Dysmorphology and Genetic Syndromes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pierre Robin and the Syndrome That Bears His Name PETER RANDALL
Pierre Robin and the Syndrome That Bears His Name PETER RANDALL, M.D. WILTON M. KROGMAN, Ph.D. SOONA JAHINA, B.D.S., M.Sc. Philadelphia, Pennsylvania The Pierre Robin Syndrome refers to a combination of micrognathia (a small jaw) and glossoptosis (literally, a falling downward or back- ward of the tongue) in the newborn infant (Figure 1). These conditions are likely to cause obstruction of the upper airway, and they are fre- quently associated with an incomplete cleft of the palate. Patients with the Pierre Robin Syndrome may present a real emer- gency in the delivery room because of the obstructed upper airway, or the airway problem may not become manifest for several days or weeks (10, 11, 38). There is frequently a feeding problem, as well as problems associated with the cleft of the palate (if one is present) and also an unusual malocclusion (2, 5, 12, 16). In addition, it presents a fascinating anthropological puzzle (22, 23). This paper will review the work of Dr. Robin, consider some possible etiologies of this syndrome, and report on some work on mandibular bone growth in a group of such patients. History Pierre Robin was far from the first person to recognize this syndrome. One account is recorded in 1822 by St. Hilaire. In 1891 Taruffi men- tioned two subclassifications-hypomicrognatus (small jaw) and hypo- agnathus (absent jaw). In 1891, four cases, two of them having cleft palates, were reported by Lanneloague and Monard (12, 14). Shukow- sky in 1902 described a tongue to lip surgical adhesion to overcome the respiratory obstruction (34). -
Podo Pediatrics Podo Pediatrics
Podo Pediatrics Identifying Biomechanical Pathologies David Lee, D.P.M., D. A.B.P.S. Purpose • Identification of mechanical foot and ankle conditions • Base treatments • Knowing when to refer to a podiatrist Topics • Flatfoot (Pes Plano Valgus) • Equinus • Intoed feet (Cavo-adductor Varus) • Heel pain (Calcaneodynia) • Shin Splints • Various Pedal deformities 1 WHAT IS NORMAL? At birth to ~9 months • Ankle flexible to over 20 deg DF • No “C” shaped foot • No clicking or popping sounds • Babinski sign • Pull up 7-8mo. 9-16 months… • Begin walking • Feet are fat, flat and floppy • Knees are always center or externally rotated, never internal. • Stance is wide and less stable • Stomping gait pattern 2 16-18 months • Able to walk upstairs • Knee never internal • Still wide base and flat and floppy feet • Stomping still 3-7 years • Able toe walk downstairs • Heel-to-toe walk • Watch for – Intoeing – Tripping – Tight ankle joint (equinus) 7 years and up • Arch should be developed • Heel-to-toe walk • Heel is perpendicular to ground • Knees straight ahead 3 Neutral Internal Rotation Early detection is important • Prevent long term adaptation • Joint damage • Adult pathology – Heel pain, bunions, hammertoes, ankle instability, knee pain, shin splints, etc. • Ability to thrive physically and socially 4 THE FLAT FOOT Visual Complaints by the Parent • Tripping or falling • Poor balance- Clumsy • Feet look funny, walks funny • Shoes wearing out quickly Social Complaints by the Parent • Lazy, inactive, “doesn’t like going outside to play or play sports -
The Microvasculature of Human Infant Oral Mucosa Using Vascular Corrosion Casts and India Ink Injection II
Scanning Microscopy Volume 8 Number 1 Article 13 3-31-1994 The Microvasculature of Human Infant Oral Mucosa Using Vascular Corrosion Casts and India Ink Injection II. Palate and Lip Q. X. Yu Sun Yat-Sen University of Medical Sciences K. M. Pang University of Hong Kong W. Ran Sun Yat-Sen University of Medical Sciences H. P. Philipsen University of Hong Kong X. H. Chen Sun Yat-Sen University of Medical Sciences Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Yu, Q. X.; Pang, K. M.; Ran, W.; Philipsen, H. P.; and Chen, X. H. (1994) "The Microvasculature of Human Infant Oral Mucosa Using Vascular Corrosion Casts and India Ink Injection II. Palate and Lip," Scanning Microscopy: Vol. 8 : No. 1 , Article 13. Available at: https://digitalcommons.usu.edu/microscopy/vol8/iss1/13 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 8, No. l, 1994 (Pages 133-139) 0891-7035/94$5.00+ .25 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA THE MICROVASCULATURE OF HUMAN INFANT ORAL MUCOSA USING VASCULAR CORROSION CASTS AND INDIA INK INJECTION II. PALATE AND LIP Q.X. Yu 1,'", K.M. Pang2, W. Ran 1, H.P. Philipsen 2 and X.H. Chen 1 1Faculty of Stomatology, Sun Yat-Sen University of Medical Sciences, Guangzhou, China. -
Head and Neck
DEFINITION OF ANATOMIC SITES WITHIN THE HEAD AND NECK adapted from the Summary Staging Guide 1977 published by the SEER Program, and the AJCC Cancer Staging Manual Fifth Edition published by the American Joint Committee on Cancer Staging. Note: Not all sites in the lip, oral cavity, pharynx and salivary glands are listed below. All sites to which a Summary Stage scheme applies are listed at the begining of the scheme. ORAL CAVITY AND ORAL PHARYNX (in ICD-O-3 sequence) The oral cavity extends from the skin-vermilion junction of the lips to the junction of the hard and soft palate above and to the line of circumvallate papillae below. The oral pharynx (oropharynx) is that portion of the continuity of the pharynx extending from the plane of the inferior surface of the soft palate to the plane of the superior surface of the hyoid bone (or floor of the vallecula) and includes the base of tongue, inferior surface of the soft palate and the uvula, the anterior and posterior tonsillar pillars, the glossotonsillar sulci, the pharyngeal tonsils, and the lateral and posterior walls. The oral cavity and oral pharynx are divided into the following specific areas: LIPS (C00._; vermilion surface, mucosal lip, labial mucosa) upper and lower, form the upper and lower anterior wall of the oral cavity. They consist of an exposed surface of modified epider- mis beginning at the junction of the vermilion border with the skin and including only the vermilion surface or that portion of the lip that comes into contact with the opposing lip. -
Human Anatomy As Related to Tumor Formation Book Four
SEER Program Self Instructional Manual for Cancer Registrars Human Anatomy as Related to Tumor Formation Book Four Second Edition U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutesof Health SEER PROGRAM SELF-INSTRUCTIONAL MANUAL FOR CANCER REGISTRARS Book 4 - Human Anatomy as Related to Tumor Formation Second Edition Prepared by: SEER Program Cancer Statistics Branch National Cancer Institute Editor in Chief: Evelyn M. Shambaugh, M.A., CTR Cancer Statistics Branch National Cancer Institute Assisted by Self-Instructional Manual Committee: Dr. Robert F. Ryan, Emeritus Professor of Surgery Tulane University School of Medicine New Orleans, Louisiana Mildred A. Weiss Los Angeles, California Mary A. Kruse Bethesda, Maryland Jean Cicero, ART, CTR Health Data Systems Professional Services Riverdale, Maryland Pat Kenny Medical Illustrator for Division of Research Services National Institutes of Health CONTENTS BOOK 4: HUMAN ANATOMY AS RELATED TO TUMOR FORMATION Page Section A--Objectives and Content of Book 4 ............................... 1 Section B--Terms Used to Indicate Body Location and Position .................. 5 Section C--The Integumentary System ..................................... 19 Section D--The Lymphatic System ....................................... 51 Section E--The Cardiovascular System ..................................... 97 Section F--The Respiratory System ....................................... 129 Section G--The Digestive System ......................................... 163 Section -
Digestive Tract
Digestive Tract Introduction The digestive system consists of the -oral cavity( lips and tongue) - digestive tract : (esophagus, stomach, small intestine, large intestine, rectum, appendex and anus) -accessory glands of digestive system: (salivary glands, pancreas, and liver). Its function is to obtain from ingested food the molecules necessary for the maintenance, growth, and energy needs of the body. Macromolecules such as proteins, fats, complex carbohydrates, and nucleic acids are broken down into small molecules that are more easily absorbed through the lining of the digestive tract, mostly in the small intestine. Water, vitamins, and minerals from ingested food are also absorbed. In addition, the inner layer of the digestive tract is a protective barrier between the content of the tract's lumen and the internal milieu of the body. The gastrointestinal tract has a form of general histology with some differences that reflect the specialization in functional anatomy. It is a hollow tube with a lumen of variable diameter and a wall made up of four main layers: 1- Mucosa 2- Submucosa 3- Muscularis externa (the external muscular layer) 4- Adventitia or serosa 1 Mucosa The mucosa is the innermost layer of the gastrointestinal tract that is surrounding the lumen, or open space within the tube. This layer comes in direct contact with digested food . The mucosa is made up of three layers: A- Epithelium - innermost layer. Responsible for most digestive, absorptive and secretory processes. B- Lamina propria - a thin layer of connective tissue . C- Muscularis mucosae - is a thin layer of smooth muscle that supports the mucosa and provides it with the ability to move and fold. -
The Impact of Reporting Practices on State and Local Lip Cancer Rates, Or: How Many Per Million Depends on the Vermilion
The impact of reporting practices on state and local lip cancer rates, or: How many per million depends on the vermilion Francis P. Boscoe, Ph.D. Christopher J. Johnson, MPH New York State Cancer Registry Cancer Data Registry of Idaho July 7, 2015 July 7, 2015 Lipupper parts 2 Skin of upper lip, upper lip Upper lip vermillion, upper lip, upper lipstick area Philtrum Upper lip NOS Oral commissure Lower lip NOS Lower lip vermillion, lower lip, lower lipstick area Mentolabial sulcus Skin of lower lip, lower lip Vermillion border July 7, 2015 3 In the U.S., oral cancer and pharynx incidence ranges from 7.8 per 100,000 (Utah) to 13.5 (Kentucky) – less than a two- fold difference Lip cancer incidence ranges from 0.3 (Ohio) to 2.7 (Idaho) – a nine-fold difference Source: CINA+ 2007-2011 July 7, 2015 4 In Canada, oral cancer and pharynx incidence ranges from 8.9 per 100,000 (Saskatchewan) to 15.9 (Northwest Territories) – less than a two-fold difference Lip cancer incidence ranges from 0.25 (New Brunswick) to 3.0 (Manitoba) – a 12-fold difference Source: CINA+ 2007-2011 July 7, 2015 5 July 7, 2015 6 Utah Idaho Iowa Oral Cavity 7.9 (1) 12.6 (40) 11.7 (26) and Pharynx Oral Cavity 6.0 (1) 9.6 (50) 8.0 (29) Oral Cavity 5.3 (1) 7.1 (26) 6.7 (11) excluding lip Lip 0.7 (25) 2.5 (50) 1.3 (45) Rates (age-adjusted per 100,000) and state ranks (1=lowest rate), 2007-2011, white non-Hispanics July 7, 2015 7 There could actually be two problems: • True skin cancers reported as lip cancers (which inflates lip cancer rates) • True lip cancers being counted as skin cancers and not being reported at all (which deflates lip cancer rates) July 7, 2015 8 True skin cancers reported as lip cancers: NYSCR reviewed all lip cancers in NYS from 1995 to present containing the word “skin”, “basal”, or “BCC” anywhere in the text fields. -
Flexible Flatfoot
REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot. -
Cheilitis Glandularis Apostematosa in a Female Patient – a Case Report
CASE REPORTS Serbian Journal of Dermatology and Venereology 2013; 5 (4): 177-182 DOI: 10.2478/sjdv-2013-0015 Cheilitis Glandularis Apostematosa in a Female Patient – a Case Report Mirjana PARAVINA* Faculty of Medicine, University of Niš, Serbia *Correspondence: Mirjana Paravina, E-mail: [email protected] OPEN UDC 616.317-002-092-08 Abstract Cheilitis is an infl ammatory condition of the vermilion border of the lips, which is the junction between the skin and the mucosa. Cheilitis may arise as a primary disorder of the vermilion zone; the infl ammation may extend from the nearby skin, or less often from the oral mucosa. Primary cheilitis lesions are either superfi cial or deep. Deep types include cheilitis glandularis (infl ammatory changes and lip gland swelling), and granulomatous cheilitis (chronic swelling of the lip due to granulomatous infl ammation mostly of unknown origin). Cheilitis glandularis is a rare condition that mostly affects the lower lip and it is characterized by nodular enlargement, reduced mobility and lip erosion. Based on clinical presentation, cheilitis glandularis may be classifi ed into three subtypes: simplex (described as Puente and Acevedo), superfi cial suppurative (described by Baelz-Unna), and the most severe type – deep suppurative, also known as cheilitis glandularis apostematosa (Volkmann’s cheilitis) characterized by deep-seated infl ammation forming abscesses and fi stulous tracts. This is a case report of a female patient with a deep suppurative type of cheilitis affecting both lips. Treatment with systemic antibiotics (using antibiogram tests), corticosteroids and topical therapy resulted in signifi cant improvement. Key words Cheilitis + diagnosis + etiology + classifi cation + therapy; Disease Progression; Prognosis; Treatment Outcome heilitis is an infl ammatory condition of the the lower lip with clinical manifestations of nodular Cvermilion border of the lips, which is the enlargement, reduced mobility and lip inversion (5). -
LAS COMISURAS LABIALES COMO ASIENTO DE PROCESOS PATOLÓGICOS/ Medicina Oral 2000: 5: 165-8 the CORNEES of the MOUTH AS a SITE for PATHOLOGY Ciente, Etc
mOlCINA Y PATOLOGÍA / MEDICINE AND Pfi El tejido conectivo contiene glándulas sudoríparas, glán• Las comisuras labiales dulas sebáceas y las bases de los folículos pilosos, que atra• viesan el epitelio. Este es continuo alrededor de las bases de los folículos, y el responsable de la producción de la querati- como asiento na de que está formado el pelo. Las glándulas sebáceas drenan en los folículos pilosos o, en ocasiones, directamente en la su• de procesos patológicos perficie de la piel. La zona bermellón carece de anejos de la piel. Sin embargo, pueden encontrarse a veces glándulas se• báceas, especialmente en las comisuras. Puesto que la zona MJTORESIAVTHORS bermellón también carece de glándulas mucosas, requiere un Eduardo Chímenos Küstner (J), José López López (2), frecuente humedecimiento con saliva por parte de la lengua Rafael Caballero Herrera (3). para prevenir su desecación. El epitelio de la zona bermellón (1) Profesor titular. Unidad de Medicina Bucal. Facultad de es queratinizado, fino y transparente. Las papilas de tejido co• Odontología, Universidad de Barcelona. España. nectivo son relativamente largas y delgadas, y contienen ovi• (2) Profesor asociado. Unidad de Medicina Bucal. Facultad de llos vasculares. La proximidad de estos vasos a la superficie, Odontología, Universidad de Barcelona. combinada con la transparencia del epitelio, da a la misma su (3) Catedrático. Unidad de Medicina Bucal. Facultad de Odontología, Universidad de Barcelona. coloración roja y, con ella, su nombre. Este color rojo es una característica humana. Chímenos E, López J, Caballero R. Las comisuras labiales como asiento de La zona de unión entre la zona bermellón y la mucosa bu• procesos patológicos. -
Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E
СLINICAL STUDIES УДК 617.586-053.2:616.721.7-001.7 DOI: 10.21823/2311-2905-2019-25-2-71-80 Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E. Nikityuk, S.V. Vissarionov Turner Scientific Research Institute for Children’s Orthopedics, St. Petersburg, Russian Federation Abstract Background. In children with spondylolisthesis, there are still unexplained aspects in the relationship of the degree of L5 displacement with the severity of the clinical picture and neurological disorders. At the same time, aspects of the mutual aggravating influence of the indicated spinal disorder on the condition of the feet have not been studied. Therefore, the problem of identifying disorder of foot function in children with spinal L5 spondylolisthesis is relevant. Aim of the study — to evaluate the deviations in parameters of the transverse and longitudinal arches of feet in children with severe L5 spondylolisthesis. Materials and Methods. In the period from 2016 to 2018, 12 children aged 14.1 y.o. [12,7; 15,5] were examined with L5 spondylolisthesis body of grade III–IV, accompanied by stenosis of the spinal canal at the same level and by compression of the roots of the spinal cord. Imaging diagnostics included multispiral computed tomography (MSCT) and magnetic resonance imaging (MRI). To estimate the function of the feet, double-bearing and single-bearing plantography was used. The data for the control group included only plantographic examinations of 12 healthy children of the same age. Results. In patients with spondylolisthesis, the mean value of the anterior t and intermediate s plantographic bearing indices were significantly lower than those of healthy children. -
Unilateral Upper and Lower Subtotal Maxillectomy Approaches to The
NEUROSURGERY 46:6 | JUNE 2000 | 1416-1453 DOI: 10.1097/00006123-200006000-00025 Anatomic Report Unilateral Upper and Lower Subtotal Maxillectomy Approaches to the Cranial Base: Downloaded from https://academic.oup.com/neurosurgery/article-abstract/46/6/1416/2925972 by Universidad de Zaragoza user on 02 January 2020 Microsurgical Anatomy Tsutomu Hitotsumatsu, M.D., Ph.D.1, Albert L. Rhoton, Jr., M.D.1 1Department of Neurological Surgery, University of Florida, Gainesville, Florida ABSTRACT OBJECTIVE The relationship of the maxilla, with its thin walls, to the nasal and oral cavities, the orbit, and the infratemporal and pterygopalatine fossae makes it a suitable route for accessing lesions involving both the central and lateral cranial base. In this study, we compared the surgical anatomy and exposure obtained by two unilateral transmaxillary approaches, one directed through an upper subtotal maxillectomy, and the other through a lower subtotal maxillectomy. METHODS Cadaveric specimens examined, with 3 to 40× magnification, provided the material for this study. RESULTS Both upper and lower maxillectomy approaches open a surgical field extending from the ipsilateral internal carotid artery to the contralateral Eustachian tube; however, they differ in the direction of the access and the areas exposed. The lower maxillectomy opens a combination of the transmaxillary, transnasal, and transoral routes to extra- and intradural lesions of the central cranial base. Performing additional osteotomies of the mandibular coronoid process and the sphenoid pterygoid process provides anterolateral access to the lateral cranial base, including the pterygopalatine and infratemporal fossae, and the parapharyngeal space. The upper maxillectomy opens the transmaxillary and transnasal routes to the central cranial base but not the transoral route.