Furen-Ko and Shunkuni-Tai
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vegetation Responses to Interglacial Warming
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 9, 245–267, 2013 www.clim-past-discuss.net/9/245/2013/ Climate doi:10.5194/cpd-9-245-2013 of the Past CPD © Author(s) 2013. CC Attribution 3.0 License. Discussions 9, 245–267, 2013 This discussion paper is/has been under review for the journal Climate of the Past (CP). Vegetation Please refer to the corresponding final paper in CP if available. responses to interglacial warming A. V. Lozhkin and Vegetation responses to interglacial P. M. Anderson warming in the Arctic, examples from Lake El’gygytgyn, northeast Siberia Title Page Abstract Introduction 1 2 A. V. Lozhkin and P. M. Anderson Conclusions References 1 Northeast Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy Tables Figures of Sciences, 16 Portovaya Street, Magadan, 685000, Russia 2Earth & Space Sciences and Quaternary Research Center, University of Washington, Seattle, 98195-1310, USA J I Received: 28 August 2012 – Accepted: 3 September 2012 – Published: 15 January 2013 J I Correspondence to: P. M. Anderson ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 245 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD Palynological data from Lake El’gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warm- 9, 245–267, 2013 ing on arctoboreal ecosystems. Vegetation associated with climatic optima suggests 5 two types of interglacial responses: one is dominated by deciduous taxa (the post- Vegetation glacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second responses to by evergreen conifers (MIS11, MIS31). -
Conifer Quarterly
Conifer Quarterly Vol. 26 No. 2 Spring 2009 Picea abies ‘Reflexa’ Photo by Dennis Groh The Conifer Quarterly is th e pub lication of the American Conifer Society Contents 7 How I spruced up Georgia by Tom Cox 10 A Fungus Made Us Do It by Bill Van Kosky 17 Brassica hirta by Phil Syphrit 19 Stonehedge, the Garden of Ken and Elena Jordan Text and Photos by Jack Ayers 26 Winter Burn on Conifers by Ellen Kelley 28 Evaluating Landscape Adaptability of Hemlock Species Picea abies 'Lanham's Beehive' ( spp.) in Western North Carolina Photo by Randall C. Smith, Courtesy of Iseli Nursery Tsuga by Anthony V. LeBude and Thomas G. Ranney 32 Collecting Northern Conifers by William Journeay 36 Conifer Destinations by Tom Cox 38 Conifers with Leaves by Maud Henne American Conifer Society Voices 2 President’s Message 4 Editor’s Memo 16 Letter to the Editor 41 ACS 2009 National Meeting 44 2009 Western Region Meeting 46 $7,000 Awarded to Four Southeast Regional Gardens Picea omorika ‘Pimoko’ Photo by Randall C. Smith, Courtesy of Iseli Nursery Vol. 26 No. 2 CONIFER QUARTERLY 3 Conifer AS I SEE IT FROM THE PRESIDENT ’S DESK “Everything is connected to everything At the recently concluded Winter way to recruit new members. else. There is one ecosphere for all living Board Meeting, the board focused on The charge to each region, then, is to Quarterly organisms and what affects one, affects membership. Our concern is not as much develop a plan to increase membership in all. ” with members who do not renew their region. -
Identification of the Parental Species of a Putative Hybrid Spruce Picea × Notha Using DNA Markers with Contrasting Modes of Inheritance
ISSN 1346-7565 Acta Phytotax. Geobot. 69 (1): 11–19 (2018) doi: 10.18942/apg.201712 Identification of the Parental Species of a Putative Hybrid Spruce Picea × notha Using DNA Markers with Contrasting Modes of Inheritance 1,* 2 3 4 MINEAKI AIZAWA MASAKAZU G. IWAIZUMI , HIROSHI YOSHIMARU AND SUSUMU GOTO 1 Department of Forest Science, Faculty of Agriculture, Utsunomiya University, 350, Mine-machi, Utsunomiya, Tochigi 321-8505, Japan. * [email protected] (author for correspondence); 2 Kansai Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, 1043 Uetsukinaka, Shoo, Katsuta, Okayama 709-4335, Japan; 3 Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; 4 Education and Research Center, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Picea × notha, described by Rehder in 1939, is thought to be a putative hybrid between pollen receptive P. glehnii and pollen donating P. jezoensis var. hondoensis; however, such hybrid is questionable because the distributions of P. glehnii and P. jezoensis var. hondoensis do not overlap naturally. Recently, a natu- ral hybrid between P. glehnii and P. jezoensis var. jezoensis, which is morphologically similar to P. × notha, was genetically determined. Therefore, the goal of this study was to identify the parental species of P. × notha using maternally inherited mitochondrial (mt), paternally inherited chloroplast (cp), and biparentally inherited nuclear (n) DNA markers and to elucidate the similarity of P. × notha and natural hybrids occurring in Hokkaido. -
The Evolution of Cavitation Resistance in Conifers Maximilian Larter
The evolution of cavitation resistance in conifers Maximilian Larter To cite this version: Maximilian Larter. The evolution of cavitation resistance in conifers. Bioclimatology. Univer- sit´ede Bordeaux, 2016. English. <NNT : 2016BORD0103>. <tel-01375936> HAL Id: tel-01375936 https://tel.archives-ouvertes.fr/tel-01375936 Submitted on 3 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE BORDEAUX Spécialité : Ecologie évolutive, fonctionnelle et des communautés Ecole doctorale: Sciences et Environnements Evolution de la résistance à la cavitation chez les conifères The evolution of cavitation resistance in conifers Maximilian LARTER Directeur : Sylvain DELZON (DR INRA) Co-Directeur : Jean-Christophe DOMEC (Professeur, BSA) Soutenue le 22/07/2016 Devant le jury composé de : Rapporteurs : Mme Amy ZANNE, Prof., George Washington University Mr Jordi MARTINEZ VILALTA, Prof., Universitat Autonoma de Barcelona Examinateurs : Mme Lisa WINGATE, CR INRA, UMR ISPA, Bordeaux Mr Jérôme CHAVE, DR CNRS, UMR EDB, Toulouse i ii Abstract Title: The evolution of cavitation resistance in conifers Abstract Forests worldwide are at increased risk of widespread mortality due to intense drought under current and future climate change. -
Chapter 21. Trees, Shrubs and Woody Vines
TREES, SHRUBS AND WOODY VINES James B. Calkins Introduction have broad leaves, flowers, variable fruit, and many, Trees, shrubs and woody vines represent the woody but not all, are deciduous or lose their leaves during a members of the plant world. The terms “tree”, “shrub” dormant period, usually during winter. Most and “vine” are non-scientific general descriptive words gymnosperms have narrow leaves called needles, are with no well-defined specific meaning. The American cone-bearing, and are evergreen. Again, there are Standards for Nursery Stock, which is included with notable exceptions to these generalizations. The term this manual, gives some definition to the terms, but in “woody” means that the cells of the stems and general, a “tree” is understood to be a woody plant branches contain ‘lignin’ which serves as a support approximately six feet to over 100 feet in height at structure and gives a permanence to branches even maturity with most major branches derived from a when the plant dies, whereas “herbaceous” plants single erect stem. Variations can include a two to five contain little or no lignin and collapse as soon as the stem clump or a multi-stem form of these same plant dies or goes dormant. species. Shrubs can be defined as almost always having branches deriving from multiple stems and Knowledge of a plant’s classification, characteristics, generally under 15 to 20 feet in height. Vines are and history or native habitat is essential to its highly apically dominant plants, generally with few production in the nursery and to its proper utilization in side branches. -
Patterns of Branch Growth and Death in Crowns of Sakhalin Spruce, Picea Glehnii (F
Article Patterns of Branch Growth and Death in Crowns of Sakhalin Spruce, Picea glehnii (F. Schmidt) Mast. Lei Chen * and Akihiro Sumida Institute of Low Temperature Science, Hokkaido University, N19W8, Sapporo 060-0819, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-011-706-7660 Academic Editors: Mark S. Ashton and Timothy A. Martin Received: 23 December 2016; Accepted: 11 January 2017; Published: 15 January 2017 Abstract: The development of crown architecture strongly affects tree growth and survival. Growth and death of primary branches (those branching off from the main stem) and secondary branches (those from a primary branch) in the lowest part of the crown were investigated for Picea glehnii in an even-aged plantation. Probability of death of a primary branch decreased as the length between its basal location and the crown base (LCB) increased (p = 0.04), but this probability was not significantly related to the relative photosynthetic photon flux density (rPPFD) above the primary branch (p = 0.18). The probability of producing one or more current-year shoots on a primary branch increased with increasing rPPFD above the primary branch (p = 0.01); however, this probability was unrelated to LCB (p = 0.29). Secondary branches at the distal part of a primary branch produced more current-year shoots and exhibited a lower probability of death than proximal branches (p < 0.01), probably because rPPFD above the distal secondary branches was greater than the proximal branches (p < 0.01). Our results suggest that, while local light conditions are relevant to shoot production and shoot death on a primary branch, the death of an entire primary branch may be related to some morphological attributes concerning the length to the crown base. -
Environmental Protection at Prigorodnoye Production Complex
WHAT IS THE ENVIRONMENT? he environment is everything that surrounds us. All the components of Tthe environment, air, earth, water, plants and animals are closely interlinked in a delicately balanced system. Human beings, of course, are also a part of the environment. However, unlike most animals that live in the environment as it exists, human beings can change their environmental conditions. With the ability to alter the world that surrounds us, we have the responsibility to maintain the integrity of the environment and to reduce environmental impacts. We must not see ourselves as the lords over nature, but rather as a part of nature — that part obliged to preserve the balance and stability of the environment for future generations. HOW IS HUMAN ACTIVITY AFFECTING THE ENVIRONMENT? s science and technology advanced in the 20th century, Athe world got many new devices to make everyday life more comfortable: cars, computers, and mobile phones, to name only a few. However, the introduction of modern conveniences has also had its drawbacks — and has taken a toll on the environment. Over the course of the last century environmental pollution increased a staggering 10-fold. So what can we do to preserve our natural surroundings? Of course, businesses will not shutter plants and factories, and consumers will not dispense with their cars and other luxuries. We must search for newer and safer technologies with less environmental impact, such as generating power from alternative sources and using materials that are biodegradable. With these new technologies, man to do less harm to the environment. 1 akhalin Island is a new oil and gas production centre of great importance Sto the global oil and gas market. -
Growth of Abies Sachalinensis Along an Urban Gradient Affected By
Article Growth of Abies sachalinensis Along an Urban Gradient Affected by Environmental Pollution in Sapporo, Japan Astrid Moser-Reischl 1,*, Thomas Rötzer 1 , Peter Biber 1 , Matthias Ulbricht 1, Enno Uhl 1, 2, 2, 1 Laiye Qu y, Takayoshi Koike y and Hans Pretzsch 1 Forest Growth and Yield Science, School of Life Sciences, Weihenstephan, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany 2 Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan * Correspondence: [email protected] Present address: Urban and Regional Ecology, Research Center for Eco-Environmental Science, y Beijing 100085, China and University of Chinese Academy of Sciences, Beijing 100049, China. Received: 22 June 2019; Accepted: 16 August 2019; Published: 20 August 2019 Abstract: Urban tree growth is often affected by reduced water availability, higher temperatures, small and compacted planting pits, as well as high nutrient and pollution inputs. Despite these hindering growth conditions, recent studies found a surprisingly better growth of urban trees compared to trees at rural sites, and an enhanced growth of trees in recent times. We compared urban versus rural growing Sakhalin fir (Abies sachalinensis (F. Schmidt) Mast.) trees in Sapporo, northern Japan and analyzed the growth differences between growing sites and the effects of environmental pollution (NO2, NOX, SO2 and OX) on tree growth. Tree growth was assessed by a dendrochronological study across a gradient from urban to rural sites and related to high detailed environmental pollution data with mixed model approaches and regression analyses. A higher growth of urban trees compared to rural trees was found, along with an overall accelerated growth rate of A. -
B-Chromosomes in Gymnosperms
Rastogi and Ohri . Silvae Genetica (2019) 68, 51 - 54 51 B-Chromosomes in Gymnosperms S. Rastogi and D. Ohri Research Cell, Amity University Uttar Pradesh, Licknow Campus, Malhaur, P.O. Chinhat, Luc know-226028 (U.P.) Corresponding author: Deepak Ohri, Email: [email protected], [email protected] Abstract wide distribution, being known from about 1300 plant species (Camacho 2005). However, their distribution is non-random B-chromosomes show a non-random distribution in different among various taxonomic groups (Jones et al. 2008). Their taxa of gymnosperms. They are generally smaller and show adaptive value is not well established but it is observed that similar centromeric position as the normal complement and they are more common in plants inhabiting suboptimal and are heterochromatic in nature and may show DAPI or CMA extreme conditions (Kunakh 2010). It is generally considered banding. They are generally devoid of any gene content, do that B’s are more frequent in species with larger genomes than not pair at meiosis and show accumulation through female those with smaller genomes, however they show negative cor- line. They show incremental effect on genome size and some relation with ploidy levels (Trivers et al. 2004). Nevertheless, adaptive value in particular ecological conditions. these correlations are not commensurate with the occurrence of Bs in nearly 40 species of hardwoods which both have smal- Keywords: : B-chromosomes, gymnosperms, frequency, meiotic ler genomes as well as chromosome sizes (see Jones 1995, Ohri pairing, adaptive value 2015). Gymnosperms, which have much larger genomes show the incidence of B-chromosomes in 31out of a total of 633 spe- cies known cytologicaly, making up 5 % of the total (unpublis- hed data). -
Japan Phillyraeoides Scrubs Vegetation Rhoifolia Forests
Natural and semi-naturalvegetation in Japan M. Numata A. Miyawaki and D. Itow Contents I. Introduction 436 II. and in Plant life its environment Japan 437 III. Outline of natural and semi-natural vegetation 442 1. Evergreen broad-leaved forest region 442 i.i Natural vegetation 442 Natural forests of coastal i.l.i areas 442 1.1.1.1 Quercus phillyraeoides scrubs 442 1.1.1.2 Forests of Machilus and of sieboldii thunbergii Castanopsis (Shiia) .... 443 Forests 1.1.2 of inland areas 444 1.1.2.1 Evergreen oak forests 444 Forests 1.1.2.2 of Tsuga sieboldii and of Abies firma 445 1.1.3 Volcanic vegetation 445 sand 1.1.4 Coastal vegetation 447 1.1.$ Salt marshes 449 1.1.6 Riverside vegetation 449 lake 1.1.7 Pond and vegetation 451 1.1.8 Ryukyu Islands 451 1.1.9 Ogasawara (Bonin) and Volcano Islands 452 1.2 Semi-natural vegetation 452 1.2.1 Secondary forests 452 C. 1.2.1.1 Coppices of Castanopsis cuspidata and sieboldii 452 1.2.1.2 Pinus densiflora forests 453 1.2.1.3 Mixed forests of Quercus serrata and Q. acutissima 454 1.2.1.4 Bamboo forests 454 1.2.2 Grasslands 454 2. Summergreen broad-leaved forest region 454 2.1 Natural vegetation 455 Beech 2.1.1 forests 455 forests 2.1.2 Pterocarya rhoifolia 457 daviniana-Fraxinus 2.1.3 Ulmus mandshurica forests 459 Volcanic 2.1.4 vegetation 459 2.1.5 Coastal vegetation 461 2.1.5.1 Sand dunes and sand bars 461 2.1.5.2 Salt marshes 461 2.1.6 Moorland vegetation 464 2.2 Semi-natural vegetation 465 2.2.1 Secondary forests 465 2.2.1.1 Pinus densiflora forests 465 2.2.1.2 Quercus mongolica var. -
Assessment of Genetic Diversity in Picea Orientalis (L.) Link
ASSESSMENT OF GENETIC DIVERSITY IN PICEA ORIENTALIS (L.) LINK. IN GENETIC RESOURCES BY MICROSATELLITES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ASLI ÖZDİLEK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the Thesis ASSESSMENT OF GENETIC DIVERSITY IN PICEA ORIENTALIS (L.) Link. IN GENETIC RESOURCES BY MICROSATTELLITES submitted by ASLI ÖZDİLEK in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver _______________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı _______________ Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya _______________ Supervisor, Department of Biological Sciences, METU Assist. Prof. Dr. Fatih Temel _______________ Co-Supervisor, Department of Forest Engineering, Artvin Çoruh University Examining Committee Members Prof. Dr. Musa Doğan _______________ Department of Biological Sciences, METU Prof. Dr. Zeki Kaya _______________ Department of Biological Sciences, METU Prof. Dr. İrfan Kandemir _______________ Biology Department, Ankara University Prof. Dr. Emine Sümer Aras _______________ Biology Department, Ankara University Assoc. Prof. Dr. Sertaç Önde _______________ Department of Biological Sciences, METU Date: 27.04.2015 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: Aslı ÖZDİLEK Signature: iv ABSTRACT ASSESSMENT OF GENETIC DIVERSITY IN PICEA ORIENTALIS (L.) Link. -
Ainu Ethnobiology
Williams Ainu Ethnobiology In the last 20 years there has been an increasing focus on study of Ainu culture in Japan, the United States, and in Europe. is has resulted in a number of major exhibitions and publications such as “Ainu, Spirit of a Northern People” published in 1999 by the Ainu Ethnobiology Smithsonian and the University of Washington Press. While such e orts have greatly enhanced our general knowledge of the Ainu, they did not allow for a full understanding of the way in which the Ainu regarded and used plants and animals in their daily life. is study aims at expanding our knowledge of ethnobiology as a central component of Ainu culture. It is based in large part on an analysis of the work of Ainu, Japanese, and Western researchers working in the 19th, 20th, and 21st centuries. Ainu Ethnobiology Dai Williams was born in Lincoln, England in 1941. He received a BA in Geography and Anthropology from Oxford University in 1964 and a MA in Landscape Architecture from the University of Pennsylvania in 1969. He spent the majority of his career in city and regional planning. His cultural research began through museum involvement in the San Francisco Bay Area. Based in Kyoto from 1989, he began research on the production and use of textiles in 19th century rural Japan. His research on the Ainu began in 1997 but primarily took place in Hokkaido between 2005 and 2009. Fieldwork focused on several areas of Hokkaido, like the Saru River Basin and the Shiretoko Peninsula, which the Ainu once occupied.