Action of Two Herbicides on the Microbial Activity of Soil Cultivated with Common Bean (Phaseolus Vulgaris)In Conventional-Till and No-Till Systems

Total Page:16

File Type:pdf, Size:1020Kb

Action of Two Herbicides on the Microbial Activity of Soil Cultivated with Common Bean (Phaseolus Vulgaris)In Conventional-Till and No-Till Systems Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris)in conventional-till and no-till systems J B SANTOS*, A JAKELAITIS*, A A SILVA*, M D COSTA ,AMANABE &MCS SILVA *Departamento de Fitotecnia and Departamento de Microbiologia, Universidade Federal de Vic¸ osa (UFV), Brazil Received 23 August 2005 Revised version accepted 22 February 2006 fomesafen and by the commercial mixture of the two Summary herbicides. Mycorrhizal colonisation was affected by the The effects of application of the herbicides fluazifop-p- herbicides only at 12 DAA under CTS; however, in both butyl and fomesafen and the commercial mixture of these periods, the highest value was found under NTS. All the herbicides on the microbial activity of a soil, cultivated herbicides caused a decrease in the MBC and qMIC with common bean under no-till (NTS) and conven- values at 51 DAA; the qCO2, which is related to the soil tional-till (CTS) systems, were evaluated. Microbial system stability, indicated a greater NTS balance over respiration was monitored for 63 days after application CTS. The herbicide fomesafen induced lower stability in (DAA) of the herbicides, and the following evaluated at the system. Lower grain yield was obtained without weed 12 and 51 DAA: microbial biomass carbon (MBC), control (no herbicides) and with fomesafen-only treat- microbial quotient (qMIC), metabolic quotient (qCO2), ments, which may be attributed to the high weed percentage of bean root colonisation by mycorrhizal infestation in the experimental area. fungi and grain yield at the end of the cycle. A greater Keywords: fluazifop-p-butyl, fomesafen, arbuscular microbial respiratory rate was observed under NTS, with mycorrhiza, no-till system, microbial quotient, meta- fluazifop-p-butyl providing the lowest respiration. At 12 bolic quotient. DAA, MBC and qMIC were most affected negatively by SANTOS JB, JAKELAITIS A, SILVA AA, COSTA MD, MANABE A&SILVA MCS (2006) Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till and no-till systems. Weed Research 46, 284–289. Introduction functions in the soil, such as decomposition and accumulation of organic matter or changes involving Increased soil contamination by herbicides in intensive mineral nutrients or xenobiotic compounds. Microbial agricultural areas has attracted the interest of research- quotient (qMIC), which indicates the quality of organic ers in evaluating biological indicators of soil quality and matter by reflecting additions of it to the soil, estimates has shown that soils can be affected. Understanding soil the efficiency of converting organic C into MB carbon or quality attributes allows progress towards sustainable carbon losses in soil (Sparling, 1992); also, metabolic soil management, as by monitoring the changes in soil quotient (qCO2), established through the relation quality one will be able to determine sets of sustainable- between accumulated CO2 and total MB carbon, estab- oriented practices. lishes that, as MB efficient use of the resources increases, An accurate and consistent evaluation of soil quality less C is lost as CO2 through respiration, with the may be accomplished by indicators such as microbial possibility of the latter being incorporated into the biomass (MB), responsible for the control of essential microbial tissues (Anderson & Domsch, 1985). Thus, Correspondence: Dr J Santos, Universidade Federal de Vic¸osa – Fitotecnia, Av. PH Rolfs s/n Campus – UFV Vic¸osa, Minas Gerais, 36570000 Brazil. Tel: +55 031 38992611; Fax: +55 031 38992611; E-mail: jbarbosasantos@yahoo .com.br Ó 2006 The Authors Journal compilation Ó 2006 European Weed Research Society 46, 284–289 Herbicide action on soil microbial activity 285 lower qCO2 means higher MB stability, i.e. greater Table 1 Chemical and textural composition of a layer of 0–10 cm system stability. MB, which has a comparatively rapid depth of clayey soil derived from no-till (NTS) and conventional- formation and decomposition rate of 1 or 2 years till (CTS) systems used in the experiment (Jenkinson & Ladd, 1981), may be proposed as a more CTS NTS sensitive measure of soil disturbances resulting from Mineral fraction (%) herbicide application, as its increase or decrease affects Fine sand 15 10 the total amount of organic matter in the soil. Coarse sand 29 16 Under a no-till system (NTS), a greater retention of Silt 11 19 organic compounds has been observed with the Clay 45 55 increased aggregation of particles (Beare et al., 1995); Texture Clayey Clayey Chemical analysis these protect the organic matter physically by forming pH 5.2 5.3 barriers which isolate the microorganisms in the sub- (mg dm)3) strate, also affecting MB cycling (Elliott & Coleman, P 13 14.1 1988). Thus, the use of herbicides under this system will K+ 7.1 14.2 )3 have a different impact from that observed under the (cmolc dm ) H + Al 4.62 4.29 conventional-till system (CTS). Al3+ 0.1 0.1 Fomesafen is one of the most recommended herbi- Ca2+ 1.4 2 cides for bean cultivation, controlling several dicotyle- Mg2+ 0.4 0.8 donous weeds. However, this herbicide is persistent in CEC (total) 6.6 7.45 the soil, with a half-life from 2 to 6 months (Rodrigues (%) V3042 & Almeida, 2005). Normally, fomesafen is used in a m53 mixture with fluazifop-p-butyl for the simultaneous OM (dag kg)1) 2.90 3.82 control of dicotyledonous and grass weeds (Silva et al., 2003). Studies have shown that some herbicides affect Analyses carried out at the Soil Physical and Chemical Analysis MB negatively (Edwards, 1989; Wardle, 1994; Pers- Laboratories of the Department of Soils of the UFV. CEC, cation exchange capacity; OM, organic matter; V, base saturation; m, chbacher et al., 1997; Kinney et al., 2005). However, aluminium saturation. these studies have not analysed climate conditions and tropical soils under NTS. This work evaluated the effects of the herbicides fluazifop-p-butyl and fomesafen were split into split–split plots with the evaluation applied alone or in a mixture (RobustÒ) on the timings. microbial activity of a soil in contrasted NTS and CTS Microbial respiration was estimated based on the of common bean (Phaseolus vulgaris L.) cultivation. amount of CO2 evolved from the samples of 100 g of soil, which were placed in flasks containing 100 mL of NaOH (0.25 mol L)1) under a continuous air flow Material and methods system (without CO2 and moisture), at 5, 12, 28, 51 The experiment was carried out in the field and the and 63 days after application (DAA) of the herbicides. analyses in the Laborato´rio de Herbicidas of the After the soil samples were sieved in a two-mesh sieve, Universidade Federal de Vic¸osa (UFV), using samples air-dried and their water content determined, they were of a Red-Yellow Argisol collected at the depth of weighed and incubated in Erlenmeyer flasks at a water 0–10 cm in areas cultivated with bean (cv. Ouro content of 80% of field capacity (approximately Vermelho) under NTS and CTS. In both areas, bean )0.5 bar or )50 kPa). This was followed by indirect had been intercropped with maize (Zea mays L.) over titration of sodium hydroxide with HCl (0.25 mol L)1) 6 years. The chemical and textural characterisation of so that the remaining NaOH that did not react with the the soil, in each area, is shown in Table 1. evolved CO2 was quantified (Anderson, 1982). The experiment was arranged in split–split plots in a In addition to microbial respiration, the following randomised block design, with four repetitions. The was determined at 12 and 51 DAA: (a) microbial main plots constituted the planting systems (NTS and biomass carbon (MBC) by the method described by CTS) and the split plots constituted the treatments Vance et al. (1987), replacing-chloroform (fumigation) composed of the herbicides FusiladÒ (fluazifop-p-butyl by microwave oven (irradiation) (Islam & Weil, 1998); ) – 187.5 g a.i. ha 1) and FlexÒ (fomesafen – 250 g (b) microbial quotient (qMIC), through the relation ) a.i. ha 1) and their commercial mixture, RobustÒ,at between MBC and the organic C multiplied by 100; (c) )1 the doses of 140 g a.i. ha of fluazifop-p-butyl + 175 g metabolic quotient (qCO2), through the relation between )1 )1 a.i. ha of fomesafen, applied 30 days after bean the accumulated CO2 (mg 100 g soil) and MB total C sowing, plus a control without herbicide. Sub-plots (lgg)1 soil); and (d) the percentage of bean roots Ó 2006 The Authors Journal compilation Ó 2006 European Weed Research Society 46, 284–289 286 J B Santos et al. colonised by mycorrhizal fungi was evaluated according mixture at 12 DAA. Regardless of the herbicide treat- to Giovannetti and Mosse (1980). ment, MBC was higher in the NTS soil samples at 51 At 63 DAA, the bean was harvested and grain yield DAA (Table 2). determined. The data were submitted to variance Regardless of the tillage system used, herbicide analysis by the F-test and the treatment averages for application reduced MBC in both periods evaluated. the traits evaluated were compared by the Tukey test at At 12 DAA, fomesafen and the commercial mixture 5% probability. Regression curves were also fitted for elicited the greatest reductions in MBC in CTS soil. evolution of the accumulated CO2 during the evaluation Under NTS, MB decrease was higher under application period. of the herbicide alone than with the mixture. At 51 DAA, a greater MBC reduction was provided by the et al. Results and discussion commercial herbicide mixture (Table 2). Aon (2001) verified that fungal and bacterial biomass treated Regardless of the treatment applied, the CO2 evolution with the herbicides atrazine, glyphosate, 2,4-D, 2,4-DB, response was linear (P <1%byt-test) throughout the EPTC and flumetsulan were less affected and more sampled period (Fig.
Recommended publications
  • PPO2 Mutations in Amaranthus Palmeri:Implications on Cross-Resistance
    agriculture Article PPO2 Mutations in Amaranthus palmeri: Implications on Cross-Resistance Pâmela Carvalho-Moore 1,2 , Gulab Rangani 1, James Heiser 3, Douglas Findley 4, Steven J. Bowe 4 and Nilda Roma-Burgos 1,* 1 Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] (P.C.-M.); [email protected] (G.R.) 2 Former Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72704, USA 3 Fisher Delta Research Center, College of Agriculture, University of Missouri, Portageville, MO 63873, USA; [email protected] 4 BASF Corporation, Research Triangle Park, NC 27709, USA; douglas.fi[email protected] (D.F.); [email protected] (S.J.B.) * Correspondence: [email protected] Abstract: In Arkansas, resistance to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides in Amaranthus palmeri S. Wats. is mainly due to target site mutations. Although A. palmeri PPO-mutations are well investigated, the cross-resistance that each ppo mutant endows to weed populations is not yet well understood. We aimed to evaluate the response of PPO-resistant A. palmeri accessions, harboring the ppo2 mutations DG210 and G399A, to multiple PPO-inhibiting herbicides. Six resistant and one susceptible field accessions were subjected to a dose–response assay with fomesafen, and selected survivors from different fomesafen doses were genotyped to characterize the mutation profile. The level of resistance to fomesafen was determined and a cross-resistance assay was conducted with 1 Citation: Carvalho-Moore, P.; and 2 times the labeled doses of selected PPO herbicides. The accession with higher predicted dose Rangani, G.; Heiser, J.; Findley, D.; to control 50% of the population (ED50) had a higher frequency of DG210-homozygous survivors.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • Weed Control in Direct-Seeded Field Pea Gregory J
    Weed Control in Direct-seeded Field Pea Gregory J. Endres and Blaine G. Schatz Weed control and field pea response to selected soil- and POST-applied herbicides were evaluated in a randomized complete-block design with three replicates. The experiment was conducted on a Heimdahl loam soil with 6.7 pH and 2.9% organic matter at the NDSU Carrington Research Extension Center. Herbicide treatments were applied to 5- by 25-ft plots with a pressurized hand-held plot sprayer at 17 gal/A and 30 psi through 8002 flat-fan nozzles. Fall sulfentrazone treatments were applied October 25, 2004 to a moist soil surface with 47 F, 71% RH, 15% clear sky, and 11 mph wind. On April 28, 2005, inoculated 'Integra' field pea was seeded into standing wheat stubble in 7-inch rows at a rate of 300,000 pure live seeds/A. PRE treatments were applied to a dry soil surface on April 30 with 31 F, 64% RH, 30% clear sky, and 10 mph wind. Rainfall totaled 1.22 inches 8 d following PRE application. The trial area was treated on May 6 with a PRE burn-down application of glyphosate at 0.75 lb ae/A plus ammonium sulfate at 1% v/v. The early POST (EPOST) treatment was applied on May 23 with 73 F, 35% RH, 100% cloudy sky, and 6 mph wind to 2-inch tall field pea, 1- to 2-leaf green and yellow foxtail, 0.5-inch tall common lambsquarters, 0.5-inch tall prostrate and redroot pigweed, and 0.5-inch tall wild buckwheat.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • RR Program's RCL Spreadsheet Update
    RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated.
    [Show full text]
  • US EPA, Pesticide Product Label, A335.06,09/21/2020
    [Note to reviewer: [Text] in brackets denotes optional or explanatory language [Note to reviewer: {Text} in braces denotes where in the final label text will appear {BOOKLET FRONT PANEL LANGUAGE} S-METOLACHLOR GROUP 15 HERBICIDE METRIBUZIN GROUP 5 HERBICIDE FOMESAFEN GROUP 14 HERBICIDE A335.06[™] [Alternate Brand Name: Statler] [Herbicide for preemergent control of certain grasses and broadleaf weeds in Soybeans] ACTIVE INGREDIENTS: (% by weight) S-Metolachlor*………………………………………….……………………………………………………………………………..…………………… 36.29% Metribuzin**………………………………………….……………………………………………………………………………..………………………. 8.05% Fomesafen***………………………………………….……………………………………………………………………………..……………………... 7.16% OTHER INGREDIENTS: ……………………………………………………..…………………………………………………………………………….. 48.5% TOTAL …………………………………………………………………………………………………………….……………………………………………. 100.0% *contains 3.39 Ib of S-metolachlor per gallon **contains 0.75 Ib of metribuzin per gallon ***contains 0.67 Ib of fomesafen acid per gallon KEEP OUT OF REACH OF CHILDREN CAUTION Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.) See [below] [inside label booklet] for [additional] [First Aid,] [Precautionary Statements] and [Directions for Use]. EPA Reg. No.: 91234-201 EPA Est. No.: Net Weight: Manufactured for: Atticus, LLC 5000 CentreGreen Way, Suite 100 Cary, NC 27513 1 {LANGUAGE INSIDE BOOKLET} FIRST AID If on skin or Take off contaminated clothing. clothing: Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control center or doctor for treatment advice. If swallowed: Call a poison control center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by the poison control center or doctor.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • CLARC Excerpt
    Washington State Department of Ecology - CLARC Air Table (Methods B and C) - February 2021 February 2021 S S CPFi S CPFo S Air Air RfC o RfDi o Inhalation RfDo o Oral o Air Air Method C Method C Inhalation u Inhalation IUR u Cancer Oral u Cancer u Method B Method B Noncancer Cancer Reference Reference Inhalation Potency Reference Potency Noncancer Cancer (Eq. 750-1 (Eq. 750-2 Chemical Data Links to r r r r Concentration c Dose Unit Risk c Factor Dose c Factor c (Eq. 750-1) (Eq. 750-2) adjusted) adjusted) 3 3 -1 CAS No. Group Chemical Name Important Notes (mg/m ) e (mg/kg-day) (µg/m ) e (kg-day/mg) (mg/kg-day) e (kg-day/mg) e (µg/m³) (µg/m³) (µg/m³) (µg/m³) 83-32-9 PAHs acenaphthene 6.00E-02 I 30560-19-1 Pesticides acephate 1.20E-03 O 75-07-0 VOCs acetaldehyde 9.00E-03 I 2.57E-03 2.20E-06 I 7.70E-03 4.10E+00 1.10E+00 9.00E+00 1.10E+01 34256-82-1 Pesticides acetochlor 2.00E-02 I 67-64-1 VOCs acetone 3.10E+01 A 8.86E+00 9.00E-01 I 1.40E+04 3.10E+04 75-86-5 VOCs acetone cyanohydrin 2.00E-03 X 5.71E-04 9.10E-01 2.00E+00 75-05-8 VOCs acetonitrile 6.00E-02 I 1.71E-02 2.70E+01 6.00E+01 98-86-2 SVOCs acetophenone 1.00E-01 I 62476-59-9 Herbicides acifluorfen, sodium 1.30E-02 I 107-02-8 VOCs acrolein 2.00E-05 I 5.71E-06 5.00E-04 I 9.10E-03 2.00E-02 79-06-1 VOCs acrylamide 6.00E-03 I 1.71E-03 1.00E-04 I-M 3.50E-01 2.00E-03 I 5.00E-01 I-M 2.70E+00 6.60E-03 6.00E+00 2.50E-01 79-10-7 VOCs acrylic acid 1.00E-03 I 2.86E-04 5.00E-01 I 4.60E-01 1.00E+00 107-13-1 VOCs acrylonitrile 2.00E-03 I 5.71E-04 6.80E-05 I 2.38E-01 4.00E-02 A 5.40E-01 I 9.10E-01 3.70E-02
    [Show full text]
  • Nozzle Selection and Adjuvant Impact on the Efficacy of Glyphosate And
    agronomy Article Nozzle Selection and Adjuvant Impact on the Efficacy of Glyphosate and PPO-Inhibiting Herbicide Tank-Mixtures Jesaelen G. Moraes 1,* , Thomas R. Butts 1 , Vitor M. Anunciato 2 , Joe D. Luck 3 , Wesley C. Hoffmann 4, Ulisses R. Antuniassi 5 and Greg R. Kruger 1 1 Department of Agronomy and Horticulture, University of Nebraska-Lincoln, North Platte, NE 69101, USA; [email protected] (T.R.B.); [email protected] (G.R.K.) 2 Department of Plant Protection, Sao Paulo State University, Botucatu, SP 18618687, Brazil; [email protected] 3 Department of Biological System Engineering, University of Nebraska-Lincoln, North Platte, NE 69101, USA; [email protected] 4 USDA-ARS Aerial Application Technology Research Unit, College Station, TX 77845, USA; [email protected] 5 Department of Rural Engineering, Sao Paulo State University, Botucatu, SP 18618687, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +1-402-219-1674 Abstract: PPO-inhibiting herbicides in combination with glyphosate for postemergence applications is a common approach to manage glyphosate- and ALS-inhibitor-resistant weeds. PPO-inhibitors can reduce glyphosate translocation when applied in tank-mixtures, but adjuvants may be used to overcome this effect. Additionally, optimal droplet size may be affected by tank-mixtures of different Citation: Moraes, J.G.; Butts, T.R.; herbicides and it can be crucial to herbicide efficacy. Field and greenhouse studies were conducted M. Anunciato, V.; Luck, J.D.; to investigate the impact of nozzle selection and adjuvants on weed control and interactions when Hoffmann, W.C.; Antuniassi, U.R.; applying PPO-inhibitors (fomesafen or lactofen) alone or in tank-mixture with glyphosate to five Kruger, G.R.
    [Show full text]
  • Chemical Weed Control
    2014 North Carolina Agricultural Chemicals Manual The 2014 North Carolina Agricultural Chemicals Manual is published by the North Carolina Cooperative Extension Service, College of Agriculture and Life Sciences, N.C. State University, Raleigh, N.C. These recommendations apply only to North Carolina. They may not be appropriate for conditions in other states and may not comply with laws and regulations outside North Carolina. These recommendations are current as of November 2013. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your county Cooperative Extension agent. The use of brand names and any mention or listing of commercial products or services in this document does not imply endorsement by the North Carolina Cooperative Extension Service nor discrimination against similar products or services not mentioned. VII — CHEMICAL WEED CONTROL 2014 North Carolina Agricultural Chemicals Manual VII — CHEMICAL WEED CONTROL Chemical Weed Control in Field Corn ...................................................................................................... 224 Weed Response to Preemergence Herbicides — Corn ........................................................................... 231 Weed Response to Postemergence Herbicides — Corn ........................................................................
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Interaction of 4-Hydroxyphenylpyruvate
    Weed Science Interaction of 4-hydroxyphenylpyruvate www.cambridge.org/wsc dioxygenase (HPPD) and atrazine alternative photosystem II (PS II) inhibitors for control of multiple herbicide–resistant waterhemp Research Article (Amaranthus tuberculatus) in corn Cite this article: Willemse C, Soltani N, David CH, Jhala AJ, Robinson DE, Sikkema PH 1 2 3 4 (2021) Interaction of 4-hydroxyphenylpyruvate Christian Willemse , Nader Soltani , C. Hooker David , Amit J. Jhala , dioxygenase (HPPD) and atrazine alternative 5 5 photosystem II (PS II) inhibitors for control of Darren E. Robinson and Peter H. Sikkema multiple herbicide–resistant waterhemp (Amaranthus tuberculatus) in corn. Weed Sci. 1Graduate Student, Department of Plant Agriculture, University of Guelph, Ontario, Canada; 2Adjunct Professor, 69:492–503. doi: 10.1017/wsc.2021.34 Department of Plant Agriculture, University of Guelph, Ontario, Canada; 3Associate Professor, Department of Plant Agriculture, University of Guelph, Ontario, Canada; 4Associate Professor, Department of Agronomy and Received: 15 December 2020 Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA and 5Professor, Department of Plant Agriculture, Revised: 16 March 2021 University of Guelph, Ontario, Canada Accepted: 14 April 2021 First published online: 20 April 2021 Abstract Associate Editor: Dean Riechers, University of Illinois The complementary activity of 4-hydroxphenylpyruvate dioxygenase (HPPD) inhibitors and atrazine is well documented, but the use of atrazine is restricted in some geographic areas, Keywords:
    [Show full text]