Working Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programa Nacional Para La Aplicación De La Normativa Fitosanitaria
PROGRAMA NACIONAL PARA LA APLICACIÓN DE LA NORMATIVA FITOSANITARIA PLAN NACIONAL DE CONTINGENCIA DE Dendrolimus sibiricus Tschetverikov SEPTIEMBRE 2020 SUMARIO DE MODIFICACIONES REVISIÓN FECHA DESCRIPCIÓN OBJETO DE LA REVISIÓN 30/09/2020 Documento base Plan Contingencia Dendrolimus sibiricus 2020 INDICE 1. Introducción y Objetivos 2. Definiciones 3. Marco legislativo, Organización y Estructura de mando 3.1 Marco legislativo 3.2 Marco legislativo, Organización y Estructura 4. Información sobre la enfermedad 4.1 Distribución de la plaga 4.2 Taxonomía 4.3 Daño 4.4 Plantas hospedantes 5. Métodos de identificación y diagnóstico 5.1 Detección de la plaga 5.2 Identificación y diagnóstico 6. Ejecución del Plan Nacional de Contingencia 6.1 Plan de Nacional Contingencia y los planes específicos de acción 6.2 Medidas cautelares a adoptar en caso de sospecha de la presencia de Dendrolimus sibiricus. 6.3 Medidas a adoptar en caso de confirmación de la presencia de Dendrolimus sibiricus. 6.4 Medidas de erradicación. 6.5 Medidas en caso de incumplimiento. 7. Comunicación, Documentación y Formación 7.1. Comunicación externa y campañas de divulgación/sensibilización. 7.2 Consulta a los grupos de interés 7.3. Comunicación interna y documentación 7.4. Pruebas y formación del personal 8. Evaluación y revisión 9. Referencias Anexo 1: PROTOCOLO DE PROSPECCIONES DE Dendrolimus sibiricus Anexo 2: PROGRAMA DE ERRADICACIÓN DE Dendrolimus sibiricus Página 1 de 27 Plan Contingencia Dendrolimus sibiricus 2020 1. Introducción y Objetivos En el presente documento se recogen las medidas que deben adoptarse contra Dendrolimus sibiricus, organismo nocivo regulado, con el objetivo de impedir su aparición, y en caso de que aparezca, actuar con rapidez y eficacia, determinar su distribución y aplicar medidas de erradicación. -
Ecology and Management of Larix Forests: a Look Ahead Proceedings of an International Symposium
Ecology and Management of Larix Forests: A Look Ahead Proceedings of an International Symposium Whitefish, Montana, U.S.A. October 5-9, 1992 Compilers: Wyman C. Schmidt Kathy J. McDonald Duchesne, L. C.; Lelu, M. A; von Aderkas, P.; Charest, Klimaszewska, K 1989. Plantlet development from imma P. J. 1992. Microprojectile-mediated DNA delivery in ture zygotic embryos of hybrid larch through somatic haploid and diploid embryogenic cells of Larix spp. embryogenesis. Plant Science. 63: 95-103. Canadian Journal of Forest Research. [In press]. Klimaszewska, K; Ward, C.; Cheliak, W. M. 1992. Cryo Ellis, D. D.; McCabe, D.; McInnis, S.; Martinell, B.; preservation and plant regeneration from embryogenic Roberts, D.; McCown, B. 1991. Transformation of white cultures oflarch (Larix x eurolepis) and black spruce spruce by electrical discharge particle acceleration. In: (Picea mariana). Journal of Expermental Botany. 43: Haissing, B. E.; Kirk, T. K; Olsen, W. L.; Raffa, K F.; 73-79. Slavicek, J. M., eds. Applications of biotechnology-to Lelu, M. A; Klimaszewska, K K; Jones, C.; Ward, C.; tree culture, protection and utilization. United States von Aderkas, P.; Charest, P. J. 1992. A laboratory guide Department of Agriculture, Forest Service, Columbus, to somatic embryogenesis in spruce and larch. Petawawa OH:I02. National Forestry Institute. Information Report. Huang, Y.; Diner, AM.; Karnosky, D. F. 1991. Agrobacter PI-X-Ul (submitted for publication). ium rhizogenes-mediated genetic transformation and von Aderkas, P.; Klimaszewska, K K; Bonga, J . M. 1990. regeneration of a conifer: oorix decidua. In: Vitro Cell. Diploid and haploid embryogenesis in Larix leptolepis, Dev. BioI. 27P: 201-207. -
Temporal and Spatial Patterns of Mitochondrial Haplotype And
www.nature.com/scientificreports OPEN Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian Received: 16 February 2018 Accepted: 1 November 2018 larches inferred from ancient Published: xx xx xxxx environmental DNA and modeling Laura S. Epp 1, Stefan Kruse1, Nadja J. Kath1,2, Kathleen R. Stoof-Leichsenring1, Ralph Tiedemann2, Luidmila A. Pestryakova3 & Ulrike Herzschuh1,2,4 Changes in species’ distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous signifcance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We fnd spatial and temporal patterns, which suggest that forest density is the most infuential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong infuence of competition on the species’ range shifts. These fndings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fne-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. -
Stand Structure and Dynamics During a 16-Year Period in a Conifer-Hardwood Mixed Forest, Northern Japan
Takahashi et al. 1 Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan Koichi Takahashia,1,*, Daisuke Mitsuishia, Shigeru Uemurab, Jun-Ichirou Suzukia,2, Toshihiko Haraa a: The Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan b: Forest Research Station, Field Science Center for Northern Biosphere, Hokkaido University, Nayoro 096-0071, Japan Present address 1: Department of Biology, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan 2: Department of Biology, Faculty of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan *: All correspondence to K. Takahashi at the above present address#1. Fax: +81.263.37.2560 E-mail: [email protected] This manuscript consists of 23-typed pages including figure legends, 3 tables and 6 figures. Takahashi et al. 2 Abstract The stand structure and regeneration dynamics of trees > 2.0 m in trunk height were studied during 1982–1998 in a 1-ha plot in a sub-boreal conifer-hardwood mixed forest, northern Japan, with a dense dwarf bamboo in the understory. Total density was low in 1982 (651 trees/ha), as compared with other forests in Japan. Quercus crispula was dominant in the upper canopy layer but their saplings were rare, while Acer mono, Acer japonicum and Abies sachalinensis were dominant in the sub-canopy and understory layers with many saplings. Mortality of each species was quite low during the census period (average 0.57%/yr), and there was no clear difference among the four species. The age structure of Quercus crispula was bell-shaped with a peak at ca. -
Ten Years of Provenance Trials and Application of Multivariate Random Forests Predicted the Most Preferable Seed Source for Silv
Article Ten Years of Provenance Trials and Application of Multivariate Random Forests Predicted the Most Preferable Seed Source for Silviculture of Abies sachalinensis in Hokkaido, Japan Ikutaro Tsuyama 1,*, Wataru Ishizuka 2 , Keiko Kitamura 1, Haruhiko Taneda 3 and Susumu Goto 4 1 Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan; [email protected] 2 Forestry Research Institute, Hokkaido Research Organization, Koushunai, Bibai, Hokkaido 079-0198, Japan; [email protected] 3 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan; [email protected] 4 Education and Research Center, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] * Correspondence: [email protected] Received: 10 August 2020; Accepted: 27 September 2020; Published: 30 September 2020 Abstract: Research highlights: Using 10-year tree height data obtained after planting from the range-wide provenance trials of Abies sachalinensis, we constructed multivariate random forests (MRF), a machine learning algorithm, with climatic variables. The constructed MRF enabled prediction of the optimum seed source to achieve good performance in terms of height growth at every planting site on a fine scale. Background and objectives: Because forest tree species are adapted to the local environment, local seeds are empirically considered as the best sources for planting. However, in some cases, local seed sources show lower performance in height growth than that showed by non-local seed sources. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
Geographical Gradients of Genetic Diversity and Differentiation Among the Southernmost Marginal Populations of Abies Sachalinens
Article Geographical Gradients of Genetic Diversity and Differentiation among the Southernmost Marginal Populations of Abies sachalinensis Revealed by EST-SSR Polymorphism Keiko Kitamura 1, Kentaro Uchiyama 2, Saneyoshi Ueno 2, Wataru Ishizuka 3, Ikutaro Tsuyama 1 and Susumu Goto 4,* 1 Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan; kitamq@ffpri.affrc.go.jp (K.K.); itsuyama@affrc.go.jp (T.I.) 2 Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; [email protected] (U.K.); [email protected] (U.S.) 3 Forestry Research Institute, Hokkaido Research Organization, Koushunai, Bibai, Hokkaido 079-0166, Japan; [email protected] 4 Education and Research Center, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan * Correspondence: [email protected] Received: 17 December 2019; Accepted: 17 February 2020; Published: 20 February 2020 Abstract: Research Highlights: We detected the longitudinal gradients of genetic diversity parameters, such as the number of alleles, effective number of alleles, heterozygosity, and inbreeding coefficient, and found that these might be attributable to climatic conditions, such as temperature and snow depth. Background and Objectives: Genetic diversity among local populations of a plant species at its distributional margin has long been of interest in ecological genetics. Populations at the distribution center grow well in favorable conditions, but those at the range margins are exposed to unfavorable environments, and the environmental conditions at establishment sites might reflect the genetic diversity of local populations. -
Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
© 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions. -
Vegetation Responses to Interglacial Warming
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 9, 245–267, 2013 www.clim-past-discuss.net/9/245/2013/ Climate doi:10.5194/cpd-9-245-2013 of the Past CPD © Author(s) 2013. CC Attribution 3.0 License. Discussions 9, 245–267, 2013 This discussion paper is/has been under review for the journal Climate of the Past (CP). Vegetation Please refer to the corresponding final paper in CP if available. responses to interglacial warming A. V. Lozhkin and Vegetation responses to interglacial P. M. Anderson warming in the Arctic, examples from Lake El’gygytgyn, northeast Siberia Title Page Abstract Introduction 1 2 A. V. Lozhkin and P. M. Anderson Conclusions References 1 Northeast Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy Tables Figures of Sciences, 16 Portovaya Street, Magadan, 685000, Russia 2Earth & Space Sciences and Quaternary Research Center, University of Washington, Seattle, 98195-1310, USA J I Received: 28 August 2012 – Accepted: 3 September 2012 – Published: 15 January 2013 J I Correspondence to: P. M. Anderson ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 245 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD Palynological data from Lake El’gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warm- 9, 245–267, 2013 ing on arctoboreal ecosystems. Vegetation associated with climatic optima suggests 5 two types of interglacial responses: one is dominated by deciduous taxa (the post- Vegetation glacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second responses to by evergreen conifers (MIS11, MIS31). -
Magnolia Obovata
ISSUE 80 INAGNOLN INagnolla obovata Eric Hsu, Putnam Fellow, Arnold Arboretum of Harvard University Photographs by Philippe de 8 poelberch I first encountered Magnolia obovata in Bower at Sir Harold Hillier Gardens and Arboretum, Hampshire, England, where the tightly pursed, waxy, globular buds teased, but rewarded my patience. As each bud unfurled successively, it emitted an intoxicating ambrosial bouquet of melons, bananas, and grapes. Although the leaves were nowhere as luxuriously lustrous as M. grandrflora, they formed an el- egant wreath for the creamy white flower. I gingerly plucked one flower for doser observation, and placed one in my room. When I re- tumed from work later in the afternoon, the mom was overpowering- ly redolent of the magnolia's scent. The same olfactory pleasure was later experienced vicariously through the large Magnolia x wiesneri in the private garden of Nicholas Nickou in southern Connecticut. Several years earlier, I had traveled to Hokkaido Japan, after my high school graduation. Although Hokkaido experiences more severe win- ters than those in the southern parts of Japan, the forests there yield a remarkable diversity of fora, some of which are popular ornamen- tals. When one drives through the region, the silvery to blue-green leaf undersides of Magnolia obovata, shimmering in the breeze, seem to flag the eyes. In "Forest Flora of Japan" (sggII), Charles Sargent commended this species, which he encountered growing tluough the mountainous forests of Hokkaido. He called it "one of the largest and most beautiful of the deciduous-leaved species in size and [the seed conesj are sometimes eight inches long, and brilliant scarlet in color, stand out on branches, it is the most striking feature of the forests. -
Conifer Quarterly
Conifer Quarterly Vol. 26 No. 2 Spring 2009 Picea abies ‘Reflexa’ Photo by Dennis Groh The Conifer Quarterly is th e pub lication of the American Conifer Society Contents 7 How I spruced up Georgia by Tom Cox 10 A Fungus Made Us Do It by Bill Van Kosky 17 Brassica hirta by Phil Syphrit 19 Stonehedge, the Garden of Ken and Elena Jordan Text and Photos by Jack Ayers 26 Winter Burn on Conifers by Ellen Kelley 28 Evaluating Landscape Adaptability of Hemlock Species Picea abies 'Lanham's Beehive' ( spp.) in Western North Carolina Photo by Randall C. Smith, Courtesy of Iseli Nursery Tsuga by Anthony V. LeBude and Thomas G. Ranney 32 Collecting Northern Conifers by William Journeay 36 Conifer Destinations by Tom Cox 38 Conifers with Leaves by Maud Henne American Conifer Society Voices 2 President’s Message 4 Editor’s Memo 16 Letter to the Editor 41 ACS 2009 National Meeting 44 2009 Western Region Meeting 46 $7,000 Awarded to Four Southeast Regional Gardens Picea omorika ‘Pimoko’ Photo by Randall C. Smith, Courtesy of Iseli Nursery Vol. 26 No. 2 CONIFER QUARTERLY 3 Conifer AS I SEE IT FROM THE PRESIDENT ’S DESK “Everything is connected to everything At the recently concluded Winter way to recruit new members. else. There is one ecosphere for all living Board Meeting, the board focused on The charge to each region, then, is to Quarterly organisms and what affects one, affects membership. Our concern is not as much develop a plan to increase membership in all. ” with members who do not renew their region. -
The Latitudinal Distribution of Vegetation Cover in Siberia
BIO Web of Conferences 16, 00047 (2019) https://doi.org/10.1051/bioconf/20191600047 Results and Prospects of Geobotanical Research in Siberia The latitudinal distribution of vegetation cover in Siberia Irina Safronova*, Tatiana Yurkovsksya Komarov Botanical Institute of Russian academy of sciences Professor Popov str., 2, Saint- Petersburg, 197346, Russia Abstract. The latitudinal changes of vegetation cover on the plains of Siberia are observed. In Western Siberia there are 4 zones (tundra and taiga, and forest-steppe and steppe only here), in Central and North-Eastern Siberia – only 2 zones (tundra and taiga).Tundra zone is represented by 4 subzones in Central Siberia; in Western and North-Eastern Siberia – by 3 subzones (there are no polar subzone). All 5 subzones of the taiga zone are distinguished both in Western Siberia and in the Central Siberia, but in the Central Siberia, forests are found in very high latitudes. The feature of the taiga zone of Western Siberia is high paludification. As a result, the vegetation of mires dominates over the zonal vegetation. Zonal West Siberian types are dark coniferous forests. Light coniferous forests predominate in the taiga zone of Central and North-Eastern Siberia. In the forest-steppe zone in Western Siberia forests are small-leaved − birch, aspen-birch (Betula pendula, Populus tremula). The abundance of mires is the feature of this zone, as well as in the taiga. Taiga forests predominate in Siberia. There is tundra vegetation on the Islands of the Arctic Ocean and on narrow strip along its coast; the steppes occupy a small area in the South of the West Siberian lowland.