSTERO-LATERAL INFARCT BY INJECTION OF 100% ETHANOL AND ANALYSIS OF LV AND RV GEOMETRICAL CHANGES. 121 1 : REVIEW OF EXISTING ANIMAL MODELS OF HEART FAILURE 121 1-1: Heart F ailure Induced by T oxin 121 1-2: Heart Failure Induced by Rapid Pacing 123 1 -3 : Heart Failure Induced by Ischemia 124 2: MATERIALS AND METHODS 126 2-1 : Induction of the Myocardial Infarction 126 2-2: Data Acquisition and Follow-up 127 2-3 : Macroscopic and Histology Analysis 128 2-4: Statistical Analysis 129 3: RESULTS 129 3-1: Percutaneous Induction of Myocardial Infarction 129 3 -2 : Development of Ischemic Cardiomyopathy 132 3-3: Histology Analysis 137 4: DISCUSSION 139 EXPERIMENT 5: CHANGE IN ENOS AND NNOS EXPRESSION BY DISTANCE FROM THE INFARCT IN AN OVINE ISCHEMIC HEART FAILURE MODEL 145 IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 : NITRIC OXIDE SYNTHASE 145 1-1: Background 145 1-2: Nitric Oxide Synthase and the Heart 147 2: MATERIALS AND METHODS 152 2-1 : Preparation of Tissue 152 2-2: Protein isolation, SDS-polyacrylamide gel electrophoresis
Recommended publications
  • Ischemic Cardiomyopathy: Symptoms, Causes, & Treatment
    Ischemic Cardiomyopathy Ischemic cardiomyopathy is a condition that occurs when the heart muscle is weakened due to insufficient blood flow to the heart's muscle. This inhibits the heart's ability to pump blood and can lead to heart failure. What Is Ischemic Cardiomyopathy? Ischemic cardiomyopathy (IC) is a condition that occurs when the heart muscle is weakened. In this condition, the left ventricle, which is the main heart muscle, is usually enlarged and dilated. This condition can be a result of a heart attack or coronary artery disease, a narrowing of the arteries. These narrowed arteries keep blood from reaching portions of your heart. The weakened heart muscle inhibits your heart’s ability to pump blood and can lead to heart failure. Symptoms of IC include shortness of breath, chest pain, and extreme fatigue. If you have IC symptoms, you should seek medical care immediately. Treatment depends on how much damage has been done to your heart. Medications and surgery are often required. You can improve your long-term outlook by making certain lifestyle changes, such as maintaining a healthy diet and avoiding high-risk behaviors, including smoking. Symptoms of Ischemic Cardiomyopathy You can have early-stage heart disease with no symptoms. As the arteries narrow further and blood flow becomes impaired, you may experience a variety of symptoms, including: shortness of breath extreme fatigue dizziness, lightheadedness, or fainting chest pain and pressure (angina) heart palpitations weight gain swelling in the legs and feet (edema) and abdomen difficulty sleeping cough or congestion caused by fluid in the lungs If you have these symptoms, seek emergency medical care or call 9-1-1.
    [Show full text]
  • S41467-021-21178-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21178-4 OPEN The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction Fan Jiang1, Kunlun Yin2, Kun Wu 1,5, Mingmin Zhang1, Shiqiang Wang3, Heping Cheng 4, Zhou Zhou2 & ✉ Bailong Xiao 1 The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank–Starling law and Anrep effect have documented that 1234567890():,; stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) sig- naling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases. 1 State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/ McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
    [Show full text]
  • ICD-10-CM Documentation and Coding Best Practices
    ICD-10-CM Documentation and Coding Best Practices Cardiomyopathy Cardiomyopathy refers to diseases of the heart muscle, which can become enlarged, thick or rigid. In rare cases, cardiac muscle tissue can be replaced with scar tissue. As the condition worsens, the heart becomes weaker and less able to pump blood through the body or to maintain a normal electrical rhythm. Causes Risk factors that can increase the possibility of developing cardiomyopathy include: coronary artery disease, a history of heart attack (s), viral infections that cause heart inflammation, long-term hypertension or alcoholism, obesity, and diabetes to name a few. However, in most cases the exact cause is usually unknown (called primary or idiopathic cardiomyopathy). Symptoms Some patients will never have symptoms; others will not develop them until later in the disease. Symptoms can include: • Fatigue • Shortness of b reath or trouble breathing (dyspnea) • Dizziness, lightheadedness or fainting • Swelling in the ankles, feet, legs, abdomen and neck veins Treatment Treatment depends on the type of cardiomyopathy, the severity of symptoms, and the patient’s age and overall health. • Lifestyle changes can help manage condition(s) that may be causing cardiomyopathy. Recommendations include: o Consuming a heart healthy diet, engaging in physical activity, losing excess weight, giving up smoking, avoiding alcohol and illegal drugs, getting enough sleep, and reducing stress • Medicines may be p rescribed to: o Lower blood pressure (ACE inhibitors, angiotensin II receptor blo ckers, beta blockers, calcium channel blockers ) o Slow the heart rate (beta blockers, calcium channel blockers, digoxin) o Prevent arrhythmias (antiarrhythmics) o Remove excess fluid and sodium (diuretics) o Prevent blood clots (anticoagulants) • Alcohol septal ablation • Surgery o Septal myectomy – option for severe cases of obstructive hypertrophic cardiomyopathy Surgically implanted devices o .
    [Show full text]
  • Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry
    pp. 1–14 (2017) Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry F. A. Syomin∗ and A. K. Tsaturyan∗ Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent- ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of heartbeats the finite element method was implemented. The model reproduces well changes in vent- ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial pressure typical for normal human heart. The model also reproduces well the dependence of the stroke volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect). The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale 3D simulation of the heart. Keywords: Heart, cardiac muscle, muscle contraction, mathematical model, finite elements. MSC 2010: 74L15, 92C10, 92C30, 74S05 Computer modelling of the heart mechanics is a fast developing field of computa- tional physiology. During the last two decades a number of electromechanical mod- els of the whole heart or its left ventricle has been developed [26]. Such multiscale models usually combine several models that describe electrical and chemical pro- cesses at the level of a single cell with mechanical properties of cardiac muscle tissue. Generally, a model of the heart consists of a model of ionic currents in the cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae- modynamics model), and a geometrical approximation of the heart.
    [Show full text]
  • Heart Failure Therapy: Potential Lessons Heart: First Published As 10.1136/Heartjnl-2015-309110 on 23 December 2016
    Heart Online First, published on December 23, 2016 as 10.1136/heartjnl-2015-309110 Review ‘End-stage’ heart failure therapy: potential lessons Heart: first published as 10.1136/heartjnl-2015-309110 on 23 December 2016. Downloaded from from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation Dietmar Schranz, Hakan Akintuerk, Norbert F Voelkel ▸ Additional material is ABSTRACT reflected by the calculated transpulmonary gradient published online only. To view The final therapy of ‘end-stage heart failure’ is (TPG=mean PAP−LAP) and in particular the dia- please visit the journal online (http://dx.doi.org/10.1136/ orthotopic heart, lung or heart-lung transplantation. stolic PAP to LAP difference, the so-called diastolic heartjnl-2015-309110). However, these options are not available for many pressure gradient (DPG=diastolic PAP−LAP). Both patients worldwide. Therefore, novel therapeutical parameters become even more important in the Pediatric Heart Center, Justus Liebig University Giessen, strategies are needed. Based on pathophysiological setting of heart failure: pulmonary hypertension Virginia Commonwealth insights regarding (1) the long-term impact of an (PH) associated with an increased LAP, but normal University, School of Pharmacy, obstructive pulmonary outflow tract in neonates with TPG (<12 mm Hg) and in particular DPG Richmond, Virginia, USA congenitally corrected transposition of the great arteries, (<7 mm Hg)—labelled isolated postcapillary pul- — Correspondence to (2) the importance of a restrictive versus a non-restrictive monary hypertension may increase RV afterload Professor Dietmar Schranz, atrial septum in neonates born with a borderline left and negatively affect right (subpulmonary) ven- Pediatric Heart Center, Justus ventricle and (3) the significance of both, a patent tricular function.
    [Show full text]
  • Ischemic Mitral Regurgitation: a Multifaceted Syndrome with Evolving Therapies
    biomedicines Review Ischemic Mitral Regurgitation: A Multifaceted Syndrome with Evolving Therapies Mattia Vinciguerra 1,* , Francesco Grigioni 2, Silvia Romiti 1 , Giovanni Benfari 3,4, David Rose 5 , Cristiano Spadaccio 5,6, Sara Cimino 1, Antonio De Bellis 7 and Ernesto Greco 1 1 Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; [email protected] (S.R.); [email protected] (S.C.); [email protected] (E.G.) 2 Unit of Cardiovascular Sciences, Department of Medicine Campus Bio-Medico, University of Rome, 00128 Rome, Italy; [email protected] 3 Division of Cardiology, Department of Medicine, University of Verona, 37219 Verona, Italy; [email protected] 4 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA 5 Lancashire Cardiac Centre, Blackpool Victoria Hospital, Blackpool FY3 8NP, UK; [email protected] (D.R.); [email protected] (C.S.) 6 Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK 7 Department of Cardiology and Cardiac Surgery, Casa di Cura “S. Michele”, 81024 Maddaloni, Caserta, Italy; [email protected] * Correspondence: [email protected] Abstract: Dysfunction of the left ventricle (LV) with impaired contractility following chronic ischemia or acute myocardial infarction (AMI) is the main cause of ischemic mitral regurgitation (IMR), leading to moderate and moderate-to-severe mitral regurgitation (MR). The site of AMI exerts a specific Citation: Vinciguerra, M.; Grigioni, influence determining different patterns of adverse LV remodeling. In general, inferior-posterior F.; Romiti, S.; Benfari, G.; Rose, D.; AMI is more frequently associated with regional structural changes than the anterolateral one, which Spadaccio, C.; Cimino, S.; De Bellis, is associated with global adverse LV remodeling, ultimately leading to different phenotypes of IMR.
    [Show full text]
  • Core Topics in Cardiac Anesthesia, Second Edition
    Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index abciximab 465–6 airway management, postoperative endocarditis therapy 449 abdominal arteries 79 resuscitation 416 multi-resistant bacteria 450–2 accessory conducting pathways aldosterone 31–2 surgical prophylaxis 246, 342, 362, 9–10 alfentanil 36–7 447–8 acetylcholine (ACh) 25 allograft vasculopathy 280 anticoagulation acid-base management 391, 403–4, allostasis 29 atrial fibrillation 412 441 alpha-1-microalbumin 435 CPB 64–7, 175 actin 13–15 alpha-adrenergic receptors (a-ARs) ECMO 364 action potentials (APs), cardiac 8–11 25, 41, 48 endogenous 367–8 activated clotting time (ACT) 64, 67, alpha-stat blood-gas management 391, intra-aortic balloon pump 357 175, 370 403–4, 441 monitoring 67, 175 activated partial thromboplastin time e-aminocaproic acid (EACA) 68, 69, off-pump coronary surgery (APPT) 67 175, 368 190–1 acute coronary syndromes (ACS) amiodarone 57, 60 preoperative cessation 169 257–60 amitriptyline 463 prosthetic valve recipients 127, anesthetic management 258 Amplatzer muscular VSD 129–30 pathogenesis 257 occluder 264 antidepressants 463 acute kidney injury (AKI) 431–6 Amplatzer septal occluder 262–3 antidiuretic hormone (ADH) 31–2 acute lung injury (ALI) 421 analgesia anti-dysrhythmic drugs 57–62, 256, acute normovolemic hemodilution chronic pain 463 409 (ANH) 372, 468 postoperative 182, 191, 238–9, antifibrinolytics 68–9, 368–9 acute renal failure
    [Show full text]
  • Ischemic Cardiomyopathy: Contemporary Clinical Management
    Chapter 7 Ischemic Cardiomyopathy: Contemporary Clinical Management BurhanBurhan Sheikh Alkar, Sheikh Alkar, Gustav MattssonGustav Mattsson and PeterPeter Magnusson Magnusson Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.76723 Abstract Ischemic cardiomyopathy, disease of the heart muscle due to coronary artery disease, is the most common cardiomyopathy. It is often difficult to discern the etiology of heart failure, and often there are multiple underlying causes. Ischemic cardiomyopathy most often pres - ents with a dilated morphology with wall motion defects and a history of previous myocar - dial infarction or confirmed coronary artery disease. Mechanisms of myocardial depression in ischemia are necrosis of myocardial cells resulting in irreversible loss of function or reversible damage, either short term through myocardial stunning or long term through hibernation. In ischemic cardiomyopathy, echocardiography may be extended with stress testing or other imaging modalities such as myocardial scintigraphy and cardiac magnetic resonance tomography. Coronary angiography is often considered a gold standard; how - ever, other modalities such as positron emission tomography can be needed to detect small vessel disease. Cardiac revascularization, through percutaneous coronary intervention and coronary artery bypass grafting, both in acute coronary syndrome and in stable coronary artery disease, relieves symptoms and improves prognosis. Therapy should aspire to treat ischemia, arrhythmias in addition to heart failure management, which includes device therapy with cardiac resynchronization therapy, implantable cardioverter defibrillators, and mechanical support as bridging or destination therapy in end-stage disease. Keywords: cardiomyopathy, coronary artery disease, heart failure, ischemic, myocardial infarction 1. Introduction Disease of the heart muscle, cardiomyopathy, appears in various disease manifestations, which are often either poorly defined or difficult to distinguish in clinical practice.
    [Show full text]
  • The Role of Heart Rate on Functional Capacity In
    The role of heart rate on functional capacity in chronic heart failure: association or contribution? Haqeel Ahmed Jamil Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Leeds Institute for Cardiovascular and Metabolic Medicine School of Medicine September 2015 - ii - Intellectual Property and Publication Statements: The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Haqeel Ahmed Jamil to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Haqeel Ahmed Jamil - iii - Dedication This thesis is affectionately dedicated to my parents, Mohammed and Azra Jamil for their unremitting love and wisdom, and without whom none of my career would have been possible; to my brothers, Adeel and Nabeel for always providing a mixture of encouragement and welcome distractions; to my wife Sana for her selfless support and understanding throughout: and to my son Zackaria, for the joy he brings to all of our lives. - iv - Acknowledgements I would like to start by thanking my supervisors, Klaus Witte and Mark Kearney for recognising my potential, constantly inspiring me and allowing me the opportunity to undertake research at the Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM). I would also like to sincerely thank the LICAMM research team and all the staff at the Leeds Cardiac Investigations Unit, for their assistance and support.
    [Show full text]
  • Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H
    Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H. Cingolani, Jonathan A. Kirk, Kinya Seo, Norimichi Koitabashi, Dong-ik Lee, Genaro Ramirez-Correa, Djahida Bedja, Andreas S. Barth, An L. Moens and David A. Kass Circ Res. 2011;109:1410-1414; originally published online October 27, 2011; doi: 10.1161/CIRCRESAHA.111.256743 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/109/12/1410 Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2011/10/27/CIRCRESAHA.111.256743.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/ Downloaded from http://circres.ahajournals.org/ at SWETS SUBSCRIPTION SERVICE on November 25, 2013 Integrative Physiology Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Short Communication Oscar H.
    [Show full text]
  • The Anrep Effect Reconsidered
    The Anrep Effect Reconsidered R. G. Monroe, … , C. Phornphutkul, M. Davis J Clin Invest. 1972;51(10):2573-2583. https://doi.org/10.1172/JCI107074. Research Article Evidence is presented supporting the hypothesis that the positive inotropic effect after an abrupt increase in systolic pressure (Anrep effect) is the recovery from subendocardial ischemia induced by the increase and subsequently corrected by vascular autoregulation of the coronary bed. Major evidence consists of data obtained from an isolated heart preparation showing that the Anrep effect can be abolished with coronary vasodilation, and that with an abrupt increase in systolic pressure there is a significant reduction in the distribution of coronary flow to subendocardial layers of the ventricle. Furthermore, the intracardiac electrocardiogram shows S-T segment and T wave changes after an abrupt increase in ventricular pressure similar to that noted after coronary constriction. Major implications are that normally there may be ischemia of the subendocardial layers tending to reduce myocardial contractility which may account, in part, for the positive inotropic effect of various coronary vasodilators; that with an abrupt increase in ventricular pressure the subendocardium is rendered temporarily ischemic, placing the heart in jeopardy from arrhythmias until this is corrected; and that end-diastolic pressure and the intracardiac electrocardiogram may provide a means of evaluating the adequacy of circulation to subendocardial layers in diseased ventricles when systolic pressure is abruptly increased. Find the latest version: https://jci.me/107074/pdf rhe Anrep Effect Reconsidered R. G. MONROE, W. J. GAMBLE, C. G. LAFARGE, A. E. KUMAR, J. STARK, G. L. SANDERS, C.
    [Show full text]
  • Cardiac Pump Function
    Left Ventricular Pump Function Michael R. Pinsky, MD, Dr hc Department of Critical Care Medicine University of Pittsburgh Left Ventricular Pump Function • Maintain a constant and high organ input pressure • Eject Stroke Volume into a low compliance high resistance arterial circuit • Transfer all blood received with a minimal back pressure • Match cardiac output to venous return on a beat-to-beat basis Bedside Assessment of Ventricular Pump Function Assessing Left Ventricular Performance Commonly Used Measures of Cardiovascular Function: Heart Rate Blood Pressure Cardiac Output Stroke Volume LV ejection fraction Frank-Starling Relationship • Frank: Force of fiber contraction proportional to length prior to excitation • Frank. Z Biol 32:370-437, 1895 • Starling: Fiber length proportional to end-diastolic volume • Patterson & Starling. J Physiol (Lon) 48:465-513,1914 • Frank-Starling: Systolic function proportional to end- diastolic volume Primacy of Preload in Determining Systolic Performance Otto Frank Isometric contractions of a frog ventricle at increasing filling pressures Frank O, Z Biol 1895; 32:370 Ernest Starling Stroke volume increases with end-diastolic volume End-diastolic Volume Increased End-diastolic Volume Patterson & Starling. J Physiol 48:357-87, 1914 Starling versus Anrep Heterometric v. Homeometric autoregulation of the heart Increased Preload Starling EDV Preload Afterload Heart Rate Anrep Contractility ESV Increased Contractility Sudden increase and decrease in venous return Rosenblueth et al. Arch Int Physiol 67: 358, 1959 Frank-Starling Relationship LV Ejection Hyper-effective Phase Indies: Ejection Fraction Stroke Volume Stroke Work Hypo-effective LV dP/dt Vcf Preload (end-diastolic volume) Sarnoff & Berglund. Circulation 9:706-18, 1954 Frank-Starling Relationship Is heart A “better” than heart B? A B Stroke Volume Stroke Preload (end-diastolic volume) Arterial pressure increases with end-diastolic volume Patterson & Starling.
    [Show full text]