SATELLITE NO 名称 近地点km 遠地点km 差km 種別 種別 111
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey and Assessment of the Capabilities of Cubesats for Earth Observation
Acta Astronautica 74 (2012) 50–68 Contents lists available at SciVerse ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Review A survey and assessment of the capabilities of Cubesats for Earth observation Daniel Selva a,n, David Krejci b a Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Vienna University of Technology, Vienna 1040, Austria article info abstract Article history: In less than a decade, Cubesats have evolved from purely educational tools to a standard Received 2 December 2011 platform for technology demonstration and scientific instrumentation. The use of COTS Accepted 9 December 2011 (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising Keywords: scientific value. Furthermore, advantages in terms of development cost and develop- Cubesats ment time with respect to larger satellites, as well as the possibility of launching several Earth observation satellites dozens of Cubesats with a single rocket launch, have brought forth the potential for University satellites radically new mission architectures consisting of very large constellations or clusters of Systems engineering Cubesats. These architectures promise to combine the temporal resolution of GEO Remote sensing missions with the spatial resolution of LEO missions, thus breaking a traditional trade- Nanosatellites Picosatellites off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific require- ments in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. -
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly. -
→ Space for Europe European Space Agency
number 149 | February 2012 bulletin → space for europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the ESTEC, Noordwijk, Netherlands. Netherlands, Norway, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Canada is a Cooperating State. ESOC, Darmstadt, Germany. In the words of its Convention: the purpose of the Agency shall be to provide for ESRIN, Frascati, Italy. and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view ESAC, Madrid, Spain. to their being used for scientific purposes and for operational space applications systems: Chairman of the Council: D. Williams → by elaborating and implementing a long-term European space policy, by Director General: J.-J. Dordain recommending space objectives to the Member States, and by concerting the policies of the Member States with respect to other national and international organisations and institutions; → by elaborating and implementing activities and programmes in the space field; → by coordinating the European space programme and national programmes, and by integrating the latter progressively and as completely as possible into the European space programme, in particular as regards the development of applications satellites; → by elaborating and implementing the industrial policy appropriate to its programme and by recommending a coherent industrial policy to the Member States. -
Cubesat Communication Systems 2003-2013: a Historical Look
CubeSat Communication Systems 2003-2013: A Historical Look Bryan Klofas SRI International [email protected] Nanosatellite Ground Station Workshop San Luis Obispo, California 23 April 2013 Two Survey Papers • “A Survey of CubeSat Communication Systems” – Paper presented at the CubeSat Developers’ Workshop 2008 – By Bryan Klofas, Jason Anderson, and Kyle Leveque – Covers the CubeSats from start of program to 2008 • “A Survey of CubeSat Communication Systems: 2009-2012” – Paper presented at the CubeSat Developers’ Workshop 2013 – By Bryan Klofas and Kyle Leveque – Covers the CubeSats from 2009 to ELaNa-6/NROL-36 launch in 2012 Slide 2 Summary of CubeSat Launches 2003 to 2013 • Eurockot (30 June 2003) • Dnepr Launch 2 (17 Apr 2007) – AAU1 CubeSat – CSTB1 – DTUsat-1 – AeroCube-2 – CanX-1 – CP4 – Cute-1 – Libertad-1 – QuakeSat-1 – CAPE1 – XI-IV – CP3 • SSETI Express (27 Oct 2005) – MAST – XI-V • NLS-4/PSLV-C9 (28 Apr 2008) – NCube-2 – Delfi-C3 – UWE-1 – SEEDS-2 • M-V-8 (22 Feb 2006) – CanX-2 – Cute-1.7+APD – AAUSAT-II • Minotaur 1 (11 Dec 2006) – Compass-1 – GeneSat-1 Slide 3 Summary of CubeSat Launches 2003 to 2013 • Minotaur-1 (19 May 2009) • NLS-6/PSLV-C15 (12 July 2010) – AeroCube-3 – Tisat-1 – CP6 – StudSat – HawkSat-1 • STP-S26 (19 Nov 2010) – PharmaSat – RAX-1 • ISILaunch 01 (23 Sep 2009) – O/OREOS – BEESAT-1 – NanoSail-D2 – UWE-2 • Falcon 9-002 (8 Dec 2010) – ITUpSAT-1 – Perseus (4) – SwissCube – QbX (2) • H-IIA F17 (20 May 2010) – SMDC-ONE – Hayato – Mayflower – Waseda-SAT2 – PSLV-C18 (12 Oct 2011) – Negai-Star – Jugnu Slide 4 Summary -
Development of Magnetometer-Based Orbit And
DEVELOPMENT OF MAGNETOMETER-BASED ORBIT AND ATTITUDE DETERMINATION FOR NANOSATELLITES THOMAS WRIGHT A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE YORK UNIVERSITY, TORONTO, ONTARIO AUGUST, 2014 © THOMAS WRIGHT, 2014 Abstract Attitude and orbit determination are critical parts of nanosatellite mission operations. The ability to perform attitude and orbit determination autonomously could lead to a wider array of mission possibilities for nanosatellites. This research examines the feasibility of using low-cost magnetometer measurements as a method of autonomous, simultaneous orbit and attitude determination for the novel application of redundancy on nanosatellites. Individual Extended Kalman Filters (EKFs) are developed for both attitude determination and orbit determination. Simulations are run to compare the developed systems with previous work on attitude and orbit determination. The EKFs are combined to provide both attitude and orbit determination simultaneously. Simulations are run and show that this approach for autonomous attitude and orbit determination on nanosatellites provides 8.5 and 12.5 km of attitude and orbit knowledge, respectively. The results of the simulations are then validated using Hardware-In-The-Loop (HITL) testing. Additionally, a Helmholtz cage is evaluated for future use in the HITL test setup. ii Acknowledgements I would like to acknowledge my supervisors Professor Sunil Bisnath and Professor Regina Lee for their guidance and support. I will carry the skills they helped me to develop through the rest of my career. I would also like to thank the grad students in both the GNSS and YuSEND Labs for their assistance and encouragement throughout my studies. -
Future Technologies
MANEKSHAW PAPER No. 47, 2014 Future Technologies Puneet Bhalla D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Maj Gen Dhruv C Katoch SM, VSM (Retd) Managing Editor : Ms Avantika Lal D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2014, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of MoD (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents 1. -
Space Security Index 2013
SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space. -
Nanosatelliitide Tehnoloogia Arengutrendid
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Tartu University Library TARTU ÜLIKOOL Loodus- ja tehnoloogiateaduskond Füüsika Instituut Erik Kulu Nanosatelliitide tehnoloogia arengutrendid Magistritöö (30 EAP) Juhendaja: Mart Noorma Tartu 2014 SISUKORD 1 Sissejuhatus ........................................................................................................................ 4 2 Metoodika ........................................................................................................................... 6 3 Nanosatelliidid ja nende areng ........................................................................................... 8 3.1 Nanosatelliitide arendamise hetkeseis ....................................................................... 13 3.2 Nanosatelliitide projektide omadused ....................................................................... 16 4 Nanosatelliitide projektide seos haridusega, innovatsiooniga ja teaduse populariseerimisega ................................................................................................................. 18 4.1 Nanosatelliitide hariduslikud aspektid ...................................................................... 18 4.1.1 Hariduslikud projektid ülikoolides .................................................................... 20 4.1.2 Hariduslikud projektid ettevõtetes ..................................................................... 20 4.1.3 Hariduslikud programmid kosmoseagentuurides ............................................. -
Istnanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning
ISTNanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning Pedro Filipe Rodrigues Coelho Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Examination Committee Chairperson: Prof. João Miranda Lemos Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Members of the Committee: Prof. Agostinho A. da Fonseca May 2016 ii Acknowledgments To Professor Rui Rocha and Professor Moisés Piedade, I have to thank the opportunity to work in the ISTNanoSat-1 Project, the guidance throughout the project and the most required pushes for this project conclusion. I would like to thank Laurent Marchand and Nicolas Saillen for the support, drive and belief. It would never have been possible to complete this work without their support and flexibility as well as their drive in my professional endeavors. To all the friendships university brought and endured in my life, that shared the worst and best of university, the late nights of work and study, the challenging exchange of ideas and ideals and all the growing into adulthood. To all my friends in ESA/ESTEC, for filling the best possible work experience with the best personnel environment. Their joy and enthusiasm in work and life were and will always be an inspiration in my life. A lei, bella Annalisa coppia di ballo, per essere la musica e la giola in tutti i76955+ momenti… À minha família, Mãe, Pai e Irmã, pelo amor incondicional, paciência e crença sem limites. Não tenho como retribuir o esforço incansável, todo o carinho e a educação modelar, senão agarrar o futuro pelo qual tanto lutaram comigo. -
A Sample AMS Latex File
PLEASE SEE CORRECTED APPENDIX A IN CORRIGENDUM, JOSS VOL. 6, NO. 3, DECEMBER 2017 Zea, L. et al. (2016): JoSS, Vol. 5, No. 3, pp. 483–511 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com A Methodology for CubeSat Mission Selection Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad del Valle de Guatemala, Guatemala City, Guatemala Abstract Over 400 CubeSats have been launched during the first 13 years of existence of this 10 cm cube-per unit standard. The CubeSat’s flexibility to use commercial-off-the-shelf (COTS) parts and its standardization of in- terfaces have reduced the cost of developing and operating space systems. This is evident by satellite design projects where at least 95 universities and 18 developing countries have been involved. Although most of these initial projects had the sole mission of demonstrating that a space system could be developed and operated in- house, several others had scientific missions on their own. The selection of said mission is not a trivial process, however, as the cost and benefits of different options need to be carefully assessed. To conduct this analysis in a systematic and scholarly fashion, a methodology based on maximizing the benefits while considering program- matic risk and technical feasibility was developed for the current study. Several potential mission categories, which include remote sensing and space-based research, were analyzed for their technical requirements and fea- sibility to be implemented on CubeSats. The methodology helps compare potential missions based on their rele- vance, risk, required resources, and benefits. -
Small Spacecraft Technology State of the Art
NASA/TP–2015–216648/REV1 Small Spacecraft Technology State of the Art Mission Design Division Ames Research Center, Moffett Field, California December 2015 NASA STI Program . in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part or other meetings sponsored or in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the technical, or historical information from auspices of the Agency Chief Information NASA programs, projects, and missions, Officer. It collects, organizes, provides for often concerned with subjects having archiving, and disseminates NASA’s STI. substantial public interest. The NASA STI Program provides access to the NASA Aeronautics and Space Database • TECHNICAL TRANSLATION. English- and its public interface, the NASA Technical language translations of foreign scientific Report Server, thus providing one of the and technical material pertinent to largest collection of aeronautical and space NASA’s mission. science STI in the world. Results are Specialized services also include creating published in both non-NASA channels and custom thesauri, building customized by NASA in the NASA STI Report Series, databases, and organizing and publishing which includes the following report types: research results. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major significant Program, see the following: phase of research that present the results of NASA programs and include extensive • Access the NASA STI program home page data or theoretical analysis.