Development of Magnetometer-Based Orbit And

Total Page:16

File Type:pdf, Size:1020Kb

Development of Magnetometer-Based Orbit And DEVELOPMENT OF MAGNETOMETER-BASED ORBIT AND ATTITUDE DETERMINATION FOR NANOSATELLITES THOMAS WRIGHT A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE YORK UNIVERSITY, TORONTO, ONTARIO AUGUST, 2014 © THOMAS WRIGHT, 2014 Abstract Attitude and orbit determination are critical parts of nanosatellite mission operations. The ability to perform attitude and orbit determination autonomously could lead to a wider array of mission possibilities for nanosatellites. This research examines the feasibility of using low-cost magnetometer measurements as a method of autonomous, simultaneous orbit and attitude determination for the novel application of redundancy on nanosatellites. Individual Extended Kalman Filters (EKFs) are developed for both attitude determination and orbit determination. Simulations are run to compare the developed systems with previous work on attitude and orbit determination. The EKFs are combined to provide both attitude and orbit determination simultaneously. Simulations are run and show that this approach for autonomous attitude and orbit determination on nanosatellites provides 8.5 and 12.5 km of attitude and orbit knowledge, respectively. The results of the simulations are then validated using Hardware-In-The-Loop (HITL) testing. Additionally, a Helmholtz cage is evaluated for future use in the HITL test setup. ii Acknowledgements I would like to acknowledge my supervisors Professor Sunil Bisnath and Professor Regina Lee for their guidance and support. I will carry the skills they helped me to develop through the rest of my career. I would also like to thank the grad students in both the GNSS and YuSEND Labs for their assistance and encouragement throughout my studies. And thank you to my wife, Janet, the myriad things she has done to help me through my Master’s education have been invaluable. iii Table of Contents Abstract ........................................................................................................................................... ii Acknowledgements ........................................................................................................................ iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii List of Symbols ............................................................................................................................... x List of Acronyms .......................................................................................................................... xii 1 Introduction ............................................................................................................................. 1 1.1 Overview of Nanosatellites .............................................................................................. 3 1.2 Overview of Attitude Determination on Nanosatellites ................................................... 3 1.3 Overview of Orbit Determination .................................................................................... 8 1.4 Overview of the Extended Kalman Filter ...................................................................... 12 1.5 Recent Related Research ................................................................................................ 15 1.6 Research Contributions .................................................................................................. 17 2 Earth’s Magnetic Field .......................................................................................................... 19 2.1 Previous Missions Interacting with the Earth’s Magnetic Field .................................... 20 2.1.1 Missions to Measure the Earth’s Magnetic Field ..................................................... 20 2.1.2 Missions that Utilize the Earth’s Magnetic Field ..................................................... 21 2.1.3 Magnetometers Utilized on Satellites ....................................................................... 23 2.1.4 Effects of Magnetorquers on Satellites ..................................................................... 29 2.2 Models of the Earth’s Magnetic Field ............................................................................ 30 2.2.1 International Geomagnetic Reference Field (IGRF) ................................................. 32 3 Attitude Determination ......................................................................................................... 37 3.1 Attitude Representation using Quaternions and Angular Rates ..................................... 37 3.2 Disturbance Torques Included in the Simulations ......................................................... 39 3.2.1 Gravity Gradient Disturbance Torques ..................................................................... 40 3.3 Implemented Extended Kalman Filter for Attitude Determination ............................... 40 3.3.1 Dynamic Update of the Attitude State Vector .......................................................... 41 3.3.2 Measurement Update of the Attitude State Vector ................................................... 42 3.4 Simulation Studies Used in Evaluating the Attitude Determination EKF ..................... 43 3.4.1 Initialization of the State Vector for the Attitude Determination Simulations ......... 44 iv 3.4.2 Simulation Results for the Attitude Determination EKF .......................................... 45 3.5 Summary of the Attitude Determination Extended Kalman Filter ................................ 48 4 Orbit Determination .............................................................................................................. 49 4.1 Representations of Orbits Used in the Orbit Determination EKF .................................. 49 4.1.1 Position and Velocity Representation of Orbits........................................................ 49 4.1.2 Orbital Element Representation of Orbits – SGP4 Representation .......................... 52 4.2 Implemented Orbit Determination EKF ......................................................................... 54 4.2.1 Measurement Update of the Orbit Determination State Vector ................................ 55 4.3 Simulation Studies Used in Evaluating the Orbit Determination EKF .......................... 57 4.3.1 Initialization of the State Vector for Orbit Determination Simulations .................... 57 4.3.2 Simulation Results for the Orbit Determination EKF............................................... 58 4.4 Summary of the Orbit Determination Extended Kalman Filter ..................................... 61 5 Combined Attitude and Orbit Determination ....................................................................... 63 5.1 Interface Between the Attitude and Orbit Determination EKFs .................................... 63 5.2 Simulation Test Cases Used in Evaluating the Combined EKF .................................... 65 5.3 Results of Combining Attitude and Orbit EKFs ............................................................ 67 5.4 Evaluation of Simultaneous Orbit and Attitude Estimation ........................................... 73 5.5 Summary of the Combined Attitude and Orbit Determination EKF ............................. 74 6 Hardware-In-The-Loop Simulation ...................................................................................... 77 6.1 HITL Test Procedure ...................................................................................................... 77 6.2 HITL Test Apparatus ..................................................................................................... 78 6.2.1 Air Bearing Table Used in HITL Tests..................................................................... 79 6.2.2 Satellite Analog Used in HITL Tests ........................................................................ 79 6.3 Helmholtz Cage Testing ................................................................................................. 85 6.3.1 Calibration of the Helmholtz Cage ........................................................................... 86 6.4 HITL Test Results .......................................................................................................... 89 6.5 Summary of the HITL Simulations ................................................................................ 94 7 Conclusions and Future Work .............................................................................................. 97 7.1 Conclusions .................................................................................................................... 97 7.2 Future Considerations .................................................................................................. 100 References ................................................................................................................................... 103 Appendix A CubeSat™ Orbit Survey .................................................................................... 109 Appendix B Partial Derivatives of the Magnetic field .........................................................
Recommended publications
  • A Survey and Assessment of the Capabilities of Cubesats for Earth Observation
    Acta Astronautica 74 (2012) 50–68 Contents lists available at SciVerse ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Review A survey and assessment of the capabilities of Cubesats for Earth observation Daniel Selva a,n, David Krejci b a Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Vienna University of Technology, Vienna 1040, Austria article info abstract Article history: In less than a decade, Cubesats have evolved from purely educational tools to a standard Received 2 December 2011 platform for technology demonstration and scientific instrumentation. The use of COTS Accepted 9 December 2011 (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising Keywords: scientific value. Furthermore, advantages in terms of development cost and develop- Cubesats ment time with respect to larger satellites, as well as the possibility of launching several Earth observation satellites dozens of Cubesats with a single rocket launch, have brought forth the potential for University satellites radically new mission architectures consisting of very large constellations or clusters of Systems engineering Cubesats. These architectures promise to combine the temporal resolution of GEO Remote sensing missions with the spatial resolution of LEO missions, thus breaking a traditional trade- Nanosatellites Picosatellites off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific require- ments in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories.
    [Show full text]
  • Key and Driving Requirements for the Juno Payload Suite of Instruments
    Key and Driving Requirements for the Juno Payload Suite of Instruments Randy Dodge1 and Mark A. Boyles2 Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, 91109-8099 Chuck E. Rasbach3 Lockheed Martin-Space System Company, Denver, CO, 80201 [Abstract] The Juno Mission was selected in the summer of 2005 via NASA’s New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. The payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-Investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center [GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab [APL]--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (Waves) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).
    [Show full text]
  • Book of Abstracts Ii Contents
    2014 CAP Congress / Congrès de l’ACP 2014 Sunday, 15 June 2014 - Friday, 20 June 2014 Laurentian University / Université Laurentienne Book of Abstracts ii Contents An Analytic Mathematical Model to Explain the Spiral Structure and Rotation Curve of NGC 3198. .......................................... 1 Belle-II: searching for new physics in the heavy flavor sector ................ 1 The high cost of science disengagement of Canadian Youth: Reimagining Physics Teacher Education for 21st Century ................................. 1 What your advisor never told you: Education for the ’Real World’ ............. 2 Back to the Ionosphere 50 Years Later: the CASSIOPE Enhanced Polar Outflow Probe (e- POP) ............................................. 2 Changing students’ approach to learning physics in undergraduate gateway courses . 3 Possible Astrophysical Observables of Quantum Gravity Effects near Black Holes . 3 Supersymmetry after the LHC data .............................. 4 The unintentional irradiation of a live human fetus: assessing the likelihood of a radiation- induced abortion ...................................... 4 Using Conceptual Multiple Choice Questions ........................ 5 Search for Supersymmetry at ATLAS ............................. 5 **WITHDRAWN** Monte Carlo Field-Theoretic Simulations for Melts of Diblock Copoly- mer .............................................. 6 Surface tension effects in soft composites ........................... 6 Correlated electron physics in quantum materials ...................... 6 The
    [Show full text]
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • Chapter 2 Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data*
    Chapter 2 Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data* 2.1 Introduction Orbit determination is an old topic in celestial mechanics and is an essential part of satellite navigation. Traditional ground-based tracking methods that use range and range-rate measurements can provide an orbit accuracy as good as a few centimeters1. Autonomous orbit determination using only onboard measurements can be a requirement of military satellites in order to guarantee independence from ground facilities2. The rapid increase in the number of satellites also increases the need for autonomous navigation because of bottlenecks in ground tracking facilities3. A filter that uses magnetometer measurements provides one possible means of doing autonomous orbit determination. This idea was first introduced by Psiaki and Martel4 and has been tested by a number of researchers since then3,5-9. Magnetometers fly on most spacecraft (S/C) for attitude determination and control purposes. Therefore, successful autonomous orbit determination using magnetometer measurements can make the integration of attitude and orbit determination possible and lead to reduced mission costs. Although magnetometer-based autonomous orbit determination is unlikely to have better accuracy than ground-based tracking, a magnetometer-based system could be applied to a mission that does not need the accuracy of ground-station tracking. The Tropical Rainfall Measurement Mission * This chapter is from the published paper: Hee Jung and Mark L. Psiaki, “Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data,” Journal of Guidance, Control, and Dynamics, Volume 25, Number 3, pp. 582-590. [© 2002. The American Institute of Aeronautics and Astronautics, Inc]. 8 9 (TRMM), for example, requires 40 km position accuracy.
    [Show full text]
  • Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification
    Juno Magnetometer Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Prepared by: Jack Connerney and Patricia Lawton Juno Magnetometer MAG Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Approved: John E. P. Connerney Date MAG Principal Investigator Raymond J. Walker Date PDS PPI Node Manager Concurrence: Patricia J. Lawton Date MAG Ground Data System Staff 2 Table of Contents 1 Introduction ............................................................................................................................. 1 1.1 Distribution list ................................................................................................................... 1 1.2 Document change log ......................................................................................................... 2 1.3 TBD items ........................................................................................................................... 3 1.4 Abbreviations ...................................................................................................................... 4 1.5 Glossary .............................................................................................................................. 6 1.6 Juno Mission Overview ...................................................................................................... 7 1.7 Software Interface Specification Content Overview .........................................................
    [Show full text]
  • Artificial Intelligence for Small Satellites Mission Autonomy.Pdf
    POLITECNICO DI TORINO Repository ISTITUZIONALE Artificial Intelligence for Small Satellites Mission Autonomy Original Artificial Intelligence for Small Satellites Mission Autonomy / Feruglio, Lorenzo. - (2017 Dec 11). Availability: This version is available at: 11583/2694565 since: 2017-12-12T12:02:11Z Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2694565 Terms of use: Altro tipo di accesso This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 11 October 2021 Doctoral Dissertation Doctoral Program in Aerospace Engineering (29 th Cycle) Artificial Intelligence for Small Satellites Mission Autonomy By Lorenzo Feruglio ****** Supervisor: Prof. S. Corpino Doctoral Examination Committee: Prof. Franco Bernelli Zazzera, Referee, Politecnico di Milano Prof. Michèle Roberta Jans Lavagna, Referee, Politecnico di Milano Prof. Giancarmine Fasano, Referee, Università di Napoli Federico II Prof. Paolo Maggiore, Referee, Politecnico di Torino Prof. Nicole Viola, Referee, Politecnico di Torino Politecnico di Torino 2017 Declaration I hereby declare that, the contents and organization of this dissertation constitute my own original work and does not compromise in any way the rights of third parties, including those relating to the security of personal data. Lorenzo Feruglio 2017 * This dissertation is presented in partial fulfilment of the requirements for Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo). A mia mamma, mio papà, mio fratello. Grazie per esserci sempre stati, per essere stati delle guide incredibili. Grazie Acknowledgment I would like to acknowledge and thank a great number of people: not everyone can be included here, but I’m sure the people I would like to thank already know I’m grateful to them.
    [Show full text]
  • In-Orbit Aerodynamic Coefficient Measurements Using SOAR
    In-Orbit Aerodynamic Coefficient Measurements using SOAR (Satellite for Orbital Aerodynamics Research) N.H. Crispa,, P.C.E. Robertsa, S. Livadiottia, A. Macario Rojasa, V.T.A. Oikoa, S. Edmondsona, S.J. Haigha, B.E.A. Holmesa, L.A. Sinpetrua, K.L. Smitha, J. Becedasb, R.M. Dom´ınguezb, V. Sulliotti-Linnerb, S. Christensenc, J. Nielsenc, M. Bisgaardc, Y-A. Chand, S. Fasoulasd, G.H. Herdrichd, F. Romanod, C. Traubd, D. Garc´ıa-Almi~nanae, S. Rodr´ıguez-Donairee, M. Suredae, D. Katariaf, B. Belkouchig, A. Conteg, S. Seminarig, R. Villaing aThe University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom bElecnor Deimos Satellite Systems, Calle Francia 9, 13500 Puertollano, Spain cGomSpace A/S, Langagervej 6, 9220 Aalborg East, Denmark dInstitute of Space Systems (IRS), University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany eUPC-BarcelonaTECH, Carrer de Colom 11, 08222 Terrassa, Barcelona, Spain fMullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT, United Kingdom gEuroconsult, 86 Boulevard de S´ebastopol, 75003 Paris, France Abstract The Satellite for Orbital Aerodynamics Research (SOAR) is a CubeSat mission, due to be launched in 2021, to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas-surface interactions at these altitudes and identification of novel materials that can minimise drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits. Such satellites may be smaller and cheaper to develop or can provide improved Earth observation data or communications link-budgets and latency.
    [Show full text]
  • Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
    Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter.
    [Show full text]
  • The Magsat Scalar Magnetometer
    WINFIELD H. FARTHING THE MAGSAT SCALAR MAGNETOMETER The Magsat scalar magnetometer is derived from optical pumping magnetometers flown on the Orbiting Geophysical Observatories. The basic sensor, a cross-coupled arrangement of absorption cells, photodiodes, and amplifiers, oscillates at the Larmor frequency of atomic moments pre­ cessing about the ambient field direction. The Larmor frequency output is accumulated digitally and stored for transfer to the spacecraft telemetry stream. In orbit the instrument has met its principal objective of calibrating the vector magnetometer and providing scalar field data. INTRODUCTION (nT), was therefore used even though, from the The cesium vapor optical pumping magnetometer standpoint of resonance line width, it is the poorest used on Magsat is derived from the rubidium mag­ of the three. In the interim between OGO and netometers flown on the Orbiting Geophysical Ob­ Magsat, cesium-I33 came to be the most commonly servatories (OGO) between 1964 and 1971. The used isotope in alkali vapor magnetometry and was Polar Orbiting Geophysical Observatories (Pogo) thus the natural selection for Magsat. used rubidium-85 optical pumping magnetometers, ) while those on the Eccentric Orbiting Geophysical PRINCIPLE OF SENSOR OPERATION Observatories (Eogo) used the slightly higher gyro­ The alkali vapor magnetometer is based on the magnetic ratio of rubidium-87. phenomenon of optical pumping reported by Data generated by the Pogo instruments pro­ Dehmelt4 in 1957. The development of practical vided the principal data base for the U.S. input to magnetometers followed rapidly, evolving in one the World Magnetic Survey, 2 an international co­ form finally to the dual-cell, self-oscillating magne­ operative effort to survey and model the geomag­ tometerS shown in Fig.
    [Show full text]
  • Cubesat Communication Systems 2003-2013: a Historical Look
    CubeSat Communication Systems 2003-2013: A Historical Look Bryan Klofas SRI International [email protected] Nanosatellite Ground Station Workshop San Luis Obispo, California 23 April 2013 Two Survey Papers • “A Survey of CubeSat Communication Systems” – Paper presented at the CubeSat Developers’ Workshop 2008 – By Bryan Klofas, Jason Anderson, and Kyle Leveque – Covers the CubeSats from start of program to 2008 • “A Survey of CubeSat Communication Systems: 2009-2012” – Paper presented at the CubeSat Developers’ Workshop 2013 – By Bryan Klofas and Kyle Leveque – Covers the CubeSats from 2009 to ELaNa-6/NROL-36 launch in 2012 Slide 2 Summary of CubeSat Launches 2003 to 2013 • Eurockot (30 June 2003) • Dnepr Launch 2 (17 Apr 2007) – AAU1 CubeSat – CSTB1 – DTUsat-1 – AeroCube-2 – CanX-1 – CP4 – Cute-1 – Libertad-1 – QuakeSat-1 – CAPE1 – XI-IV – CP3 • SSETI Express (27 Oct 2005) – MAST – XI-V • NLS-4/PSLV-C9 (28 Apr 2008) – NCube-2 – Delfi-C3 – UWE-1 – SEEDS-2 • M-V-8 (22 Feb 2006) – CanX-2 – Cute-1.7+APD – AAUSAT-II • Minotaur 1 (11 Dec 2006) – Compass-1 – GeneSat-1 Slide 3 Summary of CubeSat Launches 2003 to 2013 • Minotaur-1 (19 May 2009) • NLS-6/PSLV-C15 (12 July 2010) – AeroCube-3 – Tisat-1 – CP6 – StudSat – HawkSat-1 • STP-S26 (19 Nov 2010) – PharmaSat – RAX-1 • ISILaunch 01 (23 Sep 2009) – O/OREOS – BEESAT-1 – NanoSail-D2 – UWE-2 • Falcon 9-002 (8 Dec 2010) – ITUpSAT-1 – Perseus (4) – SwissCube – QbX (2) • H-IIA F17 (20 May 2010) – SMDC-ONE – Hayato – Mayflower – Waseda-SAT2 – PSLV-C18 (12 Oct 2011) – Negai-Star – Jugnu Slide 4 Summary
    [Show full text]
  • Future Technologies
    MANEKSHAW PAPER No. 47, 2014 Future Technologies Puneet Bhalla D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Maj Gen Dhruv C Katoch SM, VSM (Retd) Managing Editor : Ms Avantika Lal D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2014, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of MoD (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents 1.
    [Show full text]