Infection Dynamics and Immune Response in a Newly Described Mbio.Asm.Org Drosophila-Trypanosomatid Association on September 15, 2015 - Published by Phineas T
Downloaded from RESEARCH ARTICLE crossmark Infection Dynamics and Immune Response in a Newly Described mbio.asm.org Drosophila-Trypanosomatid Association on September 15, 2015 - Published by Phineas T. Hamilton,a Jan Votýpka,b,c Anna Dostálová,d Vyacheslav Yurchenko,c,e Nathan H. Bird,a Julius Lukeš,c,f,g Bruno Lemaitre,d Steve J. Perlmana,g Department of Biology, University of Victoria, Victoria, British Columbia, Canadaa; Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republicb; Biology Center, Institute of Parasitology, Czech Academy of Sciences, Budweis, Czech Republicc; Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerlandd; Life Science Research Center, Faculty of Science, University of Ostrava, Ostrava, Czech Republice; Faculty of Science, University of South Bohemia, Budweis, Czech Republicf; Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canadag ABSTRACT Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the impor- tance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila—Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. droso- mbio.asm.org philae has a broad host range, readily infecting a number of Drosophila species, including D.
[Show full text]