Book of Abstracts Ii Contents

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Ii Contents 2014 CAP Congress / Congrès de l’ACP 2014 Sunday, 15 June 2014 - Friday, 20 June 2014 Laurentian University / Université Laurentienne Book of Abstracts ii Contents An Analytic Mathematical Model to Explain the Spiral Structure and Rotation Curve of NGC 3198. .......................................... 1 Belle-II: searching for new physics in the heavy flavor sector ................ 1 The high cost of science disengagement of Canadian Youth: Reimagining Physics Teacher Education for 21st Century ................................. 1 What your advisor never told you: Education for the ’Real World’ ............. 2 Back to the Ionosphere 50 Years Later: the CASSIOPE Enhanced Polar Outflow Probe (e- POP) ............................................. 2 Changing students’ approach to learning physics in undergraduate gateway courses . 3 Possible Astrophysical Observables of Quantum Gravity Effects near Black Holes . 3 Supersymmetry after the LHC data .............................. 4 The unintentional irradiation of a live human fetus: assessing the likelihood of a radiation- induced abortion ...................................... 4 Using Conceptual Multiple Choice Questions ........................ 5 Search for Supersymmetry at ATLAS ............................. 5 **WITHDRAWN** Monte Carlo Field-Theoretic Simulations for Melts of Diblock Copoly- mer .............................................. 6 Surface tension effects in soft composites ........................... 6 Correlated electron physics in quantum materials ...................... 6 The Future of the Cosmic Frontier: Dark Matter ....................... 7 Quantum Resource Theories .................................. 7 Science Objectives and Results from the ePOP Suprathermal Electron Imager . 8 Recent developments in astroparticle physics ........................ 8 The Advanced Rare IsotopE Laboratory (ARIEL) at TRIUMF ................ 8 e-POP Magnetic Field Instrument (MGF) - Instrumentation and Early Results . 9 iii Squeezed coherent states and a measure of entanglement .................. 9 A long distance for the smallest particle: recent results from long baseline neutrino exper- iments ............................................ 9 Neutrino Theory Impacts .................................... 10 Latest results from the B factories ............................... 10 Early Universe Cosmology ................................... 11 Mechanisms Affecting Glassy Dynamics in Thin Polymer Films . 11 The evolution of APEs and the Hawking-Page transition . 12 Clusters for Cosmology ..................................... 12 Shear-induced enhancement of solute mass transport in flows of concentrated suspensions through microchannels ................................... 12 Numerical simulations and analytical modeling of precessing binary black holes . 13 Modelling Van Allen Probes Observations of ULF waves and Outer Radiation Belt Electron Dynamics .......................................... 13 Dark Matter: What Do We Know From Cosmology? .................... 14 Higgs: theory review ...................................... 14 Easing the Transition of Physicists into Industry ....................... 15 The little we know about quantum nonlocality ........................ 15 Confinement effects on movement and predator-prey dynamics: where does the foxstay? 15 Phonon-induced topological insulation ............................ 16 Probing the Ionosphere with the Radioscience Instruments on CASSIOPE/e-POP . 17 No Stone Left Unturned? Searches for New Physics with ATLAS . 17 Tailoring the magnetic properties of paramagnetic molecules on metal substrates by adlay- ers and ligands ....................................... 18 Standard Model Measurements with the ATLAS Detector . 19 Topological insulators: interaction effects and new states of matter . 19 Superallowed Fermi Beta Decay Studies at TRIUMF-ISAC . 19 Modeling the structure, optoelectronic properties and charge transport of organic semicon- ducting conjugated polymers with DFT .......................... 20 A fresh look at fundamental properties of quantum information . 20 Tracking the growth of cells using microfluidic sensors ................... 21 Microscopic simulations with modern nuclear forces .................... 21 iv The long arm of the lattice ................................... 21 The Exploding Sky: Prospects for Transient Gravitational-Wave Astronomy . 22 An overview of Loop Quantum Gravity ............................ 22 Spin-orbit coupling + Interaction = ? ............................. 23 Some experimental aspects in support of gravitational wave detection . 23 Multiple-Reflection Time-of-Flight Mass Spectrometry: from nuclear physics experiments to clinical applications ................................... 23 Nuclear astrophysics with DRAGON ............................. 24 **WITHDRAWN** Defence in Depth and the Source Terms in Nuclear Reactor Safety . 24 Andreev quantum dots in graphene/superconductor hybrid devices . 25 Heavy-light diquark masses from QCD sum rules and constituent diquark models of charmonium- like tetraquark states .................................... 25 State of the Art of Searches for Dark Matter ......................... 26 Studying the Proton Spin at RHIC ............................... 26 The Canadian contribution to the upgrades to the ATLAS experiment . 27 Recent Developments in Physics Education in Canada. ................... 27 Quantum computing ...................................... 28 First Determination of the Proton’s Weak Charge ...................... 28 How hard is it to get a de Sitter solution in String Theory? . 28 Experimental Update of the TIGRESS HPGe Clover Array . 29 Non-linear Cosmological Structure Formation: Outstanding Questions and Future Prospects ................................................ 29 Black Holes in the Extreme ................................... 30 Testiing Black Hole Physics with the Event Horizon Telescope . 30 Review of the current status of Higgs Properties ....................... 30 Future Directions in Cosmology ................................ 31 Higgs Particle Searches with ATLAS ............................. 31 Local moments in iron-based superconductors ........................ 31 The Universe as a Physics Lab: Recent results in Cosmology and Survey of Near-term Cana- dian Projects ......................................... 32 High-Flux Table-Top Ultrafast Water Window X-Ray Source Driven By Mid-IR Laser Pulses ................................................ 32 v Testing Fundamental Symmetries with Precision Parity-Violating Experiments: Past, Present and Future .......................................... 33 Data Acquisition for SuperCDMS-SNOLAB .......................... 33 High energy OPA and few-cycle IR pulses .......................... 34 Electrical Detection of Dynamically Generated DC and AC Spin Currents . 34 Pressure-induced interdigitation in bicellar mixtures containing anionic lipid . 35 FIR Spectroscopy at the Canadian Light Source: High Torsional Levels of CD3OH and their Coupling to the Methyl Rocking Modes .......................... 36 On a Heuristic Point of View Concerning the Mass of the Higgs Boson. 36 The Mysterious Role of Alkaloids in Plants Revealed by a Multidisciplinary Approach . 37 The Key Contribution of Joseph-Louis Lagrange (1736-1813) to the Theory of Partial Differ- ential Equations ....................................... 38 Competition Between Phase Separation and Crystallization in Attractive Colloids . 38 Hierarchical, Self-Similar Structure in Native Squid Pen ................... 39 Search for the rare B− ! Λ¯pνν¯ decay at the BaBar experiment . 39 Quantum gravity on a quantum computer? .......................... 39 Why I am not a QBist ...................................... 40 Weak measurements with an ensemble quantum processor. 40 Medical radioisotopes made at TRIUMF: Accelerating medicine for Canada . 41 The GlueX Experiment: Commissioning is underway .................... 41 Implementing Tracking with the ATLAS Diamond Beam Monitor . 42 The International Linear Collider - a precision probe for physics at the TeVscale . 42 XPS measurements of sodium in Bridgman-grown CuInSe2+x ingots . 43 Transition Metal Oxides based Chromogenic Thin Films and Interactive Devices . 43 Phase Behaviour of Polyelectrolyte/Homopolymer Blends . 44 Mass and Thermodynamic Relations for Lifshitz Symmetric Black Holes . 44 Coupled-channel vibrational-model studies of nucleon scattering from oxygen isotopes and the corresponding mirror systems. ............................ 45 The Continuum Limit of the Unruh Effect in aCavity .................... 45 DETERMINING 210Pb BY ACCELERATOR MASS SPECTROMETERY . 46 Preliminary results of a Beam Expander for Biomedical Imaging . 46 vi **WITHDRAWN**Spin-orbit coupled double perovskite bilayers: Magnetism, Chern bands, and quantum anomalous Hall insulators on the honeycomb lattice . 47 Spin transport in a unitary Fermi gas ............................. 47 Diode Pumped Yb:YAG Ceramic Laser Amplifier Modules for a TW Laser System . 48 Search for the rare B meson decays at the BaBar experiment . 48 The Everyday Phenomena of Black Hole Chemistry ..................... 49 Variational Calculation of Hydrogen Molecular Ion ..................... 49 EFFECT OF HOME GRINDING ON BREWED COFFEE PROPERTIES . 49 Inferring sub-micron sizes using oscillating gradient diffusion weighted magnetic reso- nance imaging ........................................ 50 Ionospheric electron number density volumetric reconstruction
Recommended publications
  • Key and Driving Requirements for the Juno Payload Suite of Instruments
    Key and Driving Requirements for the Juno Payload Suite of Instruments Randy Dodge1 and Mark A. Boyles2 Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, 91109-8099 Chuck E. Rasbach3 Lockheed Martin-Space System Company, Denver, CO, 80201 [Abstract] The Juno Mission was selected in the summer of 2005 via NASA’s New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. The payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-Investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center [GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab [APL]--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (Waves) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).
    [Show full text]
  • Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
    cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; d.cucchi@amsterdamumc.nl (D.G.J.C.); c.bachas@amsterdamumc.nl (C.B.); zj.kwidama@amsterdamumc.nl (Z.J.K.); gerritjanschuurhuis@gmail.com (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; m.m.vandenheuvel-eibrink@prinsesmaximacentrum.nl 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; T.C.J.Peters-3@prinsesmaximacentrum.nl (S.T.C.J.M.A.-P.); vdehaas@skion.nl (V.d.H.); GJL.Kaspers@amsterdamumc.nl (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; assaraf@technion.ac.il 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: j.cloos@amsterdamumc.nl Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization.
    [Show full text]
  • Chapter 2 Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data*
    Chapter 2 Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data* 2.1 Introduction Orbit determination is an old topic in celestial mechanics and is an essential part of satellite navigation. Traditional ground-based tracking methods that use range and range-rate measurements can provide an orbit accuracy as good as a few centimeters1. Autonomous orbit determination using only onboard measurements can be a requirement of military satellites in order to guarantee independence from ground facilities2. The rapid increase in the number of satellites also increases the need for autonomous navigation because of bottlenecks in ground tracking facilities3. A filter that uses magnetometer measurements provides one possible means of doing autonomous orbit determination. This idea was first introduced by Psiaki and Martel4 and has been tested by a number of researchers since then3,5-9. Magnetometers fly on most spacecraft (S/C) for attitude determination and control purposes. Therefore, successful autonomous orbit determination using magnetometer measurements can make the integration of attitude and orbit determination possible and lead to reduced mission costs. Although magnetometer-based autonomous orbit determination is unlikely to have better accuracy than ground-based tracking, a magnetometer-based system could be applied to a mission that does not need the accuracy of ground-station tracking. The Tropical Rainfall Measurement Mission * This chapter is from the published paper: Hee Jung and Mark L. Psiaki, “Tests of Magnetometer/Sun-Sensor Orbit Determination Using Flight Data,” Journal of Guidance, Control, and Dynamics, Volume 25, Number 3, pp. 582-590. [© 2002. The American Institute of Aeronautics and Astronautics, Inc]. 8 9 (TRMM), for example, requires 40 km position accuracy.
    [Show full text]
  • Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification
    Juno Magnetometer Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Prepared by: Jack Connerney and Patricia Lawton Juno Magnetometer MAG Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Approved: John E. P. Connerney Date MAG Principal Investigator Raymond J. Walker Date PDS PPI Node Manager Concurrence: Patricia J. Lawton Date MAG Ground Data System Staff 2 Table of Contents 1 Introduction ............................................................................................................................. 1 1.1 Distribution list ................................................................................................................... 1 1.2 Document change log ......................................................................................................... 2 1.3 TBD items ........................................................................................................................... 3 1.4 Abbreviations ...................................................................................................................... 4 1.5 Glossary .............................................................................................................................. 6 1.6 Juno Mission Overview ...................................................................................................... 7 1.7 Software Interface Specification Content Overview .........................................................
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Strange Story of the Quantum
    THE STRANGE STORY OF QUANTUM An account for the GENERAL READER of the growth of the IDEAS underlying our present ATOMIC KNOWLEDGE B A N E S H HOFFMANN DEPARTMENT OF MATHEMATICS, QUEENS COLLEGE, NEW YORK Second Edition DOVER PUBLICATIONS, INC. NEW YORK Copyright 1947, by Banesh Hoffmann. Copyright 1959, by Banesh Hoffmann. All rights reserved under Pan American and International Copyright Conventions. Published simultaneously in Canada by McClelland & Stewart, Ltd. This new Dover edition first published in 1959 is an unabridged and corrected republication of the First Edition to which the author has added a 1959 Postscript. Manufactured in the United States of America. Dover Publications, Inc. 180 Varick Street New York 14, N. Y. My grateful thanks are due to my friends Carl G. Hempel, Melber Phillips, and Mark W. Zemansky, f r many valuable sug- gestions, and to the Institute for Advanced Study where this booJc was begun. B. HOFFMCANIST The Institute for Advanced Study Princeton, N, J v February, 1947 ' / fit, (,. ,,,.| CONTENTS Preface ix I PROLOGUE i ACT I II The Quantum is Conceived 16 III It Comes to Light 24 IV Tweedledum and Tweedledee 34 V The Atom of Niels Bohr 43 VI The Atom of Bohr Kneels 60 INTERMEZZO VII Author's Warning to the Reader 70 ACT II VIII The Exploits of the Revolutionary Prince 72 IX Laundry Lists Are Discarded 84 X The Asceticism of Paul 105 XI Electrons Arc Smeared 109 XII Unification 124 XIII The Strange Denouement 140 XIV The New Landscape of Science 174 XV EPILOGUE 200 Postscript: 1999 235 PREFACE THIS book is designed to serve as a guide to those who would explore the theories by which the scientist seeks to comprehend the mysterious world of the atom.
    [Show full text]
  • In-Orbit Aerodynamic Coefficient Measurements Using SOAR
    In-Orbit Aerodynamic Coefficient Measurements using SOAR (Satellite for Orbital Aerodynamics Research) N.H. Crispa,, P.C.E. Robertsa, S. Livadiottia, A. Macario Rojasa, V.T.A. Oikoa, S. Edmondsona, S.J. Haigha, B.E.A. Holmesa, L.A. Sinpetrua, K.L. Smitha, J. Becedasb, R.M. Dom´ınguezb, V. Sulliotti-Linnerb, S. Christensenc, J. Nielsenc, M. Bisgaardc, Y-A. Chand, S. Fasoulasd, G.H. Herdrichd, F. Romanod, C. Traubd, D. Garc´ıa-Almi~nanae, S. Rodr´ıguez-Donairee, M. Suredae, D. Katariaf, B. Belkouchig, A. Conteg, S. Seminarig, R. Villaing aThe University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom bElecnor Deimos Satellite Systems, Calle Francia 9, 13500 Puertollano, Spain cGomSpace A/S, Langagervej 6, 9220 Aalborg East, Denmark dInstitute of Space Systems (IRS), University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany eUPC-BarcelonaTECH, Carrer de Colom 11, 08222 Terrassa, Barcelona, Spain fMullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT, United Kingdom gEuroconsult, 86 Boulevard de S´ebastopol, 75003 Paris, France Abstract The Satellite for Orbital Aerodynamics Research (SOAR) is a CubeSat mission, due to be launched in 2021, to investigate the interaction between different materials and the atmospheric flow regime in very low Earth orbits (VLEO). Improving knowledge of the gas-surface interactions at these altitudes and identification of novel materials that can minimise drag or improve aerodynamic control are important for the design of future spacecraft that can operate in lower altitude orbits. Such satellites may be smaller and cheaper to develop or can provide improved Earth observation data or communications link-budgets and latency.
    [Show full text]
  • Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
    Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter.
    [Show full text]
  • The Magsat Scalar Magnetometer
    WINFIELD H. FARTHING THE MAGSAT SCALAR MAGNETOMETER The Magsat scalar magnetometer is derived from optical pumping magnetometers flown on the Orbiting Geophysical Observatories. The basic sensor, a cross-coupled arrangement of absorption cells, photodiodes, and amplifiers, oscillates at the Larmor frequency of atomic moments pre­ cessing about the ambient field direction. The Larmor frequency output is accumulated digitally and stored for transfer to the spacecraft telemetry stream. In orbit the instrument has met its principal objective of calibrating the vector magnetometer and providing scalar field data. INTRODUCTION (nT), was therefore used even though, from the The cesium vapor optical pumping magnetometer standpoint of resonance line width, it is the poorest used on Magsat is derived from the rubidium mag­ of the three. In the interim between OGO and netometers flown on the Orbiting Geophysical Ob­ Magsat, cesium-I33 came to be the most commonly servatories (OGO) between 1964 and 1971. The used isotope in alkali vapor magnetometry and was Polar Orbiting Geophysical Observatories (Pogo) thus the natural selection for Magsat. used rubidium-85 optical pumping magnetometers, ) while those on the Eccentric Orbiting Geophysical PRINCIPLE OF SENSOR OPERATION Observatories (Eogo) used the slightly higher gyro­ The alkali vapor magnetometer is based on the magnetic ratio of rubidium-87. phenomenon of optical pumping reported by Data generated by the Pogo instruments pro­ Dehmelt4 in 1957. The development of practical vided the principal data base for the U.S. input to magnetometers followed rapidly, evolving in one the World Magnetic Survey, 2 an international co­ form finally to the dual-cell, self-oscillating magne­ operative effort to survey and model the geomag­ tometerS shown in Fig.
    [Show full text]
  • The Magsat Precision Vector Magnetometer
    MARIO H. ACUNA THE MAGSAT PRECISION VECTOR MAGNETOMETER The Magsat preCISIon vector magnetometer was a state-of-the-art instrument that covered the range of ±64,OOO nanoteslas (nT) using a ±2000 nT basic magnetometer and digitally controlled current sources to increase its dynamic range. Ultraprecision components and extremely efficient designs minimized power consumption. INTRODUCTION stable and linear triaxial fluxgate magnetometer with a dynamic range of ±2000 nT (1 nT = 10-9 The instrumentation aboard the Magsat space­ weber per square meter). The principles of opera­ craft consisted of an alkali-vapor scalar magnetom­ tion of fluxgate magnetometers are well known and eter and a precision vector magnetometer. In addi­ will not be repeated here. The reader is directed to tion, information concerning the absolute orienta­ Refs. 1, 2, and 3 for further information concern­ tion of the spacecraft in inertial space was provided ing the detailed design of these instruments. by two star cameras, a precision sun sensor, and a To extend the range of the basic magnetometer system to determine the orientation of the sensor to the 64,000 nT required for Magsat, three digi­ platform, located at the tip of a 6 m boom, with tally controlled current sources with 7 bit resolution respect to a reference coordinate system on the and 17 bit accuracy were used to add or subtract spacecraft. automatically up to 128 bias steps of 1000 nT each. The two types of instruments flown aboard the The X, Y, and Z outputs of the magnetometer spacecraft provided complementary information were digitized by a 12 bit analog-to-digital con­ about the measured field.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Effective Field Theories of Heavy-Quark Mesons
    Effective Field Theories of Heavy-Quark Mesons A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy (PhD) in the faculty of Engineering and Physical Sciences Mohammad Hasan M Alhakami School of Physics and Astronomy 2014 Contents Abstract 10 Declaration 12 Copyright 13 Acknowledgements 14 1 Introduction 16 1.1 Ordinary Mesons......................... 21 1.1.1 Light Mesons....................... 22 1.1.2 Heavy-light Mesons.................... 24 1.1.3 Heavy-Quark Mesons................... 28 1.2 Exotic cc¯ Mesons......................... 31 1.2.1 Experimental and theoretical studies of the X(3872). 34 2 From QCD to Effective Theories 41 2.1 Chiral Symmetry......................... 43 2.1.1 Chiral Symmetry Breaking................ 46 2.1.2 Effective Field Theory.................. 57 2.2 Heavy Quark Spin Symmetry.................. 65 2.2.1 Motivation......................... 65 2.2.2 Heavy Quark Effective Theory.............. 69 3 Heavy Hadron Chiral Perturbation Theory 72 3.1 Self-Energies of Charm Mesons................. 78 3.2 Mass formula for non-strange charm mesons.......... 89 3.2.1 Extracting the coupling constant of even and odd charm meson transitions..................... 92 2 4 HHChPT for Charm and Bottom Mesons 98 4.1 LECs from Charm Meson Spectrum............... 99 4.2 Masses of the charm mesons within HHChPT......... 101 4.3 Linear combinations of the low energy constants........ 106 4.4 Results and Discussion...................... 108 4.5 Prediction for the Spectrum of Odd- and Even-Parity Bottom Mesons............................... 115 5 Short-range interactions between heavy mesons in frame- work of EFT 126 5.1 Uncoupled Channel........................ 127 5.2 Two-body scattering with a narrow resonance........
    [Show full text]