Adult Cardiac Surgery Ii

Total Page:16

File Type:pdf, Size:1020Kb

Adult Cardiac Surgery Ii MHBD054-CH19[335-356].qxd 09/05/2007 8:05 AM Page 335 PMAC-291 PMAC-291:Books:DAMS/ARCHIVE:MHBD054:Chapters:CH-19: TechBooks [PP PART II ADULT CARDIAC SURGERY MHBD054-CH19[335-356].qxd 09/05/2007 8:05 AM Page 336 PMAC-291 PMAC-291:Books:DAMS/ARCHIVE:MHBD054:Chapters:CH-19: TechBooks [PP MHBD054-CH19[335-356].qxd 09/05/2007 8:05 AM Page 337 PMAC-291 PMAC-291:Books:DAMS/ARCHIVE:MHBD054:Chapters:CH-19: TechBooks [PP CHAPTER CARDIOVASCULAR 19 FUNCTION AND PHYSIOLOGY Jeffrey M. Dodd-O BASIC MYOCYTE PHYSIOLOGY extracellular fluids differ because the cell’s surface mem- brane serves to maintain some compounds intracellularly Myocyte depolarization and exclude other compounds extracellularly. This segre- gating function is possible because water-insoluble com- Cardiac myocytes possess the capacity to contract because ponents of the membrane prevent free passage of water- they contain a series of protein filaments (myofibrils) ori- soluble components through the membrane. The initial ented along the longitudinal axis of the cell (see below). creation of a concentration gradient between extra- and For myocytes to shorten, these myofibrils must be stimu- intracellular ions is achieved by energy-dependent ion lated to slide. The impetus for the stimulation originates pumps located within the membrane. These pumps can on the myocyte’s surface membrane (sarcolemma) and is move ions across the membrane against a concentration transmitted to the intracellular myofibrils. Aspects of the gradient. Because of the uneven concentrations of charged composition of the sarcolemma allow it to assume this ions in the intra- and extracellular fluids separated by the function. The intra- and extracellular fluid is predomi- cell membrane, there is an electrical gradient across the nantly water. The ionic components within the intra- and membrane (i.e., a transmembrane potential). KEY CONCEPTS ● Membrane potentials are created by energy-dependent ● A ventricle exposed chronically to high afterload will ion pumps which segregate charged ions on either adapt by concentric hypertrophy because this reduces side of hydrophobic cell membrane. wall stress according to the law of Laplace. ● Cell depolarization possible because channels open ● Myocardium receiving insufficient energy supply will within the hydrophobic membrane to allow charged either die (infarction), become dysfunctional (ischemia), ions, driven by concentration gradients, to cross the or reduce its energy needs (hibernate). Reperfused tis- membrane. sue is termed “stunned” if it does not contract up to its ● Trigger for the opening of transmembrane ion channel potential in spite of adequate energy supply. is typically a change in the membrane potential. ● Diastole is more energy-demanding than systole, and Different channels are triggered to open at different diastolic dysfunction can be more difficult to treat membrane potentials. than systolic dysfunction ● The sarcomere is the contractile element of the ● Dysfunctional endothelium leads to vascular occlu- myocyte. Each sarcomere is composed of a series of sion by: (1) exposing underlying tissue factor to circu- parallel myofilaments. Coaxial movement of these lating factor VII, initiating thrombosis; (2) does not myofilaments, some of which are tethered to the ends allow for the interaction of thrombin with thrombo- of the sarcomere, result in sarcomere shortening. modulin and the subsequent activation of protein C to ● The strength of contraction is influenced by resting its anticoagulant form; (3) does not produce nitric length of the myocyte, sudden stretch of the myocyte, oxide, important to help decrease platelet activation, or rapidly repeated contraction of the myocyte. Speed decrease vasospasm, and decrease vascular of shortening is influenced by afterload. inflammation 337 MHBD054-CH19[335-356].qxd 09/05/2007 8:05 AM Page 338 PMAC-291 PMAC-291:Books:DAMS/ARCHIVE:MHBD054:Chapters:CH-19: TechBooks [PP 338 PART II ● ADULT CARDIAC SURGERY Physiology of the myocyte cell membrane transmembrane potentials, become exposed to the new transmembrane potential of the adjacent sarcolemma. The human body is composed predominantly of salts Exposure to this new transmembrane potential increases and water. This pool of salts and water is segregated into the open probability of these nearby channels. The pas- functional units (cells and their intracellular compo- sage of ions through these newly open channels changes nents) that locally alter the concentration of the salts the membrane potential surrounding the channel, they contain. Hydrophobic phospholipid membranes exposing an additional section of the cell membrane to a surrounding the cells (and intracellular compartments) different transmembrane potential. In this way, the new prevent the exit/entrance of water-soluble salts and allow transmembrane potential propagates along the surface of the cells to maintain this individualized environment.1 the myocytes. Invaginations in the cell membrane, called T Units within these phospholipid membranes allow contin- tubules, penetrate into the cell into close proximity to the ued adjustment of the ion content within the cell (or intra- myocyte contractile proteins. These T tubules act as exten- cellular compartment). For example, an energy-dependent sions off of the surface membrane and allow changes in the Naϩ,Kϩ pump extrudes Naϩ ions from the cell and takes cell surface to effect changes deep within the myocyte. Kϩ ions into the cell at an exchange of three Naϩ ions extruded per two Kϩ ions taken in. This allows cells to raise intracellular potassium concentrations and lower Physiology of the conduction system intracellular sodium. Another pump extrudes calcium in Relative to the extracellular fluid, the intracellular fluid in exchange for sodium, increasing intracellular calcium the resting state has higher concentrations of sodium, concentrations in relation to the extracellular fluid, ϩ ϩ lower concentrations of K and of Ca2 , and a relatively although it allows Naϩ (extruded by the Naϩ,Kϩ pump) to negative charge. When ion channels in the cell mem- reenter the cell. This pump is driven by the Na gradient ϩ ϩ brane are opened under these conditions, Na and Ca2 created by the energy-dependent Naϩ,Kϩ pump. Similarly, tend to enter the cell rapidly.2 They are driven both by intracellular compartments called the sarcoplasmic reticu- ion concentrations and electrical potential. By contrast, lum (SR) contain energy-dependent ion pumps in their ϩ K tends to leave the cell owing to its concentration gra- surrounding membranes that allow them to collect the dient, although the electrical potential gradient reduces majority of the intracellular calcium. Other channels its speed of exit. When the cell is depolarized so that the within the membrane act as passages that intermittently transmembrane gradient is less negative intracellularly, open to allow transit of a specific ion through the cell ϩ the rate of K exit is higher. membrane. Regulation of pump activation and channel When the transmembrane electrical potential, usually opening is vital for the proper functioning of the cell. Ϫ90 mV at rest, becomes less negative, sodium channels Moving ions against their concentration gradient to on the cell membrane are triggered to open (Fig. 19-1). create a relative intracellular deficit or abundance requires Also triggered in these channels by cell membrane depo- energy. In the cell, this energy is supplied in the form of larization is the closing of the channel, although this ATP. This segregation of ions, along with the imbalance of process is (of course) delayed until after the channel has ionic charge that is associated, creates a potential (energy) been opened. Other channels, like L-type calcium chan- gradient across the membrane, which drives the rapid flux of ions that occurs if and when a transmembrane ion chan- + 30 ms nel is opened. In the cell, the trigger to opening the ion +20 K + CI− K channels is often the potential or ionic concentration gra- C dient of the surrounding milieu. Thus, transmembrane 0 B channels are frequently described as being either voltage- gated (opening probability is increased if the transmem- K+ brane potential of the surrounding membrane is within Na+ mV certain parameters) or ion-gated (opening probability is A D increased if there is a sudden change in the concentration Na:K of an ion in the surrounding fluid). pump activated −90 T Tubules and sarcoplasmic reticulum Figure 19-1 Correlation between the changes in ion The cell-surface change initiating myofibril movement is conductance and the resultant changes in transmembrane a flux of charged ions across some point of the sar- potential during the various phases of the cardiac myocyte colemma.1 This ion flux disrupts the balance of charged action potential. A. depolarization; B. rapid repolarization; particles present in the baseline (resting) state, and a new C. plateau phase; D. late repolarization. (Modified from transmembrane electrical gradient develops at that point Rubart M, Zipes DP. Mechanisms of sudden cardiac death. on the sarcolemma. Ion channels traversing the adjacent J Clin Invest 2005;115(9):2305–2315. With permission.) sarcolemma, closed to the passage of ions under resting MHBD054-CH19[335-356].qxd 09/05/2007 8:05 AM Page 339 PMAC-291 PMAC-291:Books:DAMS/ARCHIVE:MHBD054:Chapters:CH-19: TechBooks [PP Chapter 19 ● Cardiovascular Function and Physiology 339 nels, also open when the cell membrane has begun to Closed depolarize. The initiation of ion passage through calcium Resting channels is delayed until after the Naϩ channels have begun to close. The opening of these Naϩ and Ca2ϩ chan- nels results in the entrance of cations into the cell, decreas- (Recovery) (Activation) ing the magnitude of the membrane potential. As the membrane potential reaches a nadir, Kϩ channels are trig- gered to open. Their opening increases the rate of exit of Closed Open ϩ K from the intracellular space into which it had been Inactive (Inactivation) concentrated. The loss of cations from the intracellular space helps return the transmembrane potential back to Figure 19-2 The three states of a voltage-gated ion channel.
Recommended publications
  • S41467-021-21178-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-21178-4 OPEN The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction Fan Jiang1, Kunlun Yin2, Kun Wu 1,5, Mingmin Zhang1, Shiqiang Wang3, Heping Cheng 4, Zhou Zhou2 & ✉ Bailong Xiao 1 The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank–Starling law and Anrep effect have documented that 1234567890():,; stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) sig- naling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases. 1 State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/ McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
    [Show full text]
  • Mechanical Model of the Left Ventricle of the Heart Approximated by Axisymmetric Geometry
    pp. 1–14 (2017) Mechanical model of the left ventricle of the heart approximated by axisymmetric geometry F. A. Syomin∗ and A. K. Tsaturyan∗ Abstract — An axisymmetric model is suggested to simulate mechanical performance of the left vent- ricle of the heart. Cardiac muscle is treated as incompressible anisotropic material with active tension directed along muscle fibres. This tension depends on kinetic variables that characterize interaction of contractile proteins and regulation of muscle contraction by calcium ions. For numerical simulation of heartbeats the finite element method was implemented. The model reproduces well changes in vent- ricle geometry between systole and diastole, ejection fraction, pulse wave of ventricular and arterial pressure typical for normal human heart. The model also reproduces well the dependence of the stroke volume on end-diastolic and arterial pressures (the Frank–Starling law of the heart and Anrep effect). The results demonstrate that our model of cardiac muscle can be successfully applied to multiscale 3D simulation of the heart. Keywords: Heart, cardiac muscle, muscle contraction, mathematical model, finite elements. MSC 2010: 74L15, 92C10, 92C30, 74S05 Computer modelling of the heart mechanics is a fast developing field of computa- tional physiology. During the last two decades a number of electromechanical mod- els of the whole heart or its left ventricle has been developed [26]. Such multiscale models usually combine several models that describe electrical and chemical pro- cesses at the level of a single cell with mechanical properties of cardiac muscle tissue. Generally, a model of the heart consists of a model of ionic currents in the cardiomyocytes, model of myocardial mechanics, model of blood circulation (hae- modynamics model), and a geometrical approximation of the heart.
    [Show full text]
  • Heart Failure Therapy: Potential Lessons Heart: First Published As 10.1136/Heartjnl-2015-309110 on 23 December 2016
    Heart Online First, published on December 23, 2016 as 10.1136/heartjnl-2015-309110 Review ‘End-stage’ heart failure therapy: potential lessons Heart: first published as 10.1136/heartjnl-2015-309110 on 23 December 2016. Downloaded from from congenital heart disease: from pulmonary artery banding and interatrial communication to parallel circulation Dietmar Schranz, Hakan Akintuerk, Norbert F Voelkel ▸ Additional material is ABSTRACT reflected by the calculated transpulmonary gradient published online only. To view The final therapy of ‘end-stage heart failure’ is (TPG=mean PAP−LAP) and in particular the dia- please visit the journal online (http://dx.doi.org/10.1136/ orthotopic heart, lung or heart-lung transplantation. stolic PAP to LAP difference, the so-called diastolic heartjnl-2015-309110). However, these options are not available for many pressure gradient (DPG=diastolic PAP−LAP). Both patients worldwide. Therefore, novel therapeutical parameters become even more important in the Pediatric Heart Center, Justus Liebig University Giessen, strategies are needed. Based on pathophysiological setting of heart failure: pulmonary hypertension Virginia Commonwealth insights regarding (1) the long-term impact of an (PH) associated with an increased LAP, but normal University, School of Pharmacy, obstructive pulmonary outflow tract in neonates with TPG (<12 mm Hg) and in particular DPG Richmond, Virginia, USA congenitally corrected transposition of the great arteries, (<7 mm Hg)—labelled isolated postcapillary pul- — Correspondence to (2) the importance of a restrictive versus a non-restrictive monary hypertension may increase RV afterload Professor Dietmar Schranz, atrial septum in neonates born with a borderline left and negatively affect right (subpulmonary) ven- Pediatric Heart Center, Justus ventricle and (3) the significance of both, a patent tricular function.
    [Show full text]
  • Core Topics in Cardiac Anesthesia, Second Edition
    Cambridge University Press 978-0-521-19685-7 - Core Topics in Cardiac Anesthesia: Second Edition Edited by Jonathan H. Mackay and Joseph E. Arrowsmith Index More information Index abciximab 465–6 airway management, postoperative endocarditis therapy 449 abdominal arteries 79 resuscitation 416 multi-resistant bacteria 450–2 accessory conducting pathways aldosterone 31–2 surgical prophylaxis 246, 342, 362, 9–10 alfentanil 36–7 447–8 acetylcholine (ACh) 25 allograft vasculopathy 280 anticoagulation acid-base management 391, 403–4, allostasis 29 atrial fibrillation 412 441 alpha-1-microalbumin 435 CPB 64–7, 175 actin 13–15 alpha-adrenergic receptors (a-ARs) ECMO 364 action potentials (APs), cardiac 8–11 25, 41, 48 endogenous 367–8 activated clotting time (ACT) 64, 67, alpha-stat blood-gas management 391, intra-aortic balloon pump 357 175, 370 403–4, 441 monitoring 67, 175 activated partial thromboplastin time e-aminocaproic acid (EACA) 68, 69, off-pump coronary surgery (APPT) 67 175, 368 190–1 acute coronary syndromes (ACS) amiodarone 57, 60 preoperative cessation 169 257–60 amitriptyline 463 prosthetic valve recipients 127, anesthetic management 258 Amplatzer muscular VSD 129–30 pathogenesis 257 occluder 264 antidepressants 463 acute kidney injury (AKI) 431–6 Amplatzer septal occluder 262–3 antidiuretic hormone (ADH) 31–2 acute lung injury (ALI) 421 analgesia anti-dysrhythmic drugs 57–62, 256, acute normovolemic hemodilution chronic pain 463 409 (ANH) 372, 468 postoperative 182, 191, 238–9, antifibrinolytics 68–9, 368–9 acute renal failure
    [Show full text]
  • The Role of Heart Rate on Functional Capacity In
    The role of heart rate on functional capacity in chronic heart failure: association or contribution? Haqeel Ahmed Jamil Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Leeds Institute for Cardiovascular and Metabolic Medicine School of Medicine September 2015 - ii - Intellectual Property and Publication Statements: The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Haqeel Ahmed Jamil to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2015 The University of Leeds and Haqeel Ahmed Jamil - iii - Dedication This thesis is affectionately dedicated to my parents, Mohammed and Azra Jamil for their unremitting love and wisdom, and without whom none of my career would have been possible; to my brothers, Adeel and Nabeel for always providing a mixture of encouragement and welcome distractions; to my wife Sana for her selfless support and understanding throughout: and to my son Zackaria, for the joy he brings to all of our lives. - iv - Acknowledgements I would like to start by thanking my supervisors, Klaus Witte and Mark Kearney for recognising my potential, constantly inspiring me and allowing me the opportunity to undertake research at the Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM). I would also like to sincerely thank the LICAMM research team and all the staff at the Leeds Cardiac Investigations Unit, for their assistance and support.
    [Show full text]
  • Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H
    Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Oscar H. Cingolani, Jonathan A. Kirk, Kinya Seo, Norimichi Koitabashi, Dong-ik Lee, Genaro Ramirez-Correa, Djahida Bedja, Andreas S. Barth, An L. Moens and David A. Kass Circ Res. 2011;109:1410-1414; originally published online October 27, 2011; doi: 10.1161/CIRCRESAHA.111.256743 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2011 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/109/12/1410 Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2011/10/27/CIRCRESAHA.111.256743.DC1.html Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/ Downloaded from http://circres.ahajournals.org/ at SWETS SUBSCRIPTION SERVICE on November 25, 2013 Integrative Physiology Thrombospondin-4 Is Required for Stretch-Mediated Contractility Augmentation in Cardiac Muscle Short Communication Oscar H.
    [Show full text]
  • The Anrep Effect Reconsidered
    The Anrep Effect Reconsidered R. G. Monroe, … , C. Phornphutkul, M. Davis J Clin Invest. 1972;51(10):2573-2583. https://doi.org/10.1172/JCI107074. Research Article Evidence is presented supporting the hypothesis that the positive inotropic effect after an abrupt increase in systolic pressure (Anrep effect) is the recovery from subendocardial ischemia induced by the increase and subsequently corrected by vascular autoregulation of the coronary bed. Major evidence consists of data obtained from an isolated heart preparation showing that the Anrep effect can be abolished with coronary vasodilation, and that with an abrupt increase in systolic pressure there is a significant reduction in the distribution of coronary flow to subendocardial layers of the ventricle. Furthermore, the intracardiac electrocardiogram shows S-T segment and T wave changes after an abrupt increase in ventricular pressure similar to that noted after coronary constriction. Major implications are that normally there may be ischemia of the subendocardial layers tending to reduce myocardial contractility which may account, in part, for the positive inotropic effect of various coronary vasodilators; that with an abrupt increase in ventricular pressure the subendocardium is rendered temporarily ischemic, placing the heart in jeopardy from arrhythmias until this is corrected; and that end-diastolic pressure and the intracardiac electrocardiogram may provide a means of evaluating the adequacy of circulation to subendocardial layers in diseased ventricles when systolic pressure is abruptly increased. Find the latest version: https://jci.me/107074/pdf rhe Anrep Effect Reconsidered R. G. MONROE, W. J. GAMBLE, C. G. LAFARGE, A. E. KUMAR, J. STARK, G. L. SANDERS, C.
    [Show full text]
  • Cardiac Pump Function
    Left Ventricular Pump Function Michael R. Pinsky, MD, Dr hc Department of Critical Care Medicine University of Pittsburgh Left Ventricular Pump Function • Maintain a constant and high organ input pressure • Eject Stroke Volume into a low compliance high resistance arterial circuit • Transfer all blood received with a minimal back pressure • Match cardiac output to venous return on a beat-to-beat basis Bedside Assessment of Ventricular Pump Function Assessing Left Ventricular Performance Commonly Used Measures of Cardiovascular Function: Heart Rate Blood Pressure Cardiac Output Stroke Volume LV ejection fraction Frank-Starling Relationship • Frank: Force of fiber contraction proportional to length prior to excitation • Frank. Z Biol 32:370-437, 1895 • Starling: Fiber length proportional to end-diastolic volume • Patterson & Starling. J Physiol (Lon) 48:465-513,1914 • Frank-Starling: Systolic function proportional to end- diastolic volume Primacy of Preload in Determining Systolic Performance Otto Frank Isometric contractions of a frog ventricle at increasing filling pressures Frank O, Z Biol 1895; 32:370 Ernest Starling Stroke volume increases with end-diastolic volume End-diastolic Volume Increased End-diastolic Volume Patterson & Starling. J Physiol 48:357-87, 1914 Starling versus Anrep Heterometric v. Homeometric autoregulation of the heart Increased Preload Starling EDV Preload Afterload Heart Rate Anrep Contractility ESV Increased Contractility Sudden increase and decrease in venous return Rosenblueth et al. Arch Int Physiol 67: 358, 1959 Frank-Starling Relationship LV Ejection Hyper-effective Phase Indies: Ejection Fraction Stroke Volume Stroke Work Hypo-effective LV dP/dt Vcf Preload (end-diastolic volume) Sarnoff & Berglund. Circulation 9:706-18, 1954 Frank-Starling Relationship Is heart A “better” than heart B? A B Stroke Volume Stroke Preload (end-diastolic volume) Arterial pressure increases with end-diastolic volume Patterson & Starling.
    [Show full text]
  • Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes
    life Article Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes Leighton Izu 1,*, Rafael Shimkunas 1, Zhong Jian 1, Bence Hegyi 1 , Mohammad Kazemi-Lari 1 , Anthony Baker 2, John Shaw 3 , Tamas Banyasz 1,4 and Ye Chen-Izu 1,5,6 1 Department of Pharmacology, University of California, Davis, CA 95616, USA; [email protected] (R.S.); [email protected] (Z.J.); [email protected] (B.H.); [email protected] (M.K.-L.); [email protected] (T.B.); [email protected] (Y.C.-I.) 2 Department of Medicine, University of California, San Francisco, CA 94121, USA; [email protected] 3 Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary 5 Department of Biomedical Engineering, University of California, Davis, CA 95616, USA 6 Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA 95616, USA * Correspondence: [email protected] Abstract: The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility Citation: Izu, L.; Shimkunas, R.; Jian, even after the cell length has recovered its initial length? Here we propose a surface mechanosensor Z.; Hegyi, B.; Kazemi-Lari, M.; Baker, model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical A.; Shaw, J.; Banyasz, T.; Chen-Izu, Y.
    [Show full text]
  • Mechanisms of Functional Tricuspid Valve Regurgitation in Ischemic Cardiomyopathy
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy Thomas M. Joudinaud The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Joudinaud, Thomas M., "Mechanisms of functional tricuspid valve regurgitation in ischemic cardiomyopathy" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9567. https://scholarworks.umt.edu/etd/9567 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. '*Please check "Yes" or "No" and provide signature Yes, I grant permission K No, I do not grant permission _________ Author's Signature: -------- Date :_______ 03 wA oS Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner.
    [Show full text]
  • Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants
    antioxidants Review Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants Sun-Hee Woo 1,*, Joon-Chul Kim 2 , Nipa Eslenur 1, Tran Nguyet Trinh 1 and Long Nguyen Hoàng Do 1 1 College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; [email protected] (N.E.); [email protected] (T.N.T.); [email protected] (L.N.H.D.) 2 NEXEL Co., 8F 55 Magokdong-ro, Gangseo-gu, Seoul 07802, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-5924; Fax: +82-42-823-6566 Abstract: Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts.
    [Show full text]
  • The Lack of Slow Force Response in Failing Rat Myocardium: Role of Stretch‑Induced Modulation of Ca–Tnc Kinetics
    The Journal of Physiological Sciences (2019) 69:345–357 https://doi.org/10.1007/s12576-018-0651-3 ORIGINAL PAPER The lack of slow force response in failing rat myocardium: role of stretch‑induced modulation of Ca–TnC kinetics Oleg Lookin1,2 · Yuri Protsenko1 Received: 20 September 2018 / Accepted: 8 December 2018 / Published online: 18 December 2018 © The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018 Abstract The slow force response (SFR) to stretch is an important adaptive mechanism of the heart. The SFR may result in ~ 20–30% extra force but it is substantially attenuated in heart failure. We investigated the relation of SFR magnitude with Ca­ 2+ tran- sient decay in healthy (CONT) and monocrotaline-treated rats with heart failure (MCT). Right ventricular trabeculae were stretched from 85 to 95% of optimal length and held stretched for 10 min at 30 °C and 1 Hz. Isometric twitches and ­Ca2+ transients were collected on 2, 4, 6, 8, 10 min after stretch. The changes in peak tension and ­Ca2+ transient decay charac- teristics during SFR were evaluated as a percentage of the value measured immediately after stretch. The amount of Ca­ 2+ utilized by TnC was indirectly evaluated using the methods of Ca­ 2+ transient “bump” and “diference curve.” The muscles of CONT rats produced positive SFR and they showed prominent functional relation between SFR magnitude and the magni- tude (amplitude, integral intensity) of Ca­ 2+ transient “bump” and “diference curve.” The myocardium of MCT rats showed negative SFR to stretch (force decreased in time) which was not correlated well with the characteristics of ­Ca2+ transient decay, evaluated by the methods of “bump” and “diference curve.” We conclude that the intracellular mechanisms of Ca­ 2+ balancing during stretch-induced slow adaptation of myocardial contractility are disrupted in failing rat myocardium.
    [Show full text]